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The DIVA ProjectThe DIVA Project
http://www.eecs.umich.edu/divahttp://www.eecs.umich.edu/diva

• Researchers
– Chris Weaver (lead), Pat Cassleman, Amit Marathe, Saugata Chatterjee (alum),

Todd Austin, Maher Mneimneh (FV), Fadi Aloul (FV), Karem Sakallah (FV)

• Key technology: Dynamic Verification
– Simple, fast and reliable online checkers that detect and correct system faults

• Benefits we are exploring
– Improved quality and time-to-market through reduced burden of verification
– More reliable designs with high resistance to radiation and noise
– More efficient (or aggressive) circuit technologies via online electrical verification
– Reduced complexity via performance (rather than correctness) focused designs

• Technology demonstration vehicles
– REMORA self-checked microprocessor
– DIVA Demo self-checked crypto-system (using commercial off-the-self parts)
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Talk OverviewTalk Overview
• Verification Challenges
• Dynamic Verification: Seatbelts for Your CPU
• Checker Processor Architecture
• Value-Added Optimizations
• Ongoing Work
• Conclusions
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Correctness As ValueCorrectness As Value
• What do you value most about your computer system?

– Performance?
– Cost?
– Correctness?

• Correctness is uncompromising, all value is predicated on it!
– A correct system may have value
– An incorrect system design will be perceived as worthless

• Correctness disasters
– Intel FDIV bug, failing FP divider resulted in $475 million recall
– MIPS R10000 faltered out of the chute, many early parts recalled
– Transmeta recalled most early Crusoe parts
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Designing Correct SystemsDesigning Correct Systems
• When is a design correct?

∀ starting states (statei, inputsj), next state (statei+1) is correct

• When is a design complete?
– When it is correct

• Employ verification
• Did we build the system right?

– When it meets customers’ needs
• Employ validation
• Did we build the right system?

• Verification generally considered a more difficult task as it must
consider all programs, not just important ones

Design

Implementation

Verification/Validation/Debug

Conception Tape Out Launch

pre-Si post-Si
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The Burden of VerificationThe Burden of Verification
• Immense test space

– Impossible to fully test the system
– For example, 32 regs, 8k caches, 300 pins = 2132396 states
– Conservative estimate, microarchitectural state increases the test space

• Done with respect to ill-defined reference
– What is correct? Often defined by PRM + old designs + guru guidance

• Expensive
– Large fraction of design team dedicated to verification
– Increases time-to-market, often as much as 1-2 years

• High-risk
– Typically only one chance to “get it right”
– Failures can be costly: replacement parts, bad PR, lawsuits, fatalities
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Simulation Based VerificationSimulation Based Verification
• Determines if design is functionally correct at the logic level
• Implemented with co-simulation of “important” test cases

– Mostly before tape out using RTL/logic level simulators

• Differences found at output drive debug
• Process continues until “sufficient” coverage of test space

“important”
test cases

uArch
Model

Reference
Model

(ISA sim)

==

output

output

Test OK?
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Formal VerificationFormal Verification
• Formal verification speeds testing by comparing models

– Compare reference and uArch model using formal methods (e.g., SAT)
– If models shown functionally equivalent, any program renders same result
– Much better coverage than simulation-based verification

• Unfortunately, intractable task for complete modern pipeline
– Problems: imprecise state, microarchitectural state, out-of-order operations
– Machines we build are not functionally equivalent to reference machine!

X

uArch
Model

Reference
Model

(ISA sim)

==

state

state

Always true if
uArch model == Ref model

Identical state?
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Deep Submicron Reliability ChallengesDeep Submicron Reliability Challenges
• More difficult to build robust systems in denser technologies

– Degraded signal quality
• Increased interconnect capacitance results in signal crosstalk
• Reduced supply voltage degrades noise immunity
• Increased current demands (di/dt spikes) create supply voltage noise

– Single event radiation/soft errors (SER)
• Alpha particles (from atomic impurities) and gamma rays (from space)
• Energetic particle strikes destroy charge, may switch small transistors
• Inexpensive shielding solutions unlikely to materialize

– Increased complexity
• More transistors will likely mean greater complexity
• Verification demands and probability of failure will increase
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Motivating ObservationsMotivating Observations
• Speculative execution is fault-tolerant

– Design errors, timing errors, and electrical
faults only manifest as performance divots

– Correct checking mechanism will fix errors

• What if all computation, communication,
control, and progress were speculative?
– Any incorrect computation fixed

• maximally speculative
– Any core fault fixed

• minimally correct

X

PC

always
not taken

stuck-at
fault

branch
predictor

array
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• Core computation, communication, and control validated by checker
– Instructions verified by checker in program order before retirement
– Checker detects and corrects faulty results, restarts core

• Checker relaxes the burden of correctness on the core processor
– Robust checker corrects faults in any core structure not used by checker
– Tolerates core design errors, electrical faults, silicon defects, and failures
– Core only has burden of high accuracy prediction

• Key checker requirements: simple, fast, and reliable

Dynamic Verification: Seatbelts for Your CPUDynamic Verification: Seatbelts for Your CPU

speculative
instructions

in-order
with PC, inst,
inputs, addr

Complex Core Processor Checker Processor

IF ID REN REG

EX/
MEM

SCHEDULER CHK CT
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result

Checker Processor ArchitectureChecker Processor Architecture

IF

ID

CT

OK

Core
Processor
Prediction

Stream

PC

=
inst

PC

inst

EX

=
regs

regs

core PC

core inst

core regs

MEM

=
res/addr

addr

core res/addr/nextPC

result

D-cache

I-cache

RF

WT
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Check ModeCheck Mode

result

IF

ID

CT

OK

Core
Processor
Prediction

Stream

PC

=
inst

inst

EX

=
regs

regs

core PC

core inst

core regs

MEM

=
res/addr

addr

core res/addr/nextPC

result

D-cache

I-cache
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Recovery ModeRecovery Mode

result

IF

ID

CT

PC inst

PC

inst

EX

regs

regs

MEM

res/addr

addr result

D-cache

I-cache

RF
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How Can the Simple Checker Keep Up?How Can the Simple Checker Keep Up?

Slipstream

Redundant Core Advance Core

• Slipstream effects reduce power requirements of trailing car
– Checker processor executes in the core processor slipstream
– fast moving air  ⇒  branch/value predictions and cache prefetches
– Core processor slipstream reduces complexity requirements of checker

• Symbiotic effects produce a higher combined speed
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How Can the Simple Checker Keep Up?How Can the Simple Checker Keep Up?

Slipstream

Simple Checker Complex Core

• Slipstream effects reduce power requirements of trailing car
– Checker processor executes in the core processor slipstream
– fast moving air  ⇒  branch/value predictions and cache prefetches
– Core processor slipstream reduces complexity requirements of checker

• Symbiotic effects produce a higher combined speed
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ld f1,(X)
f4 = f1 * f2 + f3
br f4 < 0, skip
    r8 = r8 + 1

skip: ...

ld f1,(X)
f4 = f1 * f2 + f3
br f4 < 0, skip
    r8 = r8 + 1

skip: ...

Core Processor Execution Checker Execution

ld * + br +
cache miss long operation misprediction

ld

+
*

br
+

ok

ok

ok

ok

ok

Speeding the Checker with Core ComputationSpeeding the Checker with Core Computation

• Checker executes in wake of core
– Leverages non-binding predictions & prefetches

• Virtually no stalls remain to slow checker
– Control hazards resolved during core execution
– Data hazards eliminated by prefetches and input value predictions

• Complex microarchitectural structures only necessary in core

Advanced Computer Architecture Lab
University of Michigan

Building Buggy Chips - That Work!
Todd Austin

Checker Performance ImpactsChecker Performance Impacts
• Checker throughput bounds core IPC

– Only cache misses stall checker pipeline
– Core warms cache, leaving few stalls

• Checker latency stalls retirement
– Stalls decode when speculative state

buffers fill (LSQ, ROB)
– Stalled instructions mostly nuked!

• Storage hazards stall core progress
– Checker may stall core if it lacks resources

• Faults flush core to recover state
– Small impact if faults are infrequent
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Verifying the Checker ProcessorVerifying the Checker Processor

• Simple checker permits complete functional verification
– In-order blocking pipelines (trivial scheduler, no rename/reorder/commit)
– No “internal” non-architected state

• Fully verified design using Sakallah’s GRASP SAT-solver [DAC01]
– For Alpha integer ISA without exceptions
– With small register file and memory, and small data types

X

Checker
Model

Reference
Model

(ISA sim)

==

output

output

ϕUnspecified Core
Predictions

Always true if
uArch model == Ref model

Identical state?
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Value-Added OptimizationsValue-Added Optimizations
• Fault tolerant and deeply speculative core processor permits

many fundamental assumptions of system design to be revisited!
– Beta-Release Processors
– Low-Cost SER  and Noise Protection
– Fully Testable Microprocessor Designs
– Self-tuned Digital Systems
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Beta Launch Step

Launch
Checked Processor Verification

Traditional Verification
Beta-Release ProcessorsBeta-Release Processors

• Traditional verification stalls
launch until debug complete

• Checked processor verification
could overlap with launch
– Beta-release when checker works
– Launch when performance stable
– Step as needed without recalls

Tape
Out

Tape Out
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Low-Cost SER and Noise ProtectionLow-Cost SER and Noise Protection

• Only need to address transients in checker
– Checker detects and corrects noise-related faults in core
– Core processor designed without regard to strikes (e.g., no ECC…)

• Recycle checker inputs suspected core fault
– If no error on third execution, transient strike in checker processor
– If error on third execution, core processor fault occurred (e.g., SER, design error)

• Protect critical checker control with triple-modular redundant (TMR) logic
– TMR on simple control results in only 1.3% larger checker (synthesized design)

IF ID REN REG SCHEDULER

EX/
MEM CHK

IF

CHK
ID/REG

CHK
EX

CT

CHK
MEM

CTL 3rd opinion

CTL

CTL
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Fully Testable Microprocessor DesignsFully Testable Microprocessor Designs
• Checker structure facilitates

manufacturing tests
– All checker inputs exposed

to built-in-self-test logic
– Checker provides built-in

test signature compression

• Checker can be fully tested
with small BIST module
– less than 0.5% area increase

• Reduces burden of testing
on core
– Missed core defects corrected
– Checker acts as core tester

IF

ID

OK

PC

=
inst

PC

inst

EX

=
regs

regs

MEM

=
res/addr

addr result

D-cache

I-cache

RF

CT

WT

result

OKresult

BIST ROM and Control
Defect
Free?
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Self-Tuned Digital SystemsSelf-Tuned Digital Systems
• Electrical verification determines if implementation is robust

– Design must be functionally correctly for all valid (T,V,p,f)
– Design must meet mean-time-to-failure goals (via power/current analysis)

• Verify functional correctness at slow corner (Tmax,Vmin,pslow,fmax)

• Verify power/current characteristics at fast corner (Tmin,Vmax,pfast,fmax)

• Additional margin on clock used to avoid any electrical faults

Temp

max

min

Voltage

max

min

Frequency

max

min

design margin

Process

fast

slow
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Self-Tuned Digital SystemsSelf-Tuned Digital Systems

• Modern logic design is too conservative for dynamic verification
– Unnecessary design margins consume power and performance
– System may not be operating at slow corner

• Checker enables a self-tuned clock/voltage strategy
– Push clock, drop voltage until desired power-performance characteristics
– If system fails, reliable checker will correct error, notify control system
– Reclaims design margins plus any temperature and voltage margins

Temp

max

min

Voltage

max

min

Frequency

max

min

worse-case margin

Slow corner
Actual operating conditions

Tuned
Core

Checker

Clock/Voltage
Generator

insts to verify

clk

Vdd

clk’

Vdd’

temperature error rate
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Ongoing Work: DIVAlutionOngoing Work: DIVAlution
• Goal: transfer dynamic verification technology to industry
• Approach

– Developed lower-impact dynamic verification techniques (baby steps)
– Build real technology demonstrations (hands-on demos)

• Technology demonstration vehicles
– REMORA self-checked processor

• 4-wide checker, 0.5k I-cache, 4k D-cache plus simple core
• Unpipelined checker prototype: 325MHz, 12mm2, 941mW  in 0.25um

– DIVA Demo self-checked crypto-processor
• Leverages built-in CRC mechanism to implement low-cost checker
• Built with commercial-off-the-shelf parts (dual StrongARMs)
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ConclusionsConclusions
• Dynamic verification makes a core processor fully speculative

– Maximally speculative, minimally correct design approach
– Core processor tolerates any permanent or transient error
– Core processor supports any form of speculation

• Checker processor design is simple, reliable, and fast
– High-quality prediction stream keeps checker design simple
– Simple latency-insensitive design permits robust implementations
– Core processor eliminates hazards that could slow checker pipeline

• Pushing speculation to the limit may yield many benefits
– Beta-release processors could overlap verification with launch
– Checker processor provides single event radiation (SER) protection
– Highly testable checker reduced manufacturing test burden on core logic
– Fault-tolerant core can leverage aggressive circuits (self-tuned systems)
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BackupsBackups
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RREMORAEMORA: Physical Checker Design: Physical Checker Design
• Physical checker design effort underway

– Alpha integer ISA subset

– 4-wide checker, 0.5k I-cache, 4k D-cache
– Synthesized design (using Synopsys tools)

• Physical design estimates
– 325 MHz clock speed
– 12 mm2 total area in 0.25um technology
– 941 mW worst-case power

• Design to be fabricated also includes
– Pipelined checker design
– Simple core pipeline
– Clock/voltage tuning infrastructure

– Extensive BIST support

205 mm2

(in 0.25um)

Alpha 21264

REMORA
Checker

data
cache

inst
cache

pipe-
line

BIST

12 mm2

(in 0.25um)
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-0.4% Best: -3.2%
Worst: 0.2%

Slowdowns

RF

8 ports

L0 Data
4 KB

4 ports

L0 Inst
0.5KB
2 ports

RF

8 ports

L1 D-cache

64 KB, 2 ports

L1 I-cache

64 KB, 1 ports

L2 Unified Cache

256 KB, 1 port

IF ID REN REG

EX/
MEM

SCHEDULER CHK CT

Core Checker

Optimized System ArchitectureOptimized System Architecture
• Performance impacts

eliminated
– Checker RF allows core commit
– No storage hazards
– Few checker cache misses
– Less expensive core storage

architecture (same as baseline)

• Core cache failures affect
checker
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Fully Decoupled System ArchitectureFully Decoupled System Architecture
• Checker fully decoupled

– Core L1 caches may fail
– All L2 writebacks from checker
– Core caches flushed on fault
– Core accesses and misses

warm up checker caches

• Eliminates common mode
core cache failures
– But, generates more L2 traffic
– Further optimizations possible

1.2% Best: 0%
Worst: 6.7%

Slowdowns

RF

8 ports

L1 Data
4 KB

4 ports

L1 Inst
0.5KB
2 ports

RF

8 ports

L1 D-cache

64 KB, 2 ports

L1 I-cache

64 KB, 1 ports

L2 Unified Cache

256 KB, 1 port

IF ID REN REG

EX/
MEM

SCHEDULER CHK CT

Core Checker

prefetch
stream
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Deriving Dynamic VerificationDeriving Dynamic Verification

IF ID REN SCHEDULERREG CT

EX/
MEM

YFPP
99.9998% accurate

Prediction
stream
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Deriving Dynamic VerificationDeriving Dynamic Verification

IF ID REN REG CTEX
YFPP

99.9998% accurate

Prediction
stream

MEM
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Deriving Dynamic VerificationDeriving Dynamic Verification

IF
ID/

REG
CT

YFPP
99.9998% accurate

Prediction
stream

EX MEM
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Deriving Dynamic VerificationDeriving Dynamic Verification

CHK
IF

CHK
ID/REG

CT
YFPP

99.9998% accurate

Prediction
stream

OK?CHK
EX

CHK
MEM
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Deriving Dynamic VerificationDeriving Dynamic Verification
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Deriving Dynamic VerificationDeriving Dynamic Verification
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Deriving Dynamic VerificationDeriving Dynamic Verification
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Deriving Dynamic VerificationDeriving Dynamic Verification

Prediction
stream

IF ID REN REG SCHEDULER

EX/
MEM

CHK
IF

CHK
ID/REG

CHK
EX

CT

CHK
MEM

OK?

WT


