Building Buggy Chips - That Work!

Todd Austin

Advanced Computer Architecture Laboratory
University of Michigan

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

The DIVA Project

http:/www.eecs.umich.edu/diva

Researchers

— Chris Weaver (lead), Pat Cassleman, Amit Marathe, Saugata Chatterjee (alum),
Todd Austin, Maher Mneimneh (FV), Fadi Aloul (FV), Karem Sakallah (FV)

Key technology: Dynamic Verification

— Simple, fast and reliable online checkers that detect and correct system faults
Benefits we are exploring

- Improved quality and time-to-market through reduced burden of verification

— More reliable designs with high resistance to radiation and noise

- More efficient (or aggressive) circuit technologies via online electrical verification

- Reduced complexity via performance (rather than correctness) focused designs
Technology demonstration vehicles

— RemoRra self-checked microprocessor

— DIVA Demo self-checked crypto-system (using commercial off-the-self parts)

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

Talk Overview

« Verification Challenges

+ Dynamic Verification: Seatbelts for Your CPU
* Checker Processor Architecture

* Value-Added Optimizations

+ Ongoing Work

+ Conclusions

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin
Correctness As Value
+ What do you value most about your computer system?
— Performance?
— Cost?
— Correctness?

+ Correctness is uncompromising, all value is predicated on it!
— A correct system may have value
— Anincorrect system design will be perceived as worthless
+ Correctness disasters
- Intel FDIV bug, failing FP divider resulted in $475 million recall
- MIPS R10000 faltered out of the chute, many early parts recalled
— Transmeta recalled most early Crusoe parts

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

Designing Correct Systems

When is a design correct?
" starting states (state, inputs)), next state (state,,,) is correct
When is a design complete?
— Whenitis correct Conception TapeOut Launch
+ Employ verification
+ Did we build the system right?
— When it meets customers’ needs
+ Employ validation
+ Did we build the right system?
Verification generally considered a more difficult task as it must
consider all programs, not just important ones

«— «—>
pre-Si post-Si

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

The Burden of Verification

Immense test space

— Impossible to fully test the system

- For example, 32 regs, 8k caches, 300 pins = 21323% states

— Conservative estimate, microarchitectural state increases the test space
Done with respect to ill-defined reference

— What is correct? Often defined by PRM + old designs + guru guidance
Expensive

— Large fraction of design team dedicated to verification

— Increases time-to-market, often as much as 1-2 years
High-risk

— Typically only one chance to “get it right”

— Failures can be costly: replacement parts, bad PR, lawsuits, fatalities

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

Simulation Based Verification

+ Determines if design is functionally correct at the logic level

* Implemented with co-simulation of “important” test cases
— Mostly before tape out using RTL/logic level simulators

output

“important” II Test OK?
test cases \

output

« Differences found at output drive debug
* Process continues until “sufficient” coverage of test space

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

Formal Verification

+ Formal verification speeds testing by comparing models
— Compare reference and uArch model using formal methods (e.g., SAT)
- If models shown functionally equivalent, any program renders same result
— Much better coverage than simulation-based verification

B

+ Unfortunately, intractable task for complete modern pipeline
— Problems: imprecise state, microarchitectural state, out-of-order operations
— Machines we build are not functionally equivalent to reference machine!

Always true if
state uArch model == Ref model

N

Identical state?

9
2 Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

Deep Submicron Reliability Challenges

+ More difficult to build robust systems in denser technologies
— Degraded signal quality
+ Increased interconnect capacitance results in signal crosstalk
+ Reduced supply voltage degrades noise immunity
* Increased current demands (di/dt spikes) create supply voltage noise
— Single event radiation/soft errors (SER)
+ Alpha particles (from atomic impurities) and gamma rays (from space)
+ Energetic particle strikes destroy charge, may switch small transistors
+ Inexpensive shielding solutions unlikely to materialize
— Increased complexity
+ More transistors will likely mean greater complexity
+ Verification demands and probability of failure will increase

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

Motivating Observations

 Speculative execution is fault-tolerant

— Design errors, timing errors, and electrical branch
faults only manifest as performance divots p’g:’r'a";”

— Correct checking mechanism will fix errors
« What if all computation, communication,
control, and progress were speculative? aways
— Any incorrect computation fixed fot taken
+ maximally speculative
— Any core fault fixed
+ minimally correct

% Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

Dynamic Verification: Seatbelts for Your CPU

Complex Core Processor Checker Processor

speculative

EX/ I instructions

P in-order
MEM with PC, inst,
inputs, addr

rTTTT7TTT
[T e A0S

+ Core computation, communication, and control validated by checker
- Instructions verified by checker in program order before retirement
— Checker detects and corrects faulty results, restarts core

+ Checker relaxes the burden of correctness on the core processor
- Robust checker corrects faults in any core structure not used by checker
- Tolerates core design errors, electrical faults, silicon defects, and failures
— Core only has burden of high accuracy prediction

+ Key checker requirements: simple, fast, and reliable

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

Checker Processor Architecture

core PC

Core
Processor
Prediction
Stream

—

coreinst

coreregs

core res/addr/nextPC

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

Check Mode

core PC
Core
Processor
Prediction eing
Stream
coreregs
core res/addr/nextPC
Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin
Advanced Computer Architecture Lab Building Buggy Chips - That Work!

University of Michigan Todd Austin

How Can the Simple Checker Keep Up?

Redundant Core Advance Core

R -

S= Qg

+ Slipstream effects reduce power requirements of trailing car
— Checker processor executes in the core processor slipstream
- fast moving air b branch/value predictions and cache prefetches
— Core processor slipstream reduces complexity requirements of checker

« Symbiotic effects produce a higher combined speed

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

How Can the Simple Checker Keep Up?

Simple Checker Complex Core

SR

« Slipstream effects reduce power requirements of trailing car

— Checker processor executes in the core processor slipstream

— fast moving air b branch/value predictions and cache prefetches

— Core processor slipstream reduces complexity requirements of checker
« Symbiotic effects produce a higher combined speed

e
g

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

Speeding the Checker with Core Computation

1d f1,(X)

fa=f1*f2+1f3

br f4 <0, skip

8=r8+1
skip:
Core Processor Execution ~ Checker Execution
[~ L
cachemiss long operation misprediction

g

* Checker executes in wake of core [o
— Leverages non-binding predictions & prefetches -—>0k

» Virtually no stalls remain to slow checker [or] e
— Control hazards resolved during core execution - oK
— Data hazards eliminated by prefetches and input value predictions

Complex microarchitectural structures only necessary in core

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

Checker Performance Impacts

* Checker throughput bounds core IPC~ 1.05;
— Only cache misses stall checker pipeline 1.044
— Core warms cache, leaving few stalls 1.03-

+ Checker latency stalls retirement z 102
— Stalls decode when speculative state 2 1011
buffers fill (LSQ, ROB) 3 1.00]

— Stalled instructions mostly nuked! 0.991

+ Storage hazards stall core progress 0.981

— Checker may stall core if it lacks resources () g7
+ Faults flush core to recover state

— Small impact if faults are infrequent P ® qé\% ,\\}3
I IRARS
& O
0‘Q X d() Qb(
7
Advanced Computer Architecture Lab Building Buggy Chips - That Work!

University of Michigan Todd Austin

Verifying the Checker Processor

Unspecified Core

Predictions J \

.

Alwaystrue if
output uArch model == Ref model

N

Identical state?

output

+ Simple checker permits complete functional verification
- In-order blocking pipelines (trivial scheduler, no rename/reorder/commit)
- No “internal” non-architected state
* Fully verified design using Sakallah’'s GRASP SAT-solver [DACO01]
— For Alpha integer ISA without exceptions
— With small register file and memory, and small data types

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin
Value-Added Optimizations

+ Fault tolerant and deeply speculative core processor permits
many fundamental assumptions of system design to be revisited!
- Beta-Release Processors
— Low-Cost SER and Noise Protection
— Fully Testable Microprocessor Designs
— Self-tuned Digital Systems

Sy,
S Advanced Computer Architecture Lab Building Buggy Chips - That Work!

University of Michigan Todd Austin

10

Beta-Release Processors

Traditional Verification

100

Traditional verification stalls
launch until debug complete
Checked processor verification
could overlap with launch

— Beta-release when checker works

—+ 80

—+ 60

1 40

Design Errors
Performance

+ 20

Hng

- Launch when performance stable Tape Out Launch
- Step as needed without recalls _Checked Processor Verification
" 180
E + 60 é
= +40 £
8 &
120
0
Tape Beta Launch Step
Advanced Computer Architecture Lab Owt Building Buggy Chips - That Work!
University of Michigan Todd Austin

Low-Cost SER and Noise Protection

EMH

M

rTTTTTTTT
e | 1o [ren[rec]—| sorepuizn

Only need to address transients in checker E>

— Checker detects and corrects noise-related faults in core

- Core processor designed without regard to strikes (e.g., no ECC...)
Recycle checker inputs suspected core fault

- If no error on third execution, transient strike in checker processor

— If error on third execution, core processor fault occurred (e.g., SER, design error)
Protect critical checker control with triple-modular redundant (TMR) logic

— TMR on simple control results in only 1.3% larger checker (synthesized design)

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

11

Fully Testable Microprocessor Designs

+ Checker structure facilitates
manufacturing tests P et

— All checker inputs exposed “’C

to built-in-self-test logic
- - inst regs
s =
* Checker can be fully tested
with small BIST module
- less than 0.5% area increase
* Reduces burden of testing
on core !

- Missed core defects corrected
— Checker acts as core tester

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

Self-Tuned Digital Systems

« Electrical verification determines if implementation is robust
— Design must be functionally correctly for all valid (T,V,p,f)
- Design must meet mean-time-to-failure goals (via power/current analysis)
Temp Voltage Process Frequency

max max fast T design margin

max

min min sow min

« Verify functional correctness at slow corner (T,a.VoinPsiowfmax)
« Verify power/current characteristics at fast corner (T,VmaoPasefmad)
« Additional margin on clock used to avoid any electrical faults

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

12

Self-Tuned Digital Systems

Temp Voltage Frequency

Vdd

clk

max I max worse-case margin
Vdd'

max

error rate

min min I min

— Slow corner
— Actual operating conditions

Modern logic design is too conservative for dynamic verification
— Unnecessary design margins consume power and performance
— System may not be operating at slow corner

Checker enables a self-tuned clock/voltage strategy
— Push clock, drop voltage until desired power-performance characteristics
— If system fails, reliable checker will correct error, notify control system
— Reclaims design margins plus any temperature and voltage margins

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

Ongoing Work: DIVAlution

Goal: transfer dynamic verification technology to industry

Approach
— Developed lower-impact dynamic verification techniques (baby steps)
- Build real technology demonstrations (hands-on demos)

Technology demonstration vehicles
— ReMmoRA self-checked processor

+ 4-wide checker, 0.5k I-cache, 4k D-cache plus simple core

¢+ Unpipelined checker prototype: 325MHz, 12mm?, 941mW in 0.25um
— DIVA Demo self-checked crypto-processor

+ Leverages built-in CRC mechanism to implement low-cost checker

* Built with commercial-off-the-shelf parts (dual StrongARMS)

Building Buggy Chips - That Work!
Todd Austin

13

Conclusions

Dynamic verification makes a core processor fully speculative
— Maximally speculative, minimally correct design approach
— Core processor tolerates any permanent or transient error
— Core processor supports any form of speculation

Checker processor design is simple, reliable, and fast
— High-quality prediction stream keeps checker design simple
— Simple latency-insensitive design permits robust implementations
— Core processor eliminates hazards that could slow checker pipeline

Pushing speculation to the limit may yield many benefits
— Beta-release processors could overlap verification with launch
— Checker processor provides single event radiation (SER) protection
— Highly testable checker reduced manufacturing test burden on core logic
— Fault-tolerant core can leverage aggressive circuits (self-tuned systems)

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

Backups

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

14

REMORA: Physical Checker Design

Physical checker design effort underway
— Alpha integer ISA subset
— 4-wide checker, 0.5k I-cache, 4k D-cache
— Synthesized design (using Synopsys tools)
Physical design estimates
— 325 MHz clock speed
- 12 mm? total area in 0.25um technology
- 941 mW worst-case power
Design to be fabricated also includes
Pipelined checker design
Simple core pipeline
Clock/voltage tuning infrastructure
Extensive BIST support

Advanced Computer Architecture Lab
University of Michigan

Alpha 21264
REMORA
Checker
]
12 mm? 205 mm?
(in 0.25um) (in 0.25um)

inst
cache

Building Buggy Chips - That Work!
Todd Austin

Optimized System Architecture

Performance impacts

Checker RF allows core commit
No storage hazards

eliminated (

Few checker cache misses

Less expensive core storage ’

!

architecture (same as baseling) | -1!-cche| |11 D-cache

64 KB, 1 ports | | 64 KB, 2 ports

Core cache failures affect) f

checker

Slowdowns

L2 Unified Cache

256 KB, 1 port

O 40/ Best: -3.2%
H70 worst: 0.2%
Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

15

Fully Decoupled System Architecture
Checker fully decoupled

— Core L1 caches may fail e -
— All L2 writebacks from checker Core -
— Core caches flushed on fault [[0 [ron]res]

— Core accesses and misses T e
warm up checker caches ’ I sreem
Eliminates common mode Trege Moemd] Tong
core cache failures 64, 1pots | 648, 2o pons| | 2o

— But, generates more L2 traffic t t

— Further optimizations possible
L2 Unified Cache

Slowdowns 1.
1 Z(y Best: 0%

L70 worst 6.7%
Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

Deriving Dynamic Verification

Prediction

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

16

Deriving Dynamic Verification

Prediction

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

Deriving Dynamic Verification

Prediction
L RS CIT S El
Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

17

Deriving Dynamic Verification

Prediction
stream
Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

Deriving Dynamic Verification

Prediction
stream
- OoK?
Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

18

Deriving Dynamic Verification

Prediction

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

Deriving Dynamic Verification

Prediction
stream

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

19

Deriving Dynamic Verification

Prediction
stream

Advanced Computer Architecture Lab Building Buggy Chips - That Work!
University of Michigan Todd Austin

20

