Foundations of Computer Security Lecture 52: Diffie-Hellman Key Exchange

> Dr. Bill Young Department of Computer Sciences University of Texas at Austin

The question of key exchange was one of the first problems addressed by a cryptographic protocol. *This was prior to the invention of public key cryptography.*

The Diffie-Hellman key agreement protocol (1976) was the first practical method for establishing a shared secret over an unsecured communication channel.

The point is to agree on a key that two parties can use for a symmetric encryption, in such a way that an eavesdropper cannot obtain the key.

Lecture 52: 1 Diffie-Hellman Key Exchange	Lecture 52: 2 Diffie-Hellman Key Exchange
Diffie-Hellman Algorithm	Diffie-Hellman Example
 Alice (knows p. g. A) (g^B mod p) Steps in the algorithm: Alice and Bob agree on a prime number p and a base g. Alice chooses a secret number a, and sends Bob (g^a mod p). Bob chooses a secret number b, and sends Alice (g^b mod p). Alice computes ((g^b mod p)^a mod p). Bob computes ((g^a mod p)^b mod p). Bob computes ((g^a mod p)^b mod p). Both Alice and Bob can use this number as their key. Notice that p and g need not be protected. 	 Alice and Bob agree on p = 23 and g = 5. Alice chooses a = 6 and sends 5⁶ mod 23 = 8. Bob chooses b = 15 and sends 5¹⁵ mod 23 = 19. Alice computes 19⁶ mod 23 = 2. Bob computes 8¹⁵ mod 23 = 2. Then 2 is the shared secret. Clearly, much larger values of a, b, and p are required. An eavesdropper cannot discover this value even if she knows p and g and can obtain each of the messages.

Lessons

Suppose p is a prime of around 300 digits, and a and b at least 100 digits each.

Discovering the shared secret given g, p, $g^a \mod p$ and $g^b \mod p$ would take longer than the lifetime of the universe, using the best known algorithm. This is called the *discrete logarithm* problem.

- How can two parties agree on a secret value when all of their messages might be overheard by an eavesdropper?
- The Diffie-Hellman algorithm accomplishes this, and is still widely used.
- With sufficiently large inputs, Diffie-Hellman is very secure.

Next lecture: Digital Signatures

Lecture 52: 6 Diffie-Hellman Key Exchange