Computer Architecture for the Next Millenium

November 1, 1999

William J. Dally
Computer Systems Laboratory
Stanford University
billd@csl.stanford.edu

Outline

- The Stanford Concurrent VLSI Architecture Group
- Forces acting on computer architecture
 - applications (media)
 - technology (wire-limited)
 - techniques (explicit parallelism)
- Example: register organization
 - distributed register files
- Imagine a stream processor
 - 20GFLOPS on a 0.5cm² chip
- Tremendous opportunities and challenges for computer architecture in the next millenium
 - its not a mature field yet

The Concurrent VLSI Architecture Group

- Architecture and design technology for VLSI
- Routing chips
 - Torus Routing Chip, Network Design Frame, Reliable Router
 - Basis for Intel, Cray/SGI, Mercury, Avici network chips

Parallel computer systems

- J-Machine (MDP) led to Cray T3D/T3E
- M-Machine (MAP)
 - Fast messaging, scalable processing nodes, scalable memory architecture

MDP Chip

J-Machine

Cray T3D

MAP Chip

Design technology

- Off-chip I/O
 - Simultaneous bidirectional signaling, 1989
 - now used by Intel and Hitachi
 - High-speed signalling
 - 4Gb/s in 0.6μm CMOS, Equalization, 1995
- On-Chip Signalling
 - Low-voltage on-chip signalling
 - Low-skew clock distribution
- Synchronization
 - Mesochronous, Plesiochronous
 - Self-Timed Design

250ps/division

4Gb/s CMOS I/O

What is Computer Architecture?

Forces Acting on Architecture

- Applications shifting towards media applications dealing with streams of low-precision samples
 - video, graphics, audio, DSL modems, cellular base stations
- Technology becoming wire-limited
 - power and delay dominated by communication, not arithmetic
 - global structures: register files and instruction issue don't scale
- Technique Micro-architecture ILP has been mined out
 - to the point of diminishing returns on squeezing performance from sequential code
 - explicit parallelism (data parallelism and thread-level parallelism)
 required to continue scaling performance

Applications

- Little locality of reference
 - read each pixel once
 - often non-unit stride
 - but there is producer-consumer locality
- Very high arithmetic intensity
 - 100s of arithmetic operations per memory reference
- Dominated by low-precision (16-bit) integer operations

Wires Are Becoming Like Wet Noodles

Technology scaling makes communication *the* scarce resource

Care and Feeding of ALUs

'Feeding' Structure Dwarfs ALU

What Does This Say About Architecture?

- Tremendous opportunities
 - Media problems have lots of parallelism and locality
 - VLSI technology enables 100s of ALUs per chip (1000s soon)
 - (in 0.18um 0.1mm² per integer adder, 0.5mm² per FP adder)
- Challenging problems
 - Locality global structures won't work
 - Explicit parallelism ILP won't keep 100 ALUs busy
 - Memory streaming applications don't cache well
- Its time to try some new approaches

Example Register File Organization

- Register files serve two functions:
 - Short term storage for intermediate results
 - Communication between multiple function units
- Global register files don't scale well as N, number of ALUs increases
 - Need more registers to hold more results (grows with N)
 - Need more ports to connect all of the units (grows with N²)

Register Cells are Mostly Switch

Register Architecture for 'wide' Processors

Area of Register Organizations

Delay of Register Organizations

Performance of Register Organizations

Stubs Abstract the Communication Between Operations

A Communication Example

The Imagine Stream Processor

Data Bandwidth Hierarchy

Cluster Architecture

- VLIW organization with shared control
- Local register files provide high data bandwidth

Imagine is a Stream Processor

- Instructions are Load, Store, and Operate
 - operands are streams
 - also Send and Receive for multiple-imagine systems
- Operate performs a compound stream operation
 - read elements from input streams
 - perform a local computation
 - append elements to output streams
 - repeat until input stream is consumed
 - (e.g., triangle transform)
- Order of magnitude less global register bandwidth than a vector processor

Triangle Rendering

Bandwidth Demands

Transform Kernel

References $(per \Delta)$	Stream	Scalar		Vector	
Memory	5.5	117	(21.3)	48	(8.7)
Global RF	48	624	(13.0)	261	(5.4)
Local RF	372	N/A		N/A	

Data Parallelism is easier than ILP

Kernel	1 to 8 Cluster Speedup		
FFT (1024)	6.4		
DCT (8x8)	7.8		
Blockwarp (8x8)	7.2		
Transform (Δ)	8.0		
Harmonic Mean	7.3		

Conventional Approaches to Data-Dependent Conditional Execution

Zero-Cost Conditionals

- Most Approaches to Conditional Operations are Costly
 - Branching control flow dead issue slots on mispredicted branches
 - Predication (SIMD select, masked vectors) large fraction of execution 'opportunities' go idle.
- Conditional Streams
 - append an *element* to an output stream depending on a *case* variable.

Sustainable Performance

Power Comparison

-Source: Web Pages of Intel, TI, and Analog Devices

Power and Performance

A Look Inside an Application Stereo Depth Extraction

- 320x240 8-bit grayscale images
- 30 disparity search
- 220 frames/second
- 12.7 GOPS
- 5.7 GOPS/W

Stereo Depth Extractor

Convolutions

Disparity Search

7x7 Convolve Kernel

Imagine Summary

- Imagine operates on *streams* of records
 - simplifies programming
 - exposes locality and concurrency
- Compound stream operations
 - perform a subroutine on each stream element
 - reduces global register bandwidth
- Bandwidth hierarchy
 - use bandwidth where its inexpensive
 - distributed and hierarchical register organization
- Conditional stream operations
 - sort elements into homogeneous streams
 - avoid predication or speculation

Computer Architecture for the Next Millenium

- Applications and technology are changing
 - media applications process streams of low-precision samples
 - wires dominate gates
- ILP is at the point of diminishing returns
- Tremendous opportunities for new architectures
 - new applications have lots of parallelism and locality
 - modern technology can build chips with 100s of ALUs (32b
 FP) 1000s in the near future
- The challenge is to develop architectures
 - that can harness this potential performance
 - in a way that can be easily programmed
- Stream processing is one approach, there are many others. We need to start exploring them