Foundations of Computer Security
 Lecture 62: The Otway-Rees Protocol

Dr. Bill Young
Department of Computer Sciences
University of Texas at Austin

Otway-Rees

Another very important and much studied protocol is the Otway-Rees protocol. Below is one of several variants.
(1) $A \rightarrow B: M, A, B,\left\{N_{a}, M, A, B\right\}_{K_{a s}}$
(2) $B \rightarrow S: M, A, B,\left\{N_{a}, M, A, B\right\}_{K_{a s}},\left\{N_{b}, M, A, B\right\}_{K_{b s}}$
(3) $S \rightarrow B: M,\left\{N_{a}, K_{a b}\right\}_{K_{a s}},\left\{N_{b}, K_{a b}\right\} K_{b s}$
(9) $B \rightarrow A: M,\left\{N_{a}, K_{a b}\right\} K_{\text {as }}$

Here M is a session identifier; N_{a} and N_{b} are nonces.

What are the assumptions? What seems to be the goal? What might the principals believe after each step?

Attack on Otway-Rees

A malicious intruder can arrange for A and B to end up with different keys.
(1) After step 3, B has received $K_{a b}$.
(2) An intruder then intercepts the fourth message.
(3) The intruder resends message 2 , so S generates a new key $K_{a b}^{\prime}$, sent to B.
(9) The intruder intercepts this message too, but sends to A $M,\left\{N_{a}, K_{a b}^{\prime}\right\}_{K_{a s}}$.
(0) A has $K_{a b}^{\prime}$, while B has $K_{a b}$.

Another problem: although the server tells B that A used a nonce, B doesn't know if this was a replay of an old message.

A Flawed Protocol

Recall the following protocol, introduced previously.

$$
\begin{aligned}
& \text { 1. } A \rightarrow B:\left\{\{K\}_{K_{a}^{-1}}\right\}_{K_{b}} \\
& \text { 2. } B \rightarrow A:\left\{\{K\}_{K_{b}^{-1}}\right\}_{K_{a}}
\end{aligned}
$$

Suppose an attacker C obtains the message (step 1): $\left\{\{K\}_{K_{a}^{-1}}\right\}_{K_{b}}=K^{\prime}$. Then, C initiates a new run of the protocol with B :

$$
\text { 1. } C \rightarrow B:\left\{\left\{K^{\prime}\right\}_{K_{c}^{-1}}\right\}_{K_{b}}
$$

$$
\text { 2. } B \rightarrow C:\left\{\left\{K^{\prime}\right\}_{K_{b}^{-1}}\right\}_{K_{c}}
$$

The message that B sends back is:

$$
\left\{\left\{K^{\prime}\right\}_{K_{b}^{-1}}\right\}_{K_{c}}=\left\{\left\{\left\{\{K\}_{K_{a}^{-1}}\right\}_{K_{b}}\right\}_{K_{b}^{-1}}\right\}_{K_{c}}=\left\{\{K\}_{K_{a}^{-1}}\right\}_{K_{c}}
$$

allowing C to extract the original K.

- Otway-Rees is another important protocol historically.
- Like Needham-Schroeder it illustrates how difficult it is to build a secure cryptographic protocol.
- This is also illustrated by our simple public key protocol.

Next lecture: Protocol Verification

