
Towards Pervasive Parallelism

Kunle Olukotun
Pervasive Parallelism Laboratory

Stanford University

UT Austin, October 2008

End of Uniprocessor
Performance

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
ce

 (
vs

.
V

A
X

-1
1

/7
8

0
)

25%/year

52%/year

??%/year

From Hennessy and Patterson, Computer
Architecture: A Quantitative Approach, 4th
edition, October, 2006

The free lunch is over!

< 20%/ year

Predicting The End of
Uniprocessor Performance

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
ce

 (
vs

.
V

A
X

-1
1

/7
8

0
)

25%/year

52%/year

??%/year

Stanford Hydra Project
CMP + TLS

Afara Websystems

Sun Niagara 1

Superior performance and
performance/Watt using
multiple simple cores

The Looming Crisis
 Software developers will soon face systems with

 > 1 TFLOP of compute power

 32+ of cores, 100+ hardware threads

 Heterogeneous cores (CPU+GPUs), app-specific accelerators

 Deep memory hierarchies

 Challenge: harness these devices productively
 Improve performance, power, reliability and security

 The parallelism gap
 Threads, locks, messages

 Pthreads, OpenMP, MPI
 Too difficult find parallelism, to debug, maintain and get good

performance for the masses

 Yawning divide between the capabilities of today’s programming
environments, the requirements of emerging applications, and the
challenges of future parallel architectures

The Stanford Pervasive
Parallelism Laboratory

 Goal: the parallel computing platform for 2012
 Make parallel application development practical for the

masses
 Not parallel programming as usual

 PPL is a combination of
 Leading Stanford researchers across multiple domains

 Applications, languages, software systems, architecture

 Leading companies in computer systems and software
 Sun, AMD, Nvidia, IBM, Intel, HP, NEC

 An exciting vision for pervasive parallelism

The PPL Team

 Applications
 Ron Fedkiw, Vladlen Koltun, Sebastian Thrun

 Programming & software systems
 Alex Aiken, Pat Hanrahan, Mendel Rosenblum

 Architecture
 Bill Dally, Mark Horowitz, Christos Kozyrakis,

Kunle Olukotun (Director), John Hennessy

John Hennessy’s View on
Future of Parallelism
 We are ten years behind and need to catch up

 Don't look to the methods developed for high-end
scientific computing to solve the problem

 10 procs. up instead of 10K procs. down

 Don’t Focus on scientific and engineering apps
 These will be bulk of new applications and programmers

 Don't focus on absolute parallel efficiency
 Focus on ease of use for programmer

Need a change: Parallel applications
without parallel programming

The PPL Vision

Parallel Object Language

Hardware Architecture

OOO Cores SIMD Cores Threaded Cores

Scalable
Interconnects

Programmable
Hierarchies

Scalable
Coherence

Isolation &
Atomicity

Pervasive
Monitoring

Virtual
Worlds

Autonomous
Vehicle

Data
Mining

Scientific
Engineering

Physics
DSL

Scripting
DSL

Probabilistic
DSL

Analytics
DSL

Rendering
DSL

Common Parallel Runtime

Explicit / Static Implicit / Dynamic

The PPL Vision
Virtual
Worlds

Autonomous
Vehicle

Financial
Services

Physics
DSL

Scripting
DSL

Probabilistic
DSL

Analytics
DSL

Rendering
DSL

Parallel Object Language

Hardware Architecture

OOO Cores SIMD Cores Threaded Cores

Scalable
Interconnects

Partitionable
Hierarchies

Scalable
Coherence

Isolation &
Atomicity

Pervasive
Monitoring

Common Parallel Runtime

Explicit / Static Implicit / Dynamic

Virtual Worlds Application
 Next-gen web platform

 Immersive collaboration
 Social gaming
 Millions of players in vast landscape

 Parallelism challenges
 Client-side game engine
 Server-side world simulation
 AI, physics, large-scale rendering
 Dynamic content, huge datasets

 More at http://vw.stanford.edu/

The PPL Vision
Virtual
Worlds

Autonomous
Vehicle

Financial
Services

Physics
DSL

Scripting
DSL

Probabilistic
DSL

Analytics
DSL

Rendering
DSL

Parallel Object Language

Hardware Architecture

OOO Cores SIMD Cores Threaded Cores

Scalable
Interconnects

Partitionable
Hierarchies

Scalable
Coherence

Isolation &
Atomicity

Pervasive
Monitoring

Common Parallel Runtime

Explicit / Static Implicit / Dynamic

Domain Specific Languages (DSL)
 Leverage success of DSL across application domains

 SQL (data manipulation), Matlab (scientific), Ruby/Rails (web),…

 DSLs ⇒ higher productivity for developers
 High-level data types & ops tailored to domain

 E.g., relations, matrices, triangles, …
 Express high-level intent without specific implementation artifacts

 Programmer isolated from details of specific system

 DSLs ⇒ scalable parallelism for the system
 Allows aggressive optimization
 Declarative description of parallelism & locality patterns

 E.g., ops on relation elements, sub-array being processed, …
 Portable and scalable specification of parallelism

 Automatically adjust data structures, mapping, and scheduling as
systems scale up

DSL Research
 Goal: create framework for DSL development

 Initial DSL targets
 Rendering, physics simulation, probabilistic machine learning

computations

 Approach
 DSL implementation ⇒ embed in base PL

 Start with Scala (OO, type-safe, functional, extensible)
 Use Scala as a scripting DSL that also ties multiple DSLs

 DSL-specific optimizations ⇒ active libraries

 Use domain knowledge to optimize & annotate code

The PPL Vision
Virtual
Worlds

Autonomous
Vehicle

Financial
Services

Physics
DSL

Scripting
DSL

Probabilistic
DSL

Analytics
DSL

Rendering
DSL

Parallel Object Language

Hardware Architecture

OOO Cores SIMD Cores Threaded Cores

Scalable
Interconnects

Partitionable
Hierarchies

Scalable
Coherence

Isolation &
Atomicity

Pervasive
Monitoring

Common Parallel Runtime

Explicit / Static Implicit / Dynamic

 Common Parallel Runtime (CPR)

 Goals
 Provide common, portable, abstract target for all DSLs
 Manages parallelism & locality

 Achieve efficient execution (performance, power, …)
 Handles specifics of HW system

 Approach
 Compile DSLs to common IR

 Base language + low-level constructs & pragmas
 Forall, async/join, atomic, barrier, …

 Per-object capabilities
 Read-only or write-only, output data, private, relaxed coherence, …

 Combine static compilation + dynamic management
 Static management of regular tasks & predictable patterns
 Dynamic management of irregular parallelism

The PPL Vision
Virtual
Worlds

Autonomous
Vehicle

Financial
Services

Physics
DSL

Scripting
DSL

Probabilistic
DSL

Analytics
DSL

Rendering
DSL

Parallel Object Language

Hardware Architecture

OOO Cores SIMD Cores Threaded Cores

Scalable
Interconnects

Partitionable
Hierarchies

Scalable
Coherence

Isolation &
Atomicity

Pervasive
Monitoring

Common Parallel Runtime

Explicit / Static Implicit / Dynamic

Hardware Architecture @
2012

 The many-core chip
 100s of cores

 OOO, threaded, & SIMD

 Hierarchy of shared memories
 Scalable, on-chip network

 The system
 Few many-core chips
 Per-chip DRAM channels
 Global address space

 The data-center
 Cluster of systems

L2 Memory L2 Memory

L1L1L1L1 L1

L2 Memory L2 Memory

L3 Memory

L1

L1L1L1L1 L1 L1

L1 L1 L1 L1L1 L1

I/O
DRAM

CTL

TCTCTC OOO
TC

SIMD
TCTCTC OOO

TC
SIMD

OOO SIMD OOO SIMD
TC TC

Architecture Research
 Revisit architecture & microarchitecture for parallelism

 Define semantics & implementation of key primitives
 Communication, atomicity, isolation, partitioning, coherence, consistency,

checkpoint
 Fine-grain & bulk support

 Software-managed HW primitives
 hardware provides key mechanisms, software synthesizes into useful

execution systems
 Exploit high-level knowledge from DSLs & CPR

 Software synthesizes primitives into execution systems
 Streaming system: partitioning + bulk communication
 Thread-level spec: isolation + fine-grain communication
 Transactional memory: atomicity + isolation + consistency
 Security: partitioning + isolation
 Fault tolerance: isolation + checkpoint + bulk communication

 Challenges: interactions, scalability, cost, virtualization
 100s to 100s of cores

Architecture Research
 Revisit architecture & microarchitecture for parallelism

 Define semantics & implementation of key primitives
 Communication, atomicity, isolation, partitioning, coherence, consistency,

checkpoint
 Fine-grain & bulk support

 Software-managed HW primitives
 hardware provides key mechanisms, software synthesizes into useful

execution systems
 Exploit high-level knowledge from DSLs & CPR

 Software synthesizes primitives into execution systems
 Streaming system: partitioning + bulk communication
 Thread-level spec: isolation + fine-grain communication
 Transactional memory: atomicity + isolation + consistency
 Security: partitioning + isolation
 Fault tolerance: isolation + checkpoint + bulk communication

 Challenges: interactions, scalability, cost, virtualization
 100s to 100s of cores

Transactional Memory (TM)

 Memory transaction [Knight’86, Herlihy & Moss’93]

 An atomic & isolated sequence of memory accesses
 Inspired by database transactions

 Atomicity (all or nothing)
 At commit, all memory updates take effect at once
 On abort, none of the memory updates appear to take effect

 Isolation
 No other code can observe memory updates before commit

 Serializability
 Transactions seem to commit in a single serial order

Advantages of TM
 Easy to use synchronization construct

 As easy to use as coarse-grain locks
 Programmer declares, system implements

 Performs as well as fine-grain locks
 Automatic read-read & fine-grain concurrency
 No tradeoff between performance & correctness

 Failure atomicity & recovery
 No lost locks when a thread fails
 Failure recovery = transaction abort + restart

 Composability
 Safe & scalable composition of software modules

Warehouse

stockTable
(B-Tree)

itemTable
(B-Tree)

TM Example: 3-tier Server

 3-tier benchmark (SpecJBB2000)
 Shared data within and across warehouses

 Parallelized actions within one warehouse
 Orders, payments, delivery updates, etc on shared data

orderTable
(B-Tree)

District

Warehouse

newIDApplication
Manager

Driver Threads

Driver Threads

Client Tier Application Server Tier Database Tier

stockTable
(B-Tree)

itemTable
(B-Tree)

Sequential Code for NewOrder
TransactionManager::go() {

 // 1. initialize a new order transaction
 newOrderTx.init();
 // 2. create unique order ID
 orderId = district.nextOrderId(); // newID++
 order = createOrder(orderId);
 // 3. retrieve items and stocks from warehouse
 warehouse = order.getSupplyWarehouse();
 item = warehouse.retrieveItem(); // B-tree search
 stock = warehouse.retrieveStock(); // B-tree search
 // 4. calculate cost and update node in stockTable
 process(item, stock);
 // 5. record the order for delivery
 district.addOrder(order); // B-tree update
 // 6. print the result of the process
 newOrderTx.display();
}

 Non-trivial code with complex data-structures
 Fine-grain locking difficult to get right
 Coarse-grain locking no concurrency

TM Code for NewOrder
TransactionManager::go() {

atomic { // begin transaction
// 1. initialize a new order transaction
// 2. create a new order with unique order ID
// 3. retrieve items and stocks from warehouse
// 4. calculate cost and update warehouse
// 5. record the order for delivery
// 6. print the result of the process

} // commit transaction
}

 Whole NewOrder as one atomic transaction
 2 lines of code changed for parallelization
 No need to analyze storage scheme, ordering issues, …

Implementing Memory Transactions

 Data versioning for updated data
 Manage new & old values for memory data
 Deferred updates (lazy) vs direct updates (eager)

 Conflict detection for shared data
 Detect R-W and W-W for concurrent transactions
 Track the read-set and write-set of each transaction
 Check during execution (pessimistic) or at the end (optimistic)

 Ideal implementation
 Software only: works with current & future hardware
 Flexible: can modify, enhance, or use in alternative manners
 High performance: faster than sequential code & scalable
 Correct: no incorrect or surprising execution results

Performance with Hardware
TM

 Scalable performance, up to 7x over STM [ISCA’07]

 Within 10% of sequential for one thread
 Uncommon HTM cases not a performance challenge

STAMP Benchmark Suite
 Stanford Transactional Applications for

Multiprocessing

 8 applications from variety of domains
 http://stamp.stanford.edu

28

STAMP Applications

Pure HTMs Have Limitations

 Conflict detection granularity can be important

Architecture Research
Methodology
 Conventional approaches are useful

 Develop app & SW system on existing platforms
 Multi-core, accelerators, clusters, …

 Simulate novel HW mechanisms

 Need some method that bridges HW & SW research
 Makes new HW features available for SW research

 Does not compromise HW speed, SW features, or scale

 Allows for full-system prototypes

 Needed for research, convincing for industry, exciting for students

 Approach: commodity chips + FPGAs in memory system
 Commodity chips: fast system with rich SW environment

 FPGAs: prototyping platform for new HW features

 Scale through cluster arrangement

MemoryMemory

Memory Memory

Core 0 Core 1

Core 2 Core 3

Core 0 Core 1

Core 2 Core 3

Core 0 Core 1

Core 2 Core 3

Core 0 Core 1

Core 2 Core 3

FARM: Flexible Architecture
Research Machine

MemoryMemory

Memory Memory

Core 0 Core 1

Core 2 Core 3

Core 0 Core 1

Core 2 Core 3

Core 0 Core 1

Core 2 Core 3

FPGA

SRAM

I
O

FARM: Flexible Architecture
Research Machine

MemoryMemory

Memory Memory

Core 0 Core 1

Core 2 Core 3

Core 0 Core 1

Core 2 Core 3

FPGA

SRAM

I
O

GPU/Stream

FARM: Flexible Architecture
Research Machine

MemoryMemory

Memory Memory

Core 0 Core 1

Core 2 Core 3

Core 0 Core 1

Core 2 Core 3

Core 0 Core 1

Core 2 Core 3

FPGA

SRAM

(scalable
)

Infiniband
Or PCIe
InterconnectI

O

FARM: Flexible Architecture
Research Machine

FARM Prototype
Procyon System

 AMD Opteron™ (supports Quad-Core
“Barcelona” processor family)

 Broadcom HT2100/HT1000 Chipset
 Connects to peripheral boards via

HyperTransport or PCI Express
 DDR2 DIMM x 2
 Gigabit Ethernet x 2
 USB2.0 x 4
 VGA
 SATA and eSATA
 System monitor function
 AMI BIOS
 Supports CompactPCI peripheral

boards

16-bit
HyperTransport

x1 PCI Express

64-bit/33MHz PCI

Leda : Procyon Evaluation
Backplane

AD7003 : Single Board computer Pollux : Procyon Interface
Evaluation Board

 Altera FPGA Stratix II
 Interface to backplane

 Hyper Transport I/F x16 *2
 x1 PCIe

 Panel I/O Ports
 8 DO / 8 DI (TTL)

 DDR2 Memory (32 x 16M bit)

Conclusions
 Need a full system vision for pervasive parallelism

 Applications, programming models, programming languages,
software systems, and hardware architecture

 Key initial ideas
 Domain-specific languages

 Combine implicit & explicit resource management

 Flexible HW primitives

 Real system prototypes

