## **Otway-Rees**

Foundations of Computer Security Lecture 62: The Otway-Rees Protocol

> Dr. Bill Young Department of Computer Sciences University of Texas at Austin

Another very important and much studied protocol is the Otway-Rees protocol. Below is one of several variants.

- $S \rightarrow B: M, \{N_a, K_{ab}\}_{K_{as}}, \{N_b, K_{ab}\}_{K_{bs}}$
- $\bigcirc B \to A: M, \{N_a, K_{ab}\}_{K_{as}}$

Here M is a session identifier;  $N_a$  and  $N_b$  are nonces.

What are the assumptions? What seems to be the goal? What might the principals believe after each step?

| Lecture 62: 1 The Otway-Rees Protoc | ol  | Lecture 62: 2     | The Otway-Rees Protocol |
|-------------------------------------|-----|-------------------|-------------------------|
| Attack on Otway-Rees                | A A | A Flawed Protocol |                         |

A malicious intruder can arrange for A and B to end up with different keys.

- After step 3, B has received  $K_{ab}$ .
- ② An intruder then intercepts the fourth message.
- The intruder resends message 2, so S generates a new key  $K'_{ab}$ , sent to B.
- The intruder intercepts this message too, but sends to A M, {N<sub>a</sub>, K'<sub>ab</sub>}<sub>Kas</sub>.
- So A has  $K'_{ab}$ , while B has  $K_{ab}$ .

Another problem: although the server tells B that A used a nonce, B doesn't know if this was a replay of an old message. Recall the following protocol, introduced previously.

1. 
$$A \to B : \{\{K\}_{K_a^{-1}}\}_{K_b}$$
  
2.  $B \to A : \{\{K\}_{K_b^{-1}}\}_{K_a}$ 

Suppose an attacker C obtains the message (step 1):  $\{\{K\}_{K_a^{-1}}\}_{K_b} = K'$ . Then, C initiates a new run of the protocol with B:

1. 
$$C \to B : \{\{K'\}_{K_c^{-1}}\}_{K_b}$$
  
2.  $B \to C : \{\{K'\}_{K_b^{-1}}\}_{K_c}$ 

The message that B sends back is:

$$\{\{K'\}_{K_b^{-1}}\}_{K_c} = \{\{\{\{K\}_{K_a^{-1}}\}_{K_b}\}_{K_b^{-1}}\}_{K_c} = \{\{K\}_{K_a^{-1}}\}_{K_c}$$

allowing C to extract the original K.

- Otway-Rees is another important protocol historically.
- Like Needham-Schroeder it illustrates how difficult it is to build a secure cryptographic protocol.
- This is also illustrated by our simple public key protocol.

Next lecture: Protocol Verification

