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Why Cryptosystems Fail

Suggestion: Read “Why Cryptosystems Fail” by Ross Anderson,
available on-line.

It turns out that the threat model commonly used by
cryptosystem designers was wrong: most frauds were not
caused by cryptanalysis or other technical attacks, but by
implementation errors and management failures. This sug-
gests that a paradigm shift is overdue in computer security.
(from the abstract)
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Data Encryption Standard

In 1972, the NBS (subsequently NIST) issued a call for proposals
to produce an encryption algorithm with the characteristics:

able to provide a high level of security;

specified and easy to understand;

publishable (security doesn’t depend on algorithm secrecy);

available to all users;

adaptable for use in diverse applications;

economical to implement in electronic devices;

efficient to use;

able to be validated.

exportable.
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DES

The Data Encryption Standard (DES) was developed for the U.S.
government for use by the general public. It is a cryptographic
standard in wide use in the U.S. and abroad.

The NBS choice for DES was based on the Lucifer algorithm
developed by IBM.

DES was adopted as a U.S. federal standard in November 1976,
authorized by NBS for use on all public and private sector
unclassified communication. Eventually, it was accepted as an
international standard by the International Standards Organization.
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Feistel Ciphers

DES is an example of a Feistel cipher, a special class of iterated
block ciphers where the ciphertext is calculated from the plaintext
(and key) by repeated application (rounds) of the same
transformation or function. Feistel ciphers are sometimes called
DES-like ciphers.

The text being encrypted is split into two halves. The function f is
applied to one half using a subkey and the output of f is XORed
with the other half. The two halves are then swapped. Each round
follows the same pattern except for the last round, where there is
no swap.

In Feistel ciphers, encryption and decryption are structurally
identical, though the subkeys used during encryption in each round
are taken in reverse during decryption.
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Feistel Ciphers
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Weak Keys

One of the goals of analyzing any encryption scheme is to find
potential theoretical flaws or weaknesses in the algorithm. For
example, in many block ciphers there are some keys that should be
avoided because of reduced complexity of the cipher.

In all Feistel algorithms, from the original key you generate a
separate subkey for each round of the algorithm. It is important to
avoid keys that generate identical subkeys in more than one round.

DES has four weak keys: the same subkey is generated in every
round. DES has twelve semi-weak keys: only two subkeys are
generated and alternate in rounds.
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Overview of the Algorithm

The DES algorithm is a combination of substitution and
transposition. The two techniques are repeatedly applied through
16 cycles or rounds.

Plaintext is encrypted in 64-bit blocks. The key is 64-bits, but 8
bits are used as check digits and don’t affect the encryption. Thus,
the key is effectively 56-bits.
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Key Schedule

1 Initially, 56 bits of the key are selected from the initial 64 by
Permuted Choice 1 (PC-1).

2 The 56 bits are then divided into two 28-bit halves; each half
is thereafter treated separately.

3 In successive rounds, both halves are rotated left by one or
two bits (specified for each round), and then 48 subkey bits
are selected by Permuted Choice 2 (PC-2), 24 bits from the
left half, and 24 from the right.

4 For successive keys, the halves are rotated so that a different
set of bits is used in each subkey; each bit is used in
approximately 14 out of the 16 subkeys.

5 The key schedule for decryption is similar—it must generate
the keys in the reverse order. Hence the rotations are to the
right, rather than the left.
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Scrambling

The scrambling function operates on half a block (32 bits) at a
time and consists of four stages:

Expansion: the 32-bit half-block is expanded to 48 bits using the
expansion permutation by duplicating some of the
bits.

Key mixing: the result is combined with a subkey using an XOR
operation. Sixteen 48-bit subkeys—one for each
round— are derived from the main key using the key
schedule.
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Scrambling (continued)

Substitution: after mixing in the subkey, the block is divided into
eight 6-bit pieces before processing by the S-boxes,
or substitution boxes.

Each of eight S-boxes replaces its six input bits
with four output bits according to a non-linear
transformation, provided in the form of a lookup
table.
The S-boxes provide the core of the security of
DES—without them, the cipher would be linear,
and trivially breakable.

Permutation: finally, the 32 outputs from the S-boxes are
rearranged according to a fixed permutation, the
P-box.
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Characteristics

The algorithm uses only standard arithmetic and logical operations
on 64-bit numbers, and hence can be implemented on standard
hardware or on single-purpose chips.

Research has shown that almost any change to the algorithm
weakens it. Reducing the iterations to 15 or changing the
substitution or permutation strategy weakens the algorithm such
that it can be broken.

The algorithm is its own inverse, if the keys are used in reverse
order. (The keys here are the shifted permuted keys generated
from k in each cycle.) That is:

E (k ,E (k ′,P)) = P .
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Security of the Algorithm

The major weakness of DES is that the algorithm uses a fixed
56-bit key. It would be extremely difficult to extend this without
significant changes to the algorithm.

In 1977, it was infeasible to break DES exhaustively, by trying all
256 (approximately 1015) keys. In 1997, researchers using 3500
machines in parallel broke a DES encryption in around 4 months.
In 1998, researchers built a “DES cracker” machine for around
$100,000 that could do it in around four days.

There has long been a worry that the government left a “trapdoor”
in the algorithm, though long study has not found any.
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Modes of Usage: ECB

There are various modes of usage for DES. The same general
modes are used for all iterated block ciphers, including AES and
others.

ECB: Electronic Code Book This means to encrypt each block
independently, using the same key for each. It is rarely used.

ECB is called a block encryption mode. Because the text length
may not be a multiple of the block size, you may have to pad the
final block.

The problem with ECB is that identical blocks in the plaintext will
yield identical blocks in the ciphertext. This is a problem for
plaintext with frequent repeats, such as internet packet traffic.
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The Problem with ECB

This is a very graphic illustration of the problem with ECB:

Original With ECB Another Mode
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Modes of Usage: CBC

CBC: Cipher Block Chaining Means to XOR each successive
plaintext block with the previous ciphertext block and then encrypt.
An initialization vector c0 is used as a “seed” for the process.
CBC is also a block encryption mode. May have to pad the final
block.

Blocks are effectively randomized before encryption, so that
identical blocks in the plaintext yield different blocks in the
ciphertext.

Slideset 6: 16 Cryptography II



CBC (continued)

The process of encryption with CBC can be characterized
algebraically as follows:

C0 = IV

Ci = EK (Pi ⊕ Ci−1)

where EK is the block encryption algorithm with key K .

Notice: to encrypt a block with CBC you have to encrypt all of the
previous blocks. This makes it not entirely suitable for, say, disk
encryption. Why?

What is the corresponding decryption algorithm? To decrypt
ciphertext block Ci do you have to decrypt all previous blocks?
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CBC Vulnerabilities (Content Leaks)

Though better than ECB, CBC still has some weaknesses.

Observed changes: An attacker able to observe changes to
ciphertext over time will be able to spot the first block that
changed.

Content Leak: If an attacker can find two identical ciphertext
blocks, Ci and Cj , he can derive the following relation:

Ci−1 ⊕ Cj−1 = Pi ⊕ Pj .

Thus, the attacker can compute Pi ⊕ Pj and thereby derive
information about two plaintext blocks.
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CBC Vulnerabilities (Watermark)

Watermarking Attack: Assume that the (known) IV associated
with sector k is IVk , and that the attacker can cause the system to
encrypt and store two chosen plaintexts P1 and P2 as the first
blocks in two sections, numbered i and j , respectively. Let’s call
these ciphertext blocks Ci ,1 and Cj ,1, respectively. By the definition
of CBC mode,

Ci ,1 = EK (P1 ⊕ IVi ).

The attacker chooses

P2 = P1 ⊕ IVi ⊕ IVj .

Then

Cj ,1 = EK (P2 ⊕ IVj) = EK (P1 ⊕ IVi ⊕ IVj ⊕ IVj) = Ci ,1.

Thus, the attacker forces two cipherblocks to be identical.
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Key Stream Generation Modes

In block encryption modes (like ECB and CBC), the point is to
generate ciphertext that stores the message in encrypted but
recoverable form.

In key stream generation modes the cipher is used more as a
pseudorandom number generator. The result is a key stream that
can be used for encryption by XORing with a message stream.
Decryption uses the same key stream.
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Cipher Feedback Mode

❥ ✲✲
❄

❄

✛

❄

✲

64-bit Shift Register

Key 64 bit
Block cipher

Input
8-bit

Output
8-bit

Cipher Feedback mode (CFB) allows
for encryption of blocks smaller than block size. Each byte, say, is
XORed with the first block of the previous output and fed back
into the encryption.
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Output Feedback Mode

Output Feedback Mode (OFB) is similar to CFB except that the
quantity XORed with each plaintext block is generated
independently of both plaintext and ciphertext, essentially by
repeatedly encrypting the “seed.”
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Double DES

To address the weakness of the DES, some researchers have
suggested applying the algorithm multiple times. Double
encryption uses two keys and works as follows:

E (k2,E (k1,m)).

Naively, this should multiply the difficulty in breaking the
algorithm. However, this is incorrect. Merkle and Hellman showed
that two encryptions actually only double the time required to
break DES at a cost of additional storage. This is equivalent to
using a 57-bit key.
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Aside on Double Encryption

Suppose you have any block cipher with a keysize of k . Suppose
also that you have known plaintext/ciphertext pairs (P ,C ) and you
are using the encryption

E (k2,E (k1,m))

where D is the corresponding decryption algorithm.

First compute and store in a hash table E (ki ,P) = Mi for all 2
k

keys ki . Then successively compute the decryption D(kj ,C ) = Mj

for each key kj . As soon as you find Mj = Mi , you have a potential
keypair (k2, k1) = (i , j).

This has time complexity O(2k) but requires 2k storage. This is
called a meet-in-the-middle attack. It is a special case of a
time-memory tradeoff.

Slideset 6: 24 Cryptography II



Triple DES

Using two keys and three encryptions does strengthen the
algorithm. The procedure is:

C = E (k1,D(k2,E (k1,m))).

This effectively doubles the key length to a 112-bit equivalent key,
at the cost of more complexity in key generation and management.

Of course, you can also use three independent keys, but this has
the disadvantage of requiring more key generation and more key
management.
Most variants are susceptible to attack using a time-memory
tradeoff. But often the storage requirements are huge and the
attack is infeasible.
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Triple DES (cont.)

Using three keys and three encryptions further strengthens the
algorithm. The procedure is:

C = E (k1,D(k2,E (k3,m))).

This effectively yields an 168-bit equivalent key.

References to 3DES typically refer to this variant. It is believed
that 3DES is strong. But it is slow. Why?

The request for proposals that led to AES explicitly mandated an
algorithm that was “stronger and faster than 3DES.”
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Advanced Encryption Standard

In 1995, NIST began a search for a successor to DES. They called
for an algorithm that was:

unclassified;

publicly disclosed;

available royalty-free for use worldwide;

symmetric block cipher algorithm for blocks of 128 bits;

usable with key sizes of 128, 192, and 256 bits

Fifteen algorithms were selected for review. Five underwent
extensive scrutiny and one was chosen as the new AES standard.
The algorithm is the Rijndael algorithm of Dutch researchers
Vincent Rijmen and Joan Daemen.
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Overview of Rijndael

This fast algorithm uses substitution, transposition, and the shift,
exclusive OR, and addition operators.

Like DES, AES uses repeat cycles or “rounds.” There are 10, 12,
or 14 cycles for keys of 128, 192, and 256 bits, respectively.
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Overview of Rijndael

The text is arranged as a 4× 4 array of bytes called the “state,”
which is modified in place in each round.









b0 b4 b8 b12
b1 b5 b9 b13
b2 b6 b10 b14
b3 b7 b11 b15









The key is also arranged as a 4× n array of bytes, and is initially
expanded in a recursive process into r + 1 128-bit keys, where r is
the number of rounds.
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Rounds in Rijndael

Each round consists of four steps.

subBytes: for each byte in the array, use its value as an index
into a 256-element lookup table, and replace its value
in the state by the byte value stored at that location
in the table.

shiftRows: Let Ri denote the i th row in state. Shift R0 in the
state left 0 bytes (i.e., no change); shift R1 left 1
byte; shift R2 left 2 bytes; shift R3 left 3 bytes. This
does not affect the individual byte values themselves.
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Rounds in Rijndael

mixColumns: for each column of the state, replace the column by
its value multiplied by a fixed 4× 4 matrix of integers
(as illustrated below).









a0
′

a1
′

a2
′

a3
′









=









02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02









×









a0
a1
a2
a3









addRoundKey: XOR the state with a 128-bit round key derived
from the original key K by a recursive process.
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Decryption in Rijndael

The decryption algorithm is the inverse of encryption and has the
following differences:

The keys are used in reverse order.

Each of the steps is inverted.

The first and last rounds are slightly different.

Perhaps the biggest difference is the InverseMixColumns steps.
The multiplication is by the fixed array:









0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e









For that reason, decryption typically takes longer than encryption.

Slideset 6: 32 Cryptography II



Security of the AES

The algorithm is new and hasn’t “stood the test of time.”
However, it was subjected to extensive analysis, and is incorporated
in a large number of commercial encryption products.

Moreover, the developers were not related to the U.S. government,
so there is little suspicion that the government weakened the
algorithm or added a trapdoor.

No flaws have been discovered, but that doesn’t mean that none
exist.

Unlike DES, AES is modular and the key length can be extended if
necessary. Similarly, the number of cycles can be increased.
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Comparison of DES and AES

DES AES

Date 1976 1999

Block size 64 bits 128 bits

Key length 56 bits 128, 192, 256 (and possibly more) bits

Rounds 16 10, 12, 14 based on key length

Encryption primitives substitution, permutation substitution, shift, bit mixing

Cryptographic primitives confusion, diffusion confusion, diffusion

Design open open

Design rationale closed open

Selection process secret secret, but accepted public comment

Source IBM, enhanced by NSA independent Dutch cryptographers
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Revisiting Key Length

Recall: For an n-bit block cipher with k-bit key, given a small
number of plaintext/ciphertext pairs encrypted under key K , K
can be recovered by exhaustive search in an expected time on the
order of 2k−1 operations.

But, even in cases where 128-bit or larger keys are used with
well-designed ciphers like AES, a brute force attack may be
possible if keys are not generated properly (i.e., do not contain
enough entropy).

Many commercial or shareware security products that advertise
“128-bit security” derive keys from a user-selected password or
passphrase. Users rarely employ passwords with anything close to
128-bit entropy. Such systems are often quite easy to break in
practice.
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Public Key Encryption

In a symmetric algorithm, the key must remain secret for the
algorithm to be secure. In 1976, Diffie and Hellman proposed
public key encryption (asymmetric encryption) in which a key does
not have to be kept secret.

In 1997, it was publicly disclosed that asymmetric key algorithms
were developed by James H. Ellis, Clifford Cocks, and Malcolm
Williamson at GCHQ in the UK in the early 1970s. The
researchers independently developed Diffie-Hellman key exchange
and a special case of RSA. The GCHQ cryptographers referred to
the technique as non-secret encryption.
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Public Key Encryption

The idea is to use a publicly disclosed key to encrypt and a secret
key to decrypt. This drastically reduces the number of keys have
to be protected.

The requisite relationship is:

P = {{P}Kpub
}Kpriv

.
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Public Key Systems

Several alternative notations are in wide use for denoting the
public and private keys of any principal. We’ll use the following.
The public key for principal A will be denoted by Ka and the
private key will be denoted K−1

a .

Thus, the relationship denoted previously as

P = {{P}Kpub
}Kpriv

.

can also be written as:

P = {{P}Kx
}
K−1
x

for any principal X . If the principal is assumed known, we may
omit the subscript.
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Public Key Systems

Also, for some public key systems, RSA in particular, E and D
commute and either key can be used in either function. That is:

{{P}K}K−1 = P = {{P}K−1}K .

This is crucial in some uses of RSA. But is not true in general for
public key cryptosystems.

It’s only “sort of” true for RSA (according to an expert I know)
and assumes that the key doesn’t have too many 1’s in it’s binary
representation.
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Public Key Systems

The basis of any public key system is the identification of a
function that is easily computed, but difficult to invert without
additional information. This is called a one-way function.

For example, it is straightforward to multiply two large primes p1
and p2 together. However, given the result p1p2, it is very difficult
to factor it to recover the p1 and p2.

However, given p1p2 and either of p1 or p2, it is again
straightforward to recover the other, simply by dividing.

Thus, multiplication is a one-way function, because computing the
inverse is effectively infeasible for products of large primes.
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Authentication with Public Keys

If A receives a message encrypted with his public key, only he can
decrypt it. However, even if the message claims to come from B,
there is no assurance that it does so since C also has access to A’s
public key.

Authentication can be gained with some public key system (as
with RSA where encryption and decryption commute). If A
receives a message purportedly from B, encrypted with B’s private
key, and A can decrypt it with B’s public key, then the message
almost certainly came from B.

We can think of encryption as a privacy transformation, and
decryption as an authenticity transformation.
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RSA Algorithm

The Rivest-Shamir-Adelman (RSA) algorithm is a public key
system which relies on the difficulty of factoring large numbers.

Two keys, d and e, are used for encryption and decryption.
Because the use of the keys in RSA is symmetric, either can be the
private key. The algorithm is such that:

{{P}d}e = P = {{P}e}d .

A plaintext block P is encrypted as (Pe mod n). The decrypting
key is chosen so that: (Pe)d mod n = P .
Because the encrypting exponentiation is performed modulo n, an
interceptor would have to factor Pe to recover the plaintext. This
is difficult. However, the legitimate receiver knows d and merely
computes (Pe)d mod n = P . This is much easier.
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Other Public Key Algorithms

A public key system can be based on any one-way function. A rich
source of these is the set of NP-complete problems. These are
infeasible to solve (requiring at least exponential time) but a
solution can be checked in polynomial time.

Merkle and Hellman proposed a public key system based on the
knapsack problem: given a set of integers and a target sum, find a
subset of the integers that sum to the target.

The algorithm is theoretically very secure, but has practical
weaknesses. Just because a problem is difficult, in general, doesn’t
mean it is difficult in specific instances.
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Efficiency of Encryption

Public key systems simplify key distribution but are typically very
slow. Thus, they are used only for specialized purposes.

A public key encryption may take 10,000 times as long to perform
as a symmetric encryption, because it depends on multiplication
and division, rather than simple bit operations.

For this reason, symmetric encryption is the work horse of
commercial cryptography. Still, asymmetric encryption plays some
important functions.
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Key Size Revisited

From Introduction to Cryptography, by PGP Corporation:

...public key size and conventional cryptography’s secret
key size are totally unrelated. A conventional 80-bit key
has the equivalent strength of a 1024-bit public key. A
conventional 128-bit key is equivalent to a 3000-bit pub-
lic key. Again, the bigger the key, the more secure, but
the algorithms used for each type of cryptography are very
different and thus comparison is like that of apples to or-
anges.
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Applications of Cryptography

Now we consider some applications of cryptography.

Cryptographic Hash Functions

Key Exchange

Digital Signatures

Certificates
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Hash Functions

Given a file, we compute a cryptographic function, called a hash or
checksum or message digest.
Ideally, the function should have these qualities:

it is easy to compute the hash for any given data,

it is extremely difficult to construct a text that has a given
hash,

it is extremely difficult to modify a given text without
changing its hash,

it is extremely unlikely that two different messages will have
the same hash.
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Vocabulary

A function f is preimage resistant if, given h, it is hard to find any
m such that h = f (m).

A function f is second preimage resistant if, given an input m1, it
should be hard to find m2 6= m1 such that f (m1) = f (m2). This is
sometimes called weak collision resistance.

A function f is (strong) collision resistant if it is hard to find two
messages m1 and m2 such that f (m1) = f (m2).
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Birthday Attacks

If a function f (x) yields any of H different outputs with equal
probability and H is sufficiently large, then we expect to obtain a
pair of different arguments x1 and x2 with f (x1) = f (x2) after
evaluating the function for about 1.25

√
H different arguments on

average.

What does this mean for a hash value of 128 bits? for 160 bits?
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Cryptographic Hash Functions

We usually use encryption to conceal the contents of an object,
i.e., to protect confidentiality. However, in some cases integrity is
the desired result.

In a document retrieval system containing legal records, it
may be important to know that the copy retrieved is identical
to that stored.

In a secure communications system, the correct transmission
of messages may override confidentiality concerns.

A cryptographic hash function “binds” the bytes of a file together
in a way that makes any alterations to the file apparent.
Cryptography is used to seal the file to make it tamper-proof or, at
least, tamper-resistant.
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Hash Functions (Cont.)

The process is as follows: given a sensitive file f , compute the
hash function and store it with the file. Each time the file is used
or accessed, recompute the hash. If the stored value matches the
newly computed value, it is likely that no changes have occurred.

An encryption algorithm such as DES or AES can be used to
generate a hash value. The encryption itself yields a checksum
since it seals the file against modification. However, it fails the
criterion of being small.
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Hash Functions (Cont.)

Instead, suppose you use DES to encrypt successive blocks of
plaintext. As each block’s ciphertext is computed, XOR it with the
running hash of the previous blocks. The file’s checksum is then
the final result of the chained encryption.
This scheme has the following properties:

The checksum depends on all blocks in the file.

It is virtually impossible to modify the file in such a way as to
preserve the checksum (i.e., it is non-malleable).
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Common Hash Algorithms

The most widely used cryptographic hash functions are:

MD4: (Message Digest 4) invented by Ron Rivest and RSA
Laboratories;

MD5: an improved version of MD4;

SHA/SHS: (Secure Hash Algorithm or Standard) similar to MD4
and MD5.

MD4 and MD5 both compress a message of any size to a 128-bit
digest. SHA/SHS produces a 160-bit digest.
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Applications of Cryptography

Cryptographic Hash Functions

Key Exchange

Digital Signatures

Certificates
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Key Exchange

Suppose you want to establish a secure communication channel
with someone you do not know and who does not know you. We
call this a situation of mutual suspicion. This is extremely
common.

You submit your income tax on-line.

You send your credit card information to a shopping website.

You wish to exchange encrypted email with another party.

Once you agree on a shared secret (key) the communication can
proceed. But how do you exchange the key? This is an issue of
cryptographic protocol design.
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Key Exchange (Cont.)

Suppose both parties S and R have a public / private RSA key pair
for asymmetric communication. One protocol is for one party, say
S , to choose a new symmetric key K and send it to R in the form:

{K}
K−1
S
.

R can decrypt the message using S ’s public key to retrieve K .
What is wrong with this scheme?
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Key Exchange (Cont.)

Suppose both parties S and R have a public / private RSA key pair
for asymmetric communication. One protocol is for one party, say
S , to choose a new symmetric key K and send it to R in the form:

{K}
K−1
S
.

R can decrypt the message using S ’s public key to retrieve K .
What is wrong with this scheme?

Answer: Any eavesdropper can intercept the message and decrypt
it using S ’s public key to retrieve K .
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Key Exchange (Cont.)

As a second attempt, suppose S sends

{K}KR

to R . Since only R can decrypt this message, confidentiality is
assured. However, something is still amiss.
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Key Exchange (Cont.)

As a second attempt, suppose S sends

{K}KR

to R . Since only R can decrypt this message, confidentiality is
assured. However, something is still amiss.

Now R doesn’t know have any assurance that the message actually
came from S . An intruder may be “spoofing” (pretending to be S)
to obtain information that R intends only for S .

Can we preserve both confidentiality and authentication with one
transaction?
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Key Exchange (Cont.)

A third attempt is for S to send R the following:

{{K}
K−1
S
}KR

.

R decrypts the message using K−1
R to reveal the contents, {K}

K−1
S
.

What assurances does this provide?
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Key Exchange (Cont.)

A third attempt is for S to send R the following:

{{K}
K−1
S
}KR

.

R decrypts the message using K−1
R to reveal the contents, {K}

K−1
S
.

What assurances does this provide?

Since, no one but R can decrypt the message, confidentiality is
assured.

R then decrypts the inner message using KS to obtain K. No one
but S could have performed the inner encryption, so authentication
is accomplished.

This notion of nested encryptions is very useful in a variety of
cryptographic protocols. Could you have done the encryptions in
the other order?
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Diffie-Hellman Key Exchange

The question of key exchange was one of the first problems
addressed by a cryptographic protocol.

The Diffie-Hellman key agreement protocol, invented in 1976, was
the first practical method for establishing a shared secret over an
unsecured communication channel. (It later emerged that it had
been invented somewhat earlier by GCHQ, the British intelligence
agency.)

The point is to agree on a key that two parties can use for a
symmetric encryption, in such a way that an eavesdropper cannot
obtain the key.
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Diffie-Hellman Key Exchange (cont.)

Steps in the algorithm:

1 Alice and Bob agree on a prime number p and a base g .

2 Alice chooses a secret number a, and sends Bob (ga mod p).

3 Bob chooses a secret number b, and sends Alice (gb mod p).

4 Alice computes ((gb mod p)a mod p).

5 Bob computes ((ga mod p)b mod p).

Both Alice and Bob can use this number as their key.
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Diffie-Hellman Example

1 Alice and Bob agree on p = 23 and g = 5.

2 Alice chooses a = 6 and sends 56 mod 23 = 8.

3 Bob chooses b = 15 and sends 515 mod 23 = 19.

4 Alice computes 196 mod 23 = 2.

5 Bob computes 815 mod 23 = 2.

Then 2 is the shared secret.

A nice video describing this is here:
http://www.wimp.com/howencryption/.
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Diffie-Hellman Security

Clearly, much larger values of a, b, and p are required. An
eavesdropper cannot discover this value even if she knows p and g
and can obtain each of the messages.

Suppose p is a prime of around 300 digits, and a and b at least
100 digits each. Finding a given g , p, and ga mod p would take
longer than the lifetime of the universe, using the best known
algorithm. This is called the discrete logarithm problem.
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Applications of Cryptography

Cryptographic Hash Functions

Key Exchange

Digital Signatures

Certificates
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Digital Signatures

Consider the process of transferring funds from one person to
another. Conventionally, you write a check.

A check is a tangible object authorizing the transaction.

The signature on the check confirms authenticity.

In the case of an alleged forgery, a third party may be called
to judge authenticity.

The check is not alterable or, at least, alterations are easily
detected.

Transactions on computers do not generate tangible objects. But
can we define a mechanism for signing a document digitally that
has analogous characteristics?
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Digital Signatures (Cont.)

We’d like a digital signature to have analogous properties:

unforgeable: If P signs message M with signature S(P ,M), it
must be impossible for anyone else to produce
S(P ,M). Also ensures no repudiation.

authentic: If R receives pair [M, S(P ,M)], purportedly from P ,
R can check that the signature really is from P . Only
P could have created this signature.

tamperproof: After being transmitted, M cannot be changed by S ,
R , or an interceptor.

not reusable: The signature cannot be detached from the message
and reused for another message.
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Digital Signatures (Cont.)

Public key systems are well-suited for digital signatures. Recall
that some algorithms, RSA in particular, have the following
characteristic:

{{M}K}K−1 = M = {{M}K−1}K .

So, if S wishes to send message M to R in a way that has some of
the characteristics of a digitally signed message, S could send

{{M}
K−1
S
}KR

.

Most often, it’s not the M but a hash of M that is signed. Why?

What assurance does R gain from this interchange? In particular,
which of: unforgeable, authentic, tamperproof, non-reusable?
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Digital Signatures (Cont.)

This scheme gives all of the desirable characteristics.

1 Authenticity / Unforgeability: because the message can be
decrypted only with S ’s public key, it must have come from S .

2 Non-repudiation: R saves {{M}
K−1
S
}KR

. If S later tries to

disavow sending the message, anyone can verify that only this
is transformed to M with S ’s public key. Thus, only S could
have sent it.

3 Tamperproof: because the only R can remove the outer layer
of encryption. What if you sign a hash instead of the
message?

4 Non-reusable: because the signature is not a separate piece of
data, but is intimately bound to the message. Is that still true
if you sign a hash?
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Applications of Cryptography

Cryptographic Hash Functions

Key Exchange

Digital Signatures

Certificates
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Certificates

Certification addresses the need for trust in computer systems.
How do two entities that are mutually suspicious establish a
relationship of trust. One way is to rely on a third party who
“vouches for” the trustworthiness of one or both of the parties.

We may believe a party’s affiliation or ask for independent
validation. In general, we have a “trust threshold,” a degree of
trust we’re willing to confer without going further in the
certification process. This threshold may depend on the size or
nature of the transaction.

The police, Chamber of Commerce, Better Business Bureau, and
credit reporting agencies all function in part as certification
authorities for such transactions.
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Need for Trust

The most common circumstance in which trust is needed in a
distributed context is in binding a key to an identity.

That is, how do I know that the public key you present is really
your public key and not someone else’s?
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Certificates (Cont.)

Establishing trust may involves “chains” of certification.

In a large company, your supervisor may vouch for or certify your
employment. His supervisor may vouch for him, and so on. A truly
paranoid customer may require a chain of certifications leading
back to some unimpeachable authority at the base of the chain,
such as the president of the company, before dealing directly with
you.

However, it would be unmanageable to require all of these parties
to be present for communication to occur. There is a need securely
to store and pass around records of such certification.
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Certification (Cont.)

Sometimes certification occurs through a common respected
individual. For example, suppose Ann and Andrew work for
different divisions within the same company. Presumably, they
have a common supervisor (ancestor in the hierarchy tree of the
company).

If both trust their management, they can certify each other’s
authenticity via their common supervisor.

The chain can begin at the top or from the bottom of the
hierarchy.
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Certificates (Cont.)

Electronically, certification is accomplished with digital signatures
and hash functions.

A public key and user’s identity are bound together in a
certificate. This is then signed by a certification authority,
vouching for the accuracy of the binding.
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Certificates (Cont.)

The following are possible steps. Suppose X is the president of the
company and her immediate subordinate is Y . Each have a public
key pair.

1 X publishes KX to all employees.

2 Y securely passes message M = {Y ,KY } to X .

3 X produces a hash H of the message, i.e., h({Y ,KY }).
4 X produces {M, {H}

K−1
X
}.

This last then becomes Y ’s certificate.

What has been accomplished?
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Certificates (Cont.)

Y ’s certificate is X ’s affirmation of her identity. Anyone can
decrypt it with X ’s public key and look at the contents. Only X
could have produced it. The hash ensures that it was not altered.

Now Y can certify the identify of her subordinates in a similar
manner. She appends her certificate to each of theirs. This
provides a chain of validations back to X .

Thus, an individual’s certificate contains a chain of evidence rooted
at some unimpeachable authority.
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Certificates (Cont.)

There is also a need for trust in situations where there is not a
single hierarchy, such as on the Internet. Two individuals may not
have a common “superior.” Some entity may be designated as a
certification authority (notary public, personnel office, security
officer in a company, etc.).

On the Internet, several groups serve as “root certification
authorities”: C & W HTK, SecureNet, Verisign, Baltimore
Technologies, Deutsche Telecom, Certiposte, and several others.
These tend to be structured around national boundaries.
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X.509 Certificates

The International Telecommunications Union (ITU) has issued a
standard (X.509) for digital certificates that is the basis for many
other protocols. An X.509v3 certificate has the following
components:

1 Version: version of X.509 used;

2 Serial number: unique among certificates issued by this issuer;

3 Signature algorithm identifier: identifies the algorithm and
params used to sign the certificate;

4 Issuer’s distinguished name: with serial number, makes all
certificates unique;

5 Validity interval: start and end times for validity;

6 Subject’s distinguished name: identifies receiver of the
certificate;

7 Subject’s public key info: identifies algorithm, params, and
public key;
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X.509 Certificates (Cont.)

8 Issuer’s unique id: used if an Issuer’s distinguished name is
ever reused;

9 Subject’s unique id: same as field 8, but for the subject;

10 Extensions: version specific information;

11 Signature: identifies the algorithm and params, and the
signature (encrypted hash of fields 1 to 10).

To validate the certificate, the user obtains the issuer’s public key
for the algorithm (field 3) and deciphers the signature (field 11).
Then uses the information in the signature field (field 11) to
recompute the hash and compare with the received value. Finally,
check the validity interval.
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