
1

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Building Buggy Chips - That Work!Building Buggy Chips - That Work!

Todd Austin

Advanced Computer Architecture Laboratory
University of Michigan

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

The DIVA ProjectThe DIVA Project
http://www.eecs.umich.edu/divahttp://www.eecs.umich.edu/diva

• Researchers
– Chris Weaver (lead), Pat Cassleman, Amit Marathe, Saugata Chatterjee (alum),

Todd Austin, Maher Mneimneh (FV), Fadi Aloul (FV), Karem Sakallah (FV)

• Key technology: Dynamic Verification
– Simple, fast and reliable online checkers that detect and correct system faults

• Benefits we are exploring
– Improved quality and time-to-market through reduced burden of verification
– More reliable designs with high resistance to radiation and noise
– More efficient (or aggressive) circuit technologies via online electrical verification
– Reduced complexity via performance (rather than correctness) focused designs

• Technology demonstration vehicles
– REMORA self-checked microprocessor
– DIVA Demo self-checked crypto-system (using commercial off-the-self parts)



2

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Talk OverviewTalk Overview
• Verification Challenges
• Dynamic Verification: Seatbelts for Your CPU
• Checker Processor Architecture
• Value-Added Optimizations
• Ongoing Work
• Conclusions

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Correctness As ValueCorrectness As Value
• What do you value most about your computer system?

– Performance?
– Cost?
– Correctness?

• Correctness is uncompromising, all value is predicated on it!
– A correct system may have value
– An incorrect system design will be perceived as worthless

• Correctness disasters
– Intel FDIV bug, failing FP divider resulted in $475 million recall
– MIPS R10000 faltered out of the chute, many early parts recalled
– Transmeta recalled most early Crusoe parts



3

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Designing Correct SystemsDesigning Correct Systems
• When is a design correct?

∀ starting states (statei, inputsj), next state (statei+1) is correct

• When is a design complete?
– When it is correct

• Employ verification
• Did we build the system right?

– When it meets customers’ needs
• Employ validation
• Did we build the right system?

• Verification generally considered a more difficult task as it must
consider all programs, not just important ones

Design

Implementation

Verification/Validation/Debug

Conception Tape Out Launch

pre-Si post-Si

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

The Burden of VerificationThe Burden of Verification
• Immense test space

– Impossible to fully test the system
– For example, 32 regs, 8k caches, 300 pins = 2132396 states
– Conservative estimate, microarchitectural state increases the test space

• Done with respect to ill-defined reference
– What is correct? Often defined by PRM + old designs + guru guidance

• Expensive
– Large fraction of design team dedicated to verification
– Increases time-to-market, often as much as 1-2 years

• High-risk
– Typically only one chance to “get it right”
– Failures can be costly: replacement parts, bad PR, lawsuits, fatalities



4

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Simulation Based VerificationSimulation Based Verification
• Determines if design is functionally correct at the logic level
• Implemented with co-simulation of “important” test cases

– Mostly before tape out using RTL/logic level simulators

• Differences found at output drive debug
• Process continues until “sufficient” coverage of test space

“important”
test cases

uArch
Model

Reference
Model

(ISA sim)

==

output

output

Test OK?

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Formal VerificationFormal Verification
• Formal verification speeds testing by comparing models

– Compare reference and uArch model using formal methods (e.g., SAT)
– If models shown functionally equivalent, any program renders same result
– Much better coverage than simulation-based verification

• Unfortunately, intractable task for complete modern pipeline
– Problems: imprecise state, microarchitectural state, out-of-order operations
– Machines we build are not functionally equivalent to reference machine!

X

uArch
Model

Reference
Model

(ISA sim)

==

state

state

Always true if
uArch model == Ref model

Identical state?



5

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Deep Submicron Reliability ChallengesDeep Submicron Reliability Challenges
• More difficult to build robust systems in denser technologies

– Degraded signal quality
• Increased interconnect capacitance results in signal crosstalk
• Reduced supply voltage degrades noise immunity
• Increased current demands (di/dt spikes) create supply voltage noise

– Single event radiation/soft errors (SER)
• Alpha particles (from atomic impurities) and gamma rays (from space)
• Energetic particle strikes destroy charge, may switch small transistors
• Inexpensive shielding solutions unlikely to materialize

– Increased complexity
• More transistors will likely mean greater complexity
• Verification demands and probability of failure will increase

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Motivating ObservationsMotivating Observations
• Speculative execution is fault-tolerant

– Design errors, timing errors, and electrical
faults only manifest as performance divots

– Correct checking mechanism will fix errors

• What if all computation, communication,
control, and progress were speculative?
– Any incorrect computation fixed

• maximally speculative
– Any core fault fixed

• minimally correct

X

PC

always
not taken

stuck-at
fault

branch
predictor

array



6

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

• Core computation, communication, and control validated by checker
– Instructions verified by checker in program order before retirement
– Checker detects and corrects faulty results, restarts core

• Checker relaxes the burden of correctness on the core processor
– Robust checker corrects faults in any core structure not used by checker
– Tolerates core design errors, electrical faults, silicon defects, and failures
– Core only has burden of high accuracy prediction

• Key checker requirements: simple, fast, and reliable

Dynamic Verification: Seatbelts for Your CPUDynamic Verification: Seatbelts for Your CPU

speculative
instructions

in-order
with PC, inst,
inputs, addr

Complex Core Processor Checker Processor

IF ID REN REG

EX/
MEM

SCHEDULER CHK CT

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

result

Checker Processor ArchitectureChecker Processor Architecture

IF

ID

CT

OK

Core
Processor
Prediction

Stream

PC

=
inst

PC

inst

EX

=
regs

regs

core PC

core inst

core regs

MEM

=
res/addr

addr

core res/addr/nextPC

result

D-cache

I-cache

RF

WT



7

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Check ModeCheck Mode

result

IF

ID

CT

OK

Core
Processor
Prediction

Stream

PC

=
inst

inst

EX

=
regs

regs

core PC

core inst

core regs

MEM

=
res/addr

addr

core res/addr/nextPC

result

D-cache

I-cache

RF

WT

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Recovery ModeRecovery Mode

result

IF

ID

CT

PC inst

PC

inst

EX

regs

regs

MEM

res/addr

addr result

D-cache

I-cache

RF



8

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

How Can the Simple Checker Keep Up?How Can the Simple Checker Keep Up?

Slipstream

Redundant Core Advance Core

• Slipstream effects reduce power requirements of trailing car
– Checker processor executes in the core processor slipstream
– fast moving air  ⇒  branch/value predictions and cache prefetches
– Core processor slipstream reduces complexity requirements of checker

• Symbiotic effects produce a higher combined speed

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

How Can the Simple Checker Keep Up?How Can the Simple Checker Keep Up?

Slipstream

Simple Checker Complex Core

• Slipstream effects reduce power requirements of trailing car
– Checker processor executes in the core processor slipstream
– fast moving air  ⇒  branch/value predictions and cache prefetches
– Core processor slipstream reduces complexity requirements of checker

• Symbiotic effects produce a higher combined speed



9

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

ld f1,(X)
f4 = f1 * f2 + f3
br f4 < 0, skip
    r8 = r8 + 1

skip: ...

ld f1,(X)
f4 = f1 * f2 + f3
br f4 < 0, skip
    r8 = r8 + 1

skip: ...

Core Processor Execution Checker Execution

ld * + br +
cache miss long operation misprediction

ld

+
*

br
+

ok

ok

ok

ok

ok

Speeding the Checker with Core ComputationSpeeding the Checker with Core Computation

• Checker executes in wake of core
– Leverages non-binding predictions & prefetches

• Virtually no stalls remain to slow checker
– Control hazards resolved during core execution
– Data hazards eliminated by prefetches and input value predictions

• Complex microarchitectural structures only necessary in core

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Checker Performance ImpactsChecker Performance Impacts
• Checker throughput bounds core IPC

– Only cache misses stall checker pipeline
– Core warms cache, leaving few stalls

• Checker latency stalls retirement
– Stalls decode when speculative state

buffers fill (LSQ, ROB)
– Stalled instructions mostly nuked!

• Storage hazards stall core progress
– Checker may stall core if it lacks resources

• Faults flush core to recover state
– Small impact if faults are infrequent

0.97

0.98
0.99

1.00

1.01

1.02

1.03

1.04

1.05

Re
la

tiv
e 

CP
I

Ube
r-C

he
ck

er

Pico
-Che

ck
er

12
-cy

cle
 Che

ck
er

1/4
 Cac

he
 Size

1k
 Fa

ult
s



10

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Verifying the Checker ProcessorVerifying the Checker Processor

• Simple checker permits complete functional verification
– In-order blocking pipelines (trivial scheduler, no rename/reorder/commit)
– No “internal” non-architected state

• Fully verified design using Sakallah’s GRASP SAT-solver [DAC01]
– For Alpha integer ISA without exceptions
– With small register file and memory, and small data types

X

Checker
Model

Reference
Model

(ISA sim)

==

output

output

ϕUnspecified Core
Predictions

Always true if
uArch model == Ref model

Identical state?

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Value-Added OptimizationsValue-Added Optimizations
• Fault tolerant and deeply speculative core processor permits

many fundamental assumptions of system design to be revisited!
– Beta-Release Processors
– Low-Cost SER  and Noise Protection
– Fully Testable Microprocessor Designs
– Self-tuned Digital Systems



11

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

0

5

10

15

20

D
es

ig
n

 E
rr

o
rs

0

20

40

60

80

100

P
er

fo
rm

an
ce

0

5

10

15

20

D
es

ig
n

 E
rr

o
rs

0

20

40

60

80

100

P
er

fo
rm

an
ce

Beta Launch Step

Launch
Checked Processor Verification

Traditional Verification
Beta-Release ProcessorsBeta-Release Processors

• Traditional verification stalls
launch until debug complete

• Checked processor verification
could overlap with launch
– Beta-release when checker works
– Launch when performance stable
– Step as needed without recalls

Tape
Out

Tape Out

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Low-Cost SER and Noise ProtectionLow-Cost SER and Noise Protection

• Only need to address transients in checker
– Checker detects and corrects noise-related faults in core
– Core processor designed without regard to strikes (e.g., no ECC…)

• Recycle checker inputs suspected core fault
– If no error on third execution, transient strike in checker processor
– If error on third execution, core processor fault occurred (e.g., SER, design error)

• Protect critical checker control with triple-modular redundant (TMR) logic
– TMR on simple control results in only 1.3% larger checker (synthesized design)

IF ID REN REG SCHEDULER

EX/
MEM CHK

IF

CHK
ID/REG

CHK
EX

CT

CHK
MEM

CTL 3rd opinion

CTL

CTL



12

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Fully Testable Microprocessor DesignsFully Testable Microprocessor Designs
• Checker structure facilitates

manufacturing tests
– All checker inputs exposed

to built-in-self-test logic
– Checker provides built-in

test signature compression

• Checker can be fully tested
with small BIST module
– less than 0.5% area increase

• Reduces burden of testing
on core
– Missed core defects corrected
– Checker acts as core tester

IF

ID

OK

PC

=
inst

PC

inst

EX

=
regs

regs

MEM

=
res/addr

addr result

D-cache

I-cache

RF

CT

WT

result

OKresult

BIST ROM and Control
Defect
Free?

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Self-Tuned Digital SystemsSelf-Tuned Digital Systems
• Electrical verification determines if implementation is robust

– Design must be functionally correctly for all valid (T,V,p,f)
– Design must meet mean-time-to-failure goals (via power/current analysis)

• Verify functional correctness at slow corner (Tmax,Vmin,pslow,fmax)

• Verify power/current characteristics at fast corner (Tmin,Vmax,pfast,fmax)

• Additional margin on clock used to avoid any electrical faults

Temp

max

min

Voltage

max

min

Frequency

max

min

design margin

Process

fast

slow



13

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Self-Tuned Digital SystemsSelf-Tuned Digital Systems

• Modern logic design is too conservative for dynamic verification
– Unnecessary design margins consume power and performance
– System may not be operating at slow corner

• Checker enables a self-tuned clock/voltage strategy
– Push clock, drop voltage until desired power-performance characteristics
– If system fails, reliable checker will correct error, notify control system
– Reclaims design margins plus any temperature and voltage margins

Temp

max

min

Voltage

max

min

Frequency

max

min

worse-case margin

Slow corner
Actual operating conditions

Tuned
Core

Checker

Clock/Voltage
Generator

insts to verify

clk

Vdd

clk’

Vdd’

temperature error rate

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Ongoing Work: DIVAlutionOngoing Work: DIVAlution
• Goal: transfer dynamic verification technology to industry
• Approach

– Developed lower-impact dynamic verification techniques (baby steps)
– Build real technology demonstrations (hands-on demos)

• Technology demonstration vehicles
– REMORA self-checked processor

• 4-wide checker, 0.5k I-cache, 4k D-cache plus simple core
• Unpipelined checker prototype: 325MHz, 12mm2, 941mW  in 0.25um

– DIVA Demo self-checked crypto-processor
• Leverages built-in CRC mechanism to implement low-cost checker
• Built with commercial-off-the-shelf parts (dual StrongARMs)



14

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

ConclusionsConclusions
• Dynamic verification makes a core processor fully speculative

– Maximally speculative, minimally correct design approach
– Core processor tolerates any permanent or transient error
– Core processor supports any form of speculation

• Checker processor design is simple, reliable, and fast
– High-quality prediction stream keeps checker design simple
– Simple latency-insensitive design permits robust implementations
– Core processor eliminates hazards that could slow checker pipeline

• Pushing speculation to the limit may yield many benefits
– Beta-release processors could overlap verification with launch
– Checker processor provides single event radiation (SER) protection
– Highly testable checker reduced manufacturing test burden on core logic
– Fault-tolerant core can leverage aggressive circuits (self-tuned systems)

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

BackupsBackups



15

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

RREMORAEMORA: Physical Checker Design: Physical Checker Design
• Physical checker design effort underway

– Alpha integer ISA subset

– 4-wide checker, 0.5k I-cache, 4k D-cache
– Synthesized design (using Synopsys tools)

• Physical design estimates
– 325 MHz clock speed
– 12 mm2 total area in 0.25um technology
– 941 mW worst-case power

• Design to be fabricated also includes
– Pipelined checker design
– Simple core pipeline
– Clock/voltage tuning infrastructure

– Extensive BIST support

205 mm2

(in 0.25um)

Alpha 21264

REMORA
Checker

data
cache

inst
cache

pipe-
line

BIST

12 mm2

(in 0.25um)

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

-0.4% Best: -3.2%
Worst: 0.2%

Slowdowns

RF

8 ports

L0 Data
4 KB

4 ports

L0 Inst
0.5KB
2 ports

RF

8 ports

L1 D-cache

64 KB, 2 ports

L1 I-cache

64 KB, 1 ports

L2 Unified Cache

256 KB, 1 port

IF ID REN REG

EX/
MEM

SCHEDULER CHK CT

Core Checker

Optimized System ArchitectureOptimized System Architecture
• Performance impacts

eliminated
– Checker RF allows core commit
– No storage hazards
– Few checker cache misses
– Less expensive core storage

architecture (same as baseline)

• Core cache failures affect
checker



16

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Fully Decoupled System ArchitectureFully Decoupled System Architecture
• Checker fully decoupled

– Core L1 caches may fail
– All L2 writebacks from checker
– Core caches flushed on fault
– Core accesses and misses

warm up checker caches

• Eliminates common mode
core cache failures
– But, generates more L2 traffic
– Further optimizations possible

1.2% Best: 0%
Worst: 6.7%

Slowdowns

RF

8 ports

L1 Data
4 KB

4 ports

L1 Inst
0.5KB
2 ports

RF

8 ports

L1 D-cache

64 KB, 2 ports

L1 I-cache

64 KB, 1 ports

L2 Unified Cache

256 KB, 1 port

IF ID REN REG

EX/
MEM

SCHEDULER CHK CT

Core Checker

prefetch
stream

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Deriving Dynamic VerificationDeriving Dynamic Verification

IF ID REN SCHEDULERREG CT

EX/
MEM

YFPP
99.9998% accurate

Prediction
stream



17

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Deriving Dynamic VerificationDeriving Dynamic Verification

IF ID REN REG CTEX
YFPP

99.9998% accurate

Prediction
stream

MEM

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Deriving Dynamic VerificationDeriving Dynamic Verification

IF
ID/

REG
CT

YFPP
99.9998% accurate

Prediction
stream

EX MEM



18

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Deriving Dynamic VerificationDeriving Dynamic Verification

CHK
IF

CHK
ID/REG

CT
YFPP

99.9998% accurate

Prediction
stream

OK?CHK
EX

CHK
MEM

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Deriving Dynamic VerificationDeriving Dynamic Verification

CHK
IF

CHK
ID/REG

CHK
EX

CT

CHK
MEM

YFPP
99.9998% accurate

Prediction
stream

OK?



19

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Deriving Dynamic VerificationDeriving Dynamic Verification

CHK
IF

CHK
ID/REG

CHK
EX

CT

CHK
MEM

YFPP
99.9998% accurate

Prediction
stream

OK?

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Deriving Dynamic VerificationDeriving Dynamic Verification

CHK
IF

CHK
ID/REG

CHK
EX

CT

CHK
MEM

YFPP
99.9998% accurate

Prediction
stream

OK?

WT



20

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Deriving Dynamic VerificationDeriving Dynamic Verification

Prediction
stream

IF ID REN REG SCHEDULER

EX/
MEM

CHK
IF

CHK
ID/REG

CHK
EX

CT

CHK
MEM

OK?

WT


