
UT-Austin Computer Architecture Seminar November 24,2003

Network ProcessingNetwork Processing

A Multi-Threaded Multi-Processor
Application

A Multi-Threaded Multi-Processor
Application

Mike O’Connor

oconnor@alumni.rice.edu

Mike O’Connor

oconnor@alumni.rice.edu

UT-Austin Computer Architecture Seminar November 24,2003

What is Network Processing?What is Network Processing?

Many people have different definitions…
Look at the applications…

Many people have different definitions…
Look at the applications…

I shall not today attempt further to define the kinds of material I
understand to be embraced within that shorthand description;
and perhaps I could never succeed in intelligibly doing so.
But I know it when I see it...

- Potter Stewart, Associate Justice, US Supreme Court
JACOBELLIS v. OHIO, 378 U.S. 184 (1964)

UT-Austin Computer Architecture Seminar November 24,2003

Network Processing
Applications
Network Processing
Applications

WAN/LAN Switching and Routing,
Multi-service/Multi-layer Switches/Routers
Web/server Load balancing
QoS solutions
VoIP Gateways
2.5G and 3G wireless infrastructure Equipment
Security - Firewall, VPN, Encryption, Access control
Storage Area Networks

Characteristic these applications share:

Processing of packet-based digital
networking data

WAN/LAN Switching and Routing,
Multi-service/Multi-layer Switches/Routers
Web/server Load balancing
QoS solutions
VoIP Gateways
2.5G and 3G wireless infrastructure Equipment
Security - Firewall, VPN, Encryption, Access control
Storage Area Networks

Characteristic these applications share:

Processing of packet-based digital
networking data

UT-Austin Computer Architecture Seminar November 24,2003

Typical Router Per-Packet ProcessingTypical Router Per-Packet Processing

Layer 2 Processing
– Ethernet, Validation, Control Packet Extraction

RFC 1812 Validation Checks
– TTL, Version, Length (Header, Min, Max), Valid Src/Dst IP

VPN Identification
– Interface / Sub-interface, Ethernet VLAN, MPLS

Source & Destination IP Lookups
Multi-Field Classification
– ACL, Filters, Billing, DiffServ BA

Policing & Statistics
– Interfaces Group of MIB II, DiffServ per color flows, MPLS

flows
Load Balancing - ECMP
Full Packet Editing & Header Insertion
– Fragment, Replicate, Mirror

UT-Austin Computer Architecture Seminar November 24,2003

“Plain” RISC with Hardware Assists“Plain” RISC with Hardware Assists
~1000 standard RISC instructions per packet
– Assuming off-loading to dedicated co-processors for

address lookups, classifications, policing, statistics, plus
packet reassembly, ordering, dispatch, and edit functions

– Assuming no overhead for context switching of threads
during long-latency co-processor operations

~450 bytes of aggregate look-aside memory and co-
processor I/O per packet
~64 bytes of packet memory I/O per packet

~1000 standard RISC instructions per packet
– Assuming off-loading to dedicated co-processors for

address lookups, classifications, policing, statistics, plus
packet reassembly, ordering, dispatch, and edit functions

– Assuming no overhead for context switching of threads
during long-latency co-processor operations

~450 bytes of aggregate look-aside memory and co-
processor I/O per packet
~64 bytes of packet memory I/O per packet

Internal Bus I/O
Bandwidth

Millions of MIPS
Instructions per Second
Required

Wire-Rate Processing
(Full Duplex)

~30000 MIPS

~3000 MIPS

~300 MIPS

~16 GB/s10GbE / 30Mpps

~1.6 GB/s1GbE / 3Mpps

~160 MB/s100MbE / 300Kpps

UT-Austin Computer Architecture Seminar November 24,2003

Significant Parallelism NeededSignificant Parallelism Needed

As packet rates increase, the packet arrival time diminishes
to the point where multiple packets have to be processed
by the NPU concurrently, in order to achieve wire-rate
performance
Multiple packet contexts are required to hide packet
processing latency at progressively higher data rates

As packet rates increase, the packet arrival time diminishes
to the point where multiple packets have to be processed
by the NPU concurrently, in order to achieve wire-rate
performance
Multiple packet contexts are required to hide packet
processing latency at progressively higher data rates

33 ns

333 ns

3333 ns

Packet Inter-
arrival Time

Parallel Contexts
Required

Wire-Rate
Processing (FDX)

100

10

1

10GbE / 30Mpps

1GbE / 3Mpps

100MbE / 300Kpps

Assumes constant 3.3usec latency to process a given packet
– In practice, with more threads, latency per packet increases due

queuing delays resulting from contention between threads

Assumes constant 3.3usec latency to process a given packet
– In practice, with more threads, latency per packet increases due

queuing delays resulting from contention between threads

UT-Austin Computer Architecture Seminar November 24,2003

Silicon Access Networks
iFlow Packet Processor
Silicon Access Networks
iFlow Packet Processor

True 20Gbps network processor
– 20Gbps in + 20Gbps out

• (not “Cisco Math” where 10 in + 10 out = 20)
Targeted at core routers supporting wide range of
protocols and functions
– Cisco GSR12000 or Juniper T640-class boxes

Multi-threaded/multi-processor architecture
Custom, optimized network specific instruction set
Handles 30-50M packets per second
– Full Duplex 10GE or OC-192

True 20Gbps network processor
– 20Gbps in + 20Gbps out

• (not “Cisco Math” where 10 in + 10 out = 20)
Targeted at core routers supporting wide range of
protocols and functions
– Cisco GSR12000 or Juniper T640-class boxes

Multi-threaded/multi-processor architecture
Custom, optimized network specific instruction set
Handles 30-50M packets per second
– Full Duplex 10GE or OC-192

UT-Austin Computer Architecture Seminar November 24,2003

Goals for iFlow
Architecture
Goals for iFlow
Architecture

Simple to program
Scale architecture easily from 2.5Gbps to
40+Gbps without requiring software
rewrite
Serve a wide variety of application points

Simple to program
Scale architecture easily from 2.5Gbps to
40+Gbps without requiring software
rewrite
Serve a wide variety of application points

UT-Austin Computer Architecture Seminar November 24,2003

How to Organize the
Chip?
How to Organize the
Chip?

Several options for
getting the necessary
number of packets
being processed in
parallel
Represent
“ideological” points-
of-view
– Real chips tend to

blend these

Several options for
getting the necessary
number of packets
being processed in
parallel
Represent
“ideological” points-
of-view
– Real chips tend to

blend these
Optimized

for
performance

/flexibility

naAd-Hoc

Optimized
for HW
costs

Like
But trying
to make

SW a little
easier

Pipelined

naSimple to
program

Parallel

O
rganization

SpecializedIdentical

Processor Type

UT-Austin Computer Architecture Seminar November 24,2003

Parallel/Identical OrganizationParallel/Identical Organization

Each processor/thread context pair “owns” a packet for
it entire processing lifetime
Programming model is as if writing for a single thread
– Known as a “Run-to-Completion” programming model

Pros:
– Straightforward to analyze and debug
– Scales across different implementations with minimal code

changes
– Graceful performance degradation with additional functionality
– Performance not dependant on programmer skill to identify

parallel activities
– Reduces need for high-bandwidth inter-processor communication

Cons:
– All processors must be able to execute all code, reducing some

implementation optimization opportunities
– Without lots of high-bandwidth inter-processor communication,

some things are hard

Each processor/thread context pair “owns” a packet for
it entire processing lifetime
Programming model is as if writing for a single thread
– Known as a “Run-to-Completion” programming model

Pros:
– Straightforward to analyze and debug
– Scales across different implementations with minimal code

changes
– Graceful performance degradation with additional functionality
– Performance not dependant on programmer skill to identify

parallel activities
– Reduces need for high-bandwidth inter-processor communication

Cons:
– All processors must be able to execute all code, reducing some

implementation optimization opportunities
– Without lots of high-bandwidth inter-processor communication,

some things are hard

UT-Austin Computer Architecture Seminar November 24,2003

Pipelined/Specialized Org.Pipelined/Specialized Org.

Each processor/thread context pair “owns” a packet for a slice of
its lifetime, before handing it to the next PE
– Different processors can be adapted to tasks common in certain phased

of packet processing – e.g. classification, editing, etc.
Pros:
– Processors can be optimized for given tasks, without “carrying extra

baggage” – basically how most NP ASICs are architected
– high-bandwidth inter-processor communication limited to neighbors in

pipeline
– More effective code space since processors are specialized to specific

parts of the packet processing workload – all processors do not need to
see all the code

Cons:
– Performance dependant on programmer skill to “load-balance”

pipestages – throughput is limited by slowest stage
– Different processors for each class of task require programmer to master

several different target processor types
– Ratio of different types of specialized processors may not reflect

application workload

Each processor/thread context pair “owns” a packet for a slice of
its lifetime, before handing it to the next PE
– Different processors can be adapted to tasks common in certain phased

of packet processing – e.g. classification, editing, etc.
Pros:
– Processors can be optimized for given tasks, without “carrying extra

baggage” – basically how most NP ASICs are architected
– high-bandwidth inter-processor communication limited to neighbors in

pipeline
– More effective code space since processors are specialized to specific

parts of the packet processing workload – all processors do not need to
see all the code

Cons:
– Performance dependant on programmer skill to “load-balance”

pipestages – throughput is limited by slowest stage
– Different processors for each class of task require programmer to master

several different target processor types
– Ratio of different types of specialized processors may not reflect

application workload

UT-Austin Computer Architecture Seminar November 24,2003

Pipelined/Identical OrganizationPipelined/Identical Organization
Each processor/thread context pair “owns” a packet for
a slice of its lifetime, before handing it to the next PE
Like Pipelined/Specialized but without the problems of
guessing right ratio of each processor type and forcing
programmers to learn multiple target architectures
Pros:
– high-bandwidth inter-processor communication limited to

neighbors in pipeline
– More effective code space since processors are dedicated to

specific parts of the packet processing workload – all processors
do not need to see all the code

Cons:
– All processors must be able to execute all code, reducing some

implementation optimization opportunities
– Performance dependant on programmer skill to “load-balance”

pipestages – throughput is limited by slowest stage

Each processor/thread context pair “owns” a packet for
a slice of its lifetime, before handing it to the next PE
Like Pipelined/Specialized but without the problems of
guessing right ratio of each processor type and forcing
programmers to learn multiple target architectures
Pros:
– high-bandwidth inter-processor communication limited to

neighbors in pipeline
– More effective code space since processors are dedicated to

specific parts of the packet processing workload – all processors
do not need to see all the code

Cons:
– All processors must be able to execute all code, reducing some

implementation optimization opportunities
– Performance dependant on programmer skill to “load-balance”

pipestages – throughput is limited by slowest stage

UT-Austin Computer Architecture Seminar November 24,2003

Ad-Hoc/Specialized Org.Ad-Hoc/Specialized Org.
Not as simple as the previous examples
Each processor/thread context pair “owns” a packet for a variable
amount of its lifetime, handing it to the other PE’s as need arises
– Different processing elements can be adapted to tasks common in

certain phases of packet processing – e.g. classification, editing, etc.
Pros:
– Maximum performance and flexibility
– More effective code space since processors are dedicated to specific

parts of the packet processing workload – all processors do not need to
see all the code

Cons:
– High-bandwidth inter-processor communication required as any

processor may pass handling a packet to any other processor
– Performance dependant on programmer skill to “load-balance” and

schedule different resources – a complex task
– Different processors for each class of task require programmer to master

several different target processor types
– Ratio of different types of specialized processors may not reflect

application workload

Not as simple as the previous examples
Each processor/thread context pair “owns” a packet for a variable
amount of its lifetime, handing it to the other PE’s as need arises
– Different processing elements can be adapted to tasks common in

certain phases of packet processing – e.g. classification, editing, etc.
Pros:
– Maximum performance and flexibility
– More effective code space since processors are dedicated to specific

parts of the packet processing workload – all processors do not need to
see all the code

Cons:
– High-bandwidth inter-processor communication required as any

processor may pass handling a packet to any other processor
– Performance dependant on programmer skill to “load-balance” and

schedule different resources – a complex task
– Different processors for each class of task require programmer to master

several different target processor types
– Ratio of different types of specialized processors may not reflect

application workload

UT-Austin Computer Architecture Seminar November 24,2003

iFlow Packet Processor
Approach
iFlow Packet Processor
Approach

Programmable elements take a
Parallel/Identical organization
Hardwired Coprocessors for different
specialized processing elements for
common tasks in certain phases of packet
processing – e.g. classification, editing,
etc.
Interconnection between Coprocessors is
“Ad-Hoc” though a large switch

Programmable elements take a
Parallel/Identical organization
Hardwired Coprocessors for different
specialized processing elements for
common tasks in certain phases of packet
processing – e.g. classification, editing,
etc.
Interconnection between Coprocessors is
“Ad-Hoc” though a large switch

UT-Austin Computer Architecture Seminar November 24,2003

iFlow Architectural
Partitioning
iFlow Architectural
Partitioning

Significant Editing
– Routing
– Protocol Translations
– Encapsulation Changes

Complex Parsing
– Layer 3 followed by 4, 5

etc.

Complex Conditionals
Multi-Pass Packet Ops

Significant Editing
– Routing
– Protocol Translations
– Encapsulation Changes

Complex Parsing
– Layer 3 followed by 4, 5

etc.

Complex Conditionals
Multi-Pass Packet Ops

PROCESSOR COPROCESSOR

Bounded Lookups
36-, 48-, 288-bits etc.

Accounting/Policing
Simple arithmetic ops
based on a lookup result

Simple request/response
interaction with NPU

Bounded Lookups
36-, 48-, 288-bits etc.

Accounting/Policing
Simple arithmetic ops
based on a lookup result

Simple request/response
interaction with NPU

iFlow Coprocessor Functions:
Address Lookup
Flow Lookup
Accounting

UT-Austin Computer Architecture Seminar November 24,2003

Optional QDR SRAMOptional QDR SRAM

Basic Data Flow ExampleBasic Data Flow Example

ON-CHIP PACKET
BUFFER

PACKET EDIT /
DISPATCH

iAtom
PROCESSOR

ARRAY

256K
ADDRESS

TABLE

Assoc
Memory

Lookup Engine

Ternary
CAM

36K x 144-bit keys
24K x 216-bit keys
12K x 432-bit keys

Assoc
Memory

Stats Engine with
Policing

Stats/Policing SRAM
1.1M 21-bit counters
512K 42-bit counters

ARBITER ON-CHIP
RESOURCES

iAP Address Proc iCLClassifier iAC Accountant

SPI 4.2 SPI 4.2

High-Speed Coprocessor
Channel (HCC)

Range Match

Optional QDR SRAMOptional QDR SRAM

UT-Austin Computer Architecture Seminar November 24,2003

iAtom Processors
(4)

333MHz
iAtom Processors

(4)
333MHz

iAtom Processors
(4)

333MHz

Inside the iPP ChipInside the iPP Chip

Packet
Buffer
(2 Mb)

RX Packet
Dispatcher

High Speed Coprocessor Control (HCC)
LVDS 8bits at 400MHz DDR (6.4 Gbps)6.4 Gbps)

Packet
Extract

Packet
Insert

MPBX
Accelerator

Packet
Arbiter

Packet
Updates

Order
Enforcer TCAM

1Kx72/
512x144

SRAM
(2 Mb)

Arbiter

TX

Instruction
Store
SRAM

PCI 32 bits @
33/66MHz

Data Path RX
Interface
2 x SPI4.2

25Gbps RX

Data Path TX
Interface
2 x SPI4.2
25Gbps TX

Optional Optional
QDR QDR

SRAMSRAM

SRAM
(2 Mb)

Hash
Unit

4 iAtom
8-Way

Processors
333 MHz

UT-Austin Computer Architecture Seminar November 24,2003

On-Chip ResourcesOn-Chip Resources
Packet Buffer
– 240K Bytes
– Performs Re-assembly for up-to 21 logical connections
– No off-chip packet buffering needed

2 general purpose SRAM arrays
– 256K bytes each
– 128-bit internal bus width each
– Instruction store is separate (within iAtom)

General purpose Ternary CAM
– 72K (ternary) bits with 32K bits of associated data
– Keys up to 144 bits supported

Hash Unit
– Hashes 128-bit input to 2 32-bit keys using 2 different CRC polynomials
– Also includes a Modulo Engine for computing remainder of 8-bit divide

Resource Arbiter
– Full output-buffered switch maximizes useful bandwidth to on-chip and

external resources

Packet Buffer
– 240K Bytes
– Performs Re-assembly for up-to 21 logical connections
– No off-chip packet buffering needed

2 general purpose SRAM arrays
– 256K bytes each
– 128-bit internal bus width each
– Instruction store is separate (within iAtom)

General purpose Ternary CAM
– 72K (ternary) bits with 32K bits of associated data
– Keys up to 144 bits supported

Hash Unit
– Hashes 128-bit input to 2 32-bit keys using 2 different CRC polynomials
– Also includes a Modulo Engine for computing remainder of 8-bit divide

Resource Arbiter
– Full output-buffered switch maximizes useful bandwidth to on-chip and

external resources

UT-Austin Computer Architecture Seminar November 24,2003

iAtom
Network Instruction Set Core
iAtom
Network Instruction Set Core

32 processors per iPP
organized as
– 4 iAtom cores

• 8 processors per iAtom

8 threads per processor
– Total of 256 threads per iPP
– Can operate on 256 packets

simultaneously

Highly optimized network
instruction set

32 processors per iPP
organized as
– 4 iAtom cores

• 8 processors per iAtom

8 threads per processor
– Total of 256 threads per iPP
– Can operate on 256 packets

simultaneously

Highly optimized network
instruction set

iAtom
Core

UT-Austin Computer Architecture Seminar November 24,2003

iAtom ArchitectureiAtom Architecture
Each iAtom core contains:
– 8 network processor units
– 8 register files

• 8 thread contexts each
– Instruction store
– Arbiters for accessing off-iAtom

resources
– MPBX: Massively Parallel

Branch Accelerator

All processor elements are
identical
Network processor units are
simple, 6-stage pipelined,
single issue processors

Each iAtom core contains:
– 8 network processor units
– 8 register files

• 8 thread contexts each
– Instruction store
– Arbiters for accessing off-iAtom

resources
– MPBX: Massively Parallel

Branch Accelerator

All processor elements are
identical
Network processor units are
simple, 6-stage pipelined,
single issue processors

UT-Austin Computer Architecture Seminar November 24,2003

Register FileRegister File

Packet Window General Purpose Registers

80 bytes (PWCAP = 10) 80 bytes

Packet Window General Purpose Registers

96 bytes (PWCAP = 12) 64 bytes

Register file is 160 bytes in size (per context)
– Not including various special registers (e.g. Condition Codes)

Registers are byte addressable
– Can be 1, 2, or 4 bytes
– No alignment restrictions

Register file holds window of packet data
– This window is configurable to be between 64 and 128 bytes
– Remainder is used as general-purpose registers

Register file is 160 bytes in size (per context)
– Not including various special registers (e.g. Condition Codes)

Registers are byte addressable
– Can be 1, 2, or 4 bytes
– No alignment restrictions

Register file holds window of packet data
– This window is configurable to be between 64 and 128 bytes
– Remainder is used as general-purpose registers

UT-Austin Computer Architecture Seminar November 24,2003

Packet WindowPacket Window

Packet window logically appears as a sliding
window over the packet data
– Physically organized as a circular buffer
– Indexed indirectly via two offsets: P & Q

Multiple offsets into packet window enables
same code to be used in multiple situations
– Example: TCP processing can be identical code

regardless of length of IP header

Packet window logically appears as a sliding
window over the packet data
– Physically organized as a circular buffer
– Indexed indirectly via two offsets: P & Q

Multiple offsets into packet window enables
same code to be used in multiple situations
– Example: TCP processing can be identical code

regardless of length of IP header

PWCS P P+Q
(Packet Window

Current Size)

q12b … q23b / p36b … p47b Remainder of p0b … p23b registers q0b … q11b / p24b … p35b
(e.g. TCP header (cont)) Packet Invalid Locations (e.g. IP header) (e.g. TCP header start)

UT-Austin Computer Architecture Seminar November 24,2003

Instruction Set OverviewInstruction Set Overview
47 instructions
– Most common RISC operations supported
– Several networking-specific operations
– Many unique to iAtom

Each instruction can handle any register width
– ‘add r6w = p11b, r4h’

Adds an 8-bit value to a 16-bit value and stores the result in a 32-bit
value

Most instructions can also specify one immediate
– ‘sub r2b = p8b, 1’

Subtracts 1 from the 8-bit value in the packet and stores the result in
a general-purpose register

Move instructions can be conditionally executed

47 instructions
– Most common RISC operations supported
– Several networking-specific operations
– Many unique to iAtom

Each instruction can handle any register width
– ‘add r6w = p11b, r4h’

Adds an 8-bit value to a 16-bit value and stores the result in a 32-bit
value

Most instructions can also specify one immediate
– ‘sub r2b = p8b, 1’

Subtracts 1 from the 8-bit value in the packet and stores the result in
a general-purpose register

Move instructions can be conditionally executed

UT-Austin Computer Architecture Seminar November 24,2003

Networking Optimized
Instructions
Networking Optimized
Instructions

Some examples of instructions particularly useful in networking:
– Addchk – Checksum Addition

• One’s complement addition
• Used in checksum generation

– Subchk - Checksum Subtraction
• One’s complement subtraction
• Allows checksum delta’s to be computed for incremental edits

– Sllmrg – Logical Shift Left and Merge with Bit Mask
• Shift value from one register left, selects a range of bits, and merges these

with another register value
• For example, allows bits 11:3 of A to overwrite bits 28:20 of B.

– Kgen – Generate Key
• Generates a “key” to by used by subsequent lookup or MPBX operations
• Extracts 2 nibble-aligned ranges from input and appends them to key buffer
• Can be done repeatedly to build large keys

Some examples of instructions particularly useful in networking:
– Addchk – Checksum Addition

• One’s complement addition
• Used in checksum generation

– Subchk - Checksum Subtraction
• One’s complement subtraction
• Allows checksum delta’s to be computed for incremental edits

– Sllmrg – Logical Shift Left and Merge with Bit Mask
• Shift value from one register left, selects a range of bits, and merges these

with another register value
• For example, allows bits 11:3 of A to overwrite bits 28:20 of B.

– Kgen – Generate Key
• Generates a “key” to by used by subsequent lookup or MPBX operations
• Extracts 2 nibble-aligned ranges from input and appends them to key buffer
• Can be done repeatedly to build large keys

UT-Austin Computer Architecture Seminar November 24,2003

iAtomC ExampleiAtomC Example

lookup {rFlowId, rPolicingContext, rStatsId} =
{reqdesc, ip.da, ip.sa, ip.protocol, tcp.sp, tcp.dp, ip.tos}, HCC_1;

kgen r8h, p16w;
kgen p12w, p9b;
kgen q0h, q2h;
kgen p1b, null;
lookup %rd[2] = /*key buffer,*/ 0x48;

Compiles to 5 instructions
5 iAtom clock cycles to execute
Thread suspends waiting for coprocessor results
Results parsed in background according to result
descriptor 2 and assigned to rFlowId,
rPolicingContext, and rStatsId variables

Compiles to 5 instructions
5 iAtom clock cycles to execute
Thread suspends waiting for coprocessor results
Results parsed in background according to result
descriptor 2 and assigned to rFlowId,
rPolicingContext, and rStatsId variables

iAtomC implementation of a packet “5-tuple” lookup:iAtomC implementation of a packet “5-tuple” lookup:

UT-Austin Computer Architecture Seminar November 24,2003

MPBX “if-then-else” AcceleratorMPBX “if-then-else” Accelerator

Massively parallel branch accelerator
– Up to 128, 88-bit wide compare and

branch instructions simultaneously
– Think “giant parallel if-then-else”

Massively parallel branch accelerator
– Up to 128, 88-bit wide compare and

branch instructions simultaneously
– Think “giant parallel if-then-else”

Significantly accelerates the
execution of complex, bit-oriented
conditional branching statements
Implemented with local TCAM
tightly coupled with processor

Significantly accelerates the
execution of complex, bit-oriented
conditional branching statements
Implemented with local TCAM
tightly coupled with processor

switch {
// IEEE 802.3ac tagged Ethertype
case dix.ethertype==ETH_TYPE_TAGGED && vlanEnabled.z: ReceiveError(IF_ERR_ETH_VLAN_DISABLED);
case dix.ethertype==ETH_TYPE_TAGGED && maxVlan.gt: ReceiveError(IF_ERR_ETH_INVALID_VLAN);
case dix.ethertype==ETH_TYPE_TAGGED: EthernetTaggedType;
// Ethertype
case dix.ethertype==ETH_TYPE_IP: EthernetRemoveEnetHdr(14,ETH_IP);
case dix.ethertype==ETH_TYPE_IPV6: EthernetRemoveEnetHdr(14,ETH_IPV6);
case dix.ethertype==ETH_TYPE_MPLS: EthernetRemoveEnetHdr(14,ETH_MPLS);
case dix.ethertype==ETH_TYPE_ARP: ToCp(TOCP_ETH_ARP);
// IEEE 802.1 LLC/SNAP (Ethertype < 0x800 indicating length)
case dix.ethertype==ETH_TYPE_IEEE && ieee.ethertype==ETH_TYPE_IP &&

ieee.xaaaa==0xAAAA && x30.eq: EthernetRemoveIeeeHdr(14,ETH_IEEE | ETH_IP);
case dix.ethertype==ETH_TYPE_IEEE && ieee.ethertype==ETH_TYPE_IPV6 &&

ieee.xaaaa==0xAAAA && x30.eq: EthernetRemoveIeeeHdr(14,ETH_IEEE | ETH_IPV6);
case dix.ethertype==ETH_TYPE_IEEE && ieee.ethertype==ETH_TYPE_ARP &&

ieee.xaaaa==0xAAAA && x30.eq: ToCp(TOCP_ETH_ARP);
case dix.ethertype==ETH_TYPE_IEEE && ieee.ethertype==ETH_TYPE_MPLS &&

ieee.xaaaa==0xAAAA && x30.eq: EthernetRemoveIeeeHdr(14,ETH_IEEE | ETH_MPLS);
default: ReceiveError(IF_ERR_ETH_UNKNOWN_PROT);

}

iAtomC implementation of Ethernet header parsing: 2 clocksiAtomC implementation of Ethernet header parsing: 2 clocks

UT-Austin Computer Architecture Seminar November 24,2003

Coprocessor OperationsCoprocessor Operations
iAtom has extensive support for utilizing coprocessors
‘lookup’ instruction issues requests to coprocessors
– Keys built using ‘kgen’ instructions
– Specifies one of 64 result descriptors which specify where

different fields reside in result data
– Coprocessor can be either on-chip or external
– Coprocessor operations which do not produce results like

statistics increments are issued with ‘store’ instructions

Results are parsed in the background according to the
specified result descriptors
– Each extracted field is placed in a specific register in the

thread’s context
– No code or NPU cycles are wasted extracting result fields from

coprocessor requests

iAtom has extensive support for utilizing coprocessors
‘lookup’ instruction issues requests to coprocessors
– Keys built using ‘kgen’ instructions
– Specifies one of 64 result descriptors which specify where

different fields reside in result data
– Coprocessor can be either on-chip or external
– Coprocessor operations which do not produce results like

statistics increments are issued with ‘store’ instructions

Results are parsed in the background according to the
specified result descriptors
– Each extracted field is placed in a specific register in the

thread’s context
– No code or NPU cycles are wasted extracting result fields from

coprocessor requests

UT-Austin Computer Architecture Seminar November 24,2003

Thread SwitchingThread Switching
Zero-cycle context switch
– No penalty to change threads

Network processing units context switch on:
– Loads/Stores/Lookups

• Hides latency to access off-chip resources
– Branches/Jumps/MPBX Switch

• NPUs do not have branch-prediction hardware
• Hides latency to access instruction store

– Awpp/Pullreset/Pullnew
• Hides latency to access packet buffer

– Halt/Endtask/Sleep
• Thread control operations

When lookup result, instruction data, or packet data has been
received the thread becomes eligible to continue execution
– From point of view of the programmer, all of the instructions above

appear to execute in a single cycle

Zero-cycle context switch
– No penalty to change threads

Network processing units context switch on:
– Loads/Stores/Lookups

• Hides latency to access off-chip resources
– Branches/Jumps/MPBX Switch

• NPUs do not have branch-prediction hardware
• Hides latency to access instruction store

– Awpp/Pullreset/Pullnew
• Hides latency to access packet buffer

– Halt/Endtask/Sleep
• Thread control operations

When lookup result, instruction data, or packet data has been
received the thread becomes eligible to continue execution
– From point of view of the programmer, all of the instructions above

appear to execute in a single cycle

UT-Austin Computer Architecture Seminar November 24,2003

Order EnforcerOrder Enforcer
Maintains a number of “ordered flows”
Every packet is bound to a given Flow Identifier
– Can be simple (like ingress interface)
– Can be result of complex CAM lookup

Whenever packets must be serviced in order:
– A thread informs the order enforcer it has reached a given ordering

point
– The order enforcer prevents this thread from executing until all

packets with an earlier timestamp bound to the same flow have
passed the ordering point

Very simple programming model
– “Fire and Forget”

“Unordered” semaphores for traditional critical sections are also
supported

Maintains a number of “ordered flows”
Every packet is bound to a given Flow Identifier
– Can be simple (like ingress interface)
– Can be result of complex CAM lookup

Whenever packets must be serviced in order:
– A thread informs the order enforcer it has reached a given ordering

point
– The order enforcer prevents this thread from executing until all

packets with an earlier timestamp bound to the same flow have
passed the ordering point

Very simple programming model
– “Fire and Forget”

“Unordered” semaphores for traditional critical sections are also
supported

UT-Austin Computer Architecture Seminar November 24,2003

Packet Editing and DispatchPacket Editing and Dispatch

All packet edit commands written
into Edit Control Blocks (ECBs)
Each ECB holds 16 edit
commands, and ECBs can be
chained together
Commands may be posted to an
ECB in any order, and empty
command slots are allowed
– Useful for MPLS label pushing

Each ADD or REPLACE command
can specify up to 16 bytes of data
An ECB can also specify whether
to fragment a packet
Packet Dispatcher reads packet
data and applies edit commands
prior to transmit

All packet edit commands written
into Edit Control Blocks (ECBs)
Each ECB holds 16 edit
commands, and ECBs can be
chained together
Commands may be posted to an
ECB in any order, and empty
command slots are allowed
– Useful for MPLS label pushing

Each ADD or REPLACE command
can specify up to 16 bytes of data
An ECB can also specify whether
to fragment a packet
Packet Dispatcher reads packet
data and applies edit commands
prior to transmit

1: REMOVE 8 bytes
0: REPLACE 16 bytes

2: empty

3: ADD 4 bytes

14: KEEP 88 bytes
15: REPLACE 2 bytes
Next ECB Pointer Frag.?

Edit control block

Packet Dispatcher

Original
Packet Data

Edited
Packet Data

UT-Austin Computer Architecture Seminar November 24,2003

“Plain” RISC with Hardware Assists“Plain” RISC with Hardware Assists
~1000 standard RISC instructions per packet
– Assuming off-loading to dedicated co-processors for

address lookups, classifications, policing, statistics, plus
packet reassembly, ordering, dispatch, and edit functions

– Assuming no overhead for context switching of threads
during long-latency co-processor operations

~450 bytes of aggregate look-aside memory and co-
processor I/O per packet
~64 bytes of packet memory I/O per packet

~1000 standard RISC instructions per packet
– Assuming off-loading to dedicated co-processors for

address lookups, classifications, policing, statistics, plus
packet reassembly, ordering, dispatch, and edit functions

– Assuming no overhead for context switching of threads
during long-latency co-processor operations

~450 bytes of aggregate look-aside memory and co-
processor I/O per packet
~64 bytes of packet memory I/O per packet

Internal Bus I/O
Bandwidth

Millions of MIPS
Instructions per Second
Required

Wire-Rate Processing
(Full Duplex)

~30000 MIPS

~3000 MIPS

~300 MIPS

~16 GB/s10GbE / 30Mpps

~1.6 GB/s1GbE / 3Mpps

~160 MB/s100MbE / 300Kpps

UT-Austin Computer Architecture Seminar November 24,2003

iAtom with Hardware AssistiAtom with Hardware Assist
~240 iAtom instructions per packet
– Assuming off-loading to dedicated co-processors for

address lookups, classifications, policing, statistics, plus
packet reassembly, ordering, dispatch, and edit functions

– Assuming no overhead for context switching of threads
during long-latency co-processor operations

~450 bytes of aggregate look-aside memory and co-
processor I/O per packet
~64 bytes of packet memory I/O per packet

~240 iAtom instructions per packet
– Assuming off-loading to dedicated co-processors for

address lookups, classifications, policing, statistics, plus
packet reassembly, ordering, dispatch, and edit functions

– Assuming no overhead for context switching of threads
during long-latency co-processor operations

~450 bytes of aggregate look-aside memory and co-
processor I/O per packet
~64 bytes of packet memory I/O per packet

Internal Bus I/O
Bandwidth

Millions of iAtom
Instructions per Second
Required

Wire-Rate Processing

~7200 MIPS

~720 MIPS

~72 MIPS

~16 GB/s10GbE / 30Mpps

~1.6 GB/s1GbE / 3Mpps

~160 MB/s100MbE / 300Kpps

UT-Austin Computer Architecture Seminar November 24,2003

Silicon Access iFlow Packet ProcessorSilicon Access iFlow Packet Processor

32 processors
256 Threads

128.1 Gbps Aggregate
I/O Bandwidth

64 Gbps HCC
51.2 Gbps SPI 4.2
10.8 Gbps QDR
2.1 Gbps PCI

333 MHz
7M Gates
18 Mbits of SRAM
175M transistors
1036 pin BGA
0.13u “G” TSMC
First pass Si success

32 processors
256 Threads

128.1 Gbps Aggregate
I/O Bandwidth

64 Gbps HCC
51.2 Gbps SPI 4.2
10.8 Gbps QDR
2.1 Gbps PCI

333 MHz
7M Gates
18 Mbits of SRAM
175M transistors
1036 pin BGA
0.13u “G” TSMC
First pass Si success

UT-Austin Computer Architecture Seminar November 24,2003

Q & AQ & A

