Fast Tree-Structured Computations and Memory Hierarchies

Siddhartha Chatterjee
Department of Computer Science
The University of North Carolina at Chapel Hill
sc@cs.unc.edu

http://www.cs.unc.edu/Research/TUNE/
Collaborators

- UNC Chapel Hill
 - Prof. Sandeep Sen
 - Vibhor Jain
 - Shyam Mundhra
 - Sriram Sellappa
 - Erin Parker
 - Tom Bodenheimer

- Duke
 - Prof. Alvy Lebeck
 - Mithuna Thottethodi

- U Michigan (Math)
 - Prof. Phil Hanlon
Class of Target Computations

Dense linear algebra

Hierarchical tree-structured (HTS) algorithms

Sparse linear algebra
Application Examples

- N-body simulations
- Linear algebra
 - Matrix products
 - Eigenvalues
 - Fast transforms
 - Iterative methods for PDEs
- Radiosity/occlusion
- Computational geometry
- Others?
A Simple Example: Matrix Transposition

- Transpose an $n \times n$ matrix in-place
 - A structured permutation
 - Occurs as a sub-step of multi-dimensional FFT

- Seems like a simple enough computation
 - Very little spatial locality
 - No temporal locality (reuse)
 - Tricky to implement efficiently for large n
Matrix Transposition in More Detail

- Pairs of elements of the same color in array index space are exchanged
 - Elements \((i,j)\) and \((j,i)\)
- Assuming row-major (or column-major) array layout
 - Contents of memory location \(ni+j\) and \(nj+i\) are exchanged
- No temporal locality
 - Each array element is accessed at most once
- Poor spatial locality
 - Exchanging \((i,j)\) with \((j,i)\)
 - Exchanging \((i,j+1)\) with \((j+1,i)\)
 - \((i,j)\) and \((i,j+1)\) are adjacent in data cache and TLB view
 - How about \((j,i)\) and \((j+1,i)\)?
- Transposition is a *Murphy permutation* [Carter-Gatlin 1999]
Fast Matrix Multiplication

Operation Count

- 7 recursive products vs 8 recursive products
- Smaller operation count (O(n^{\log_2 7}) vs O(n^3))

\[
\begin{array}{c|c}
C1 & C2 \\
\hline
C3 & C4 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c}
A1 & A2 & \cdot & B1 & B2 \\
\hline
A3 & A4 & & B3 & B4 \\
\end{array}
\]

\[
P1 = (A1 + A4) \cdot (B1 + B4) = \begin{array}{c} \text{C1} \end{array} = P1 + P2
\]

\[
P2 = (A2 + A4) \cdot (B1) = \begin{array}{c} \text{C2} \end{array} = P3 + P4
\]

\[
P3 = (A1) \cdot (B3 - B4) = \begin{array}{c} \text{C3} \end{array} = P5 + P6
\]

\[
P4 = (A4) \cdot (B2 - B1) = \begin{array}{c} \text{C4} \end{array} = P7 + P8
\]

\[
P5 = (A1 + A3) \cdot (B4) = \begin{array}{c} \text{P5} \end{array} = P1 + P2
\]

\[
P6 = (A2 - A1) \cdot (B1 + B3) = \begin{array}{c} \text{P6} \end{array} = P3 + P4
\]

\[
P7 = (A3 - A4) \cdot (B2 + B4) = \begin{array}{c} \text{P7} \end{array} = P5 + P6
\]

\[
P8 = A4 \cdot B4 = \begin{array}{c} \text{P8} \end{array} = P1 + P2
\]

\[\text{C1} = P1 + P2
\]

\[\text{C2} = P3 + P4
\]

\[\text{C3} = P5 + P6
\]

\[\text{C4} = P7 + P8
\]
Fast Matrix Multiplication
Memory Access

Standard Algorithm

Strassen’s Algorithm

- Dependence of elements of C on elements of A (for 8x8 matrix)
 - Standard algorithm: C[i,j] depends on A[i,0:7]
 - Strassen’s algorithm: C[i,j] depends on A[?,?]
What Comprises an Algorithm?

- The algebraic **computation** being performed
 - This determines the set of operations to be performed and the partial order (flow dependences) among them

- The **schedule** of operations
 - This is a linear order (consistent with the dependences) according to which we encode the operations
 - Program transformations such as loop tiling can change this order

- The **layout** of data structures

- Interactions between schedule and layout
 - Each operation touches data, so the schedule determines the *logical* access sequence
 - The layout applied to the logical access sequence determines the *physical* access sequence, which determines memory system performance
Performance “Pressure Points” (1)

- **Algorithm**
 - Biggest wins can come from devising a better algorithm
 - Be aware of constants as well as growth rates

- **Processor**
 - Instruction count
 - Memory reference count
 - Instruction scheduling
Performance “Pressure Points” (2)

- **Data cache**
 - Limited associativity can significantly degrade running time
 - Miss latency affects crossover point between algorithmic alternatives

- **Translation Lookaside Buffer (TLB)**
 - Limited number of entries can lead to thrashing

- **Registers**
 - Register tiling can help re-order the data transfers and ameliorate the effects of limited associativity in data cache
 - Needs compiler assistance

- **Array layout function**
 - Changing the mapping from array index space to memory address space can benefit TLB and data cache
Three Questions for Today’s Talk

- How can we model a multi-level memory hierarchy in a realistic and predictive manner?
- What alternative data organizations are beneficial for multi-level memory hierarchies?
- How well do such ideas work in practice?
Theoretical Models for Memory Hierarchies
Theoretical Memory Models

- **Model 1: RAM model** [Shepherdson-Sturgis 1963]
 - All memory accesses have unit cost
 - **Performance metric:** Total work

- **Model 2: I/O model** [Aggarwal-Vitter 1988]
 - Two-level model: slow and fast memory, block transfer
 - Does not model limited associativity
 - **Performance metric:** Number of transfers between memory levels

- **Model 3: Cache-oblivious model** [Frigo et al. 1999]
 - Does not use cache parameters in algorithm design, only in analysis
 - Models fully-associative “tall” cache
 - **Performance metric:** (Total work, memory activity)

- **Model 4: Cache model** [Sen-Chatterjee 2000]
 - Derived starting from I/O model; models limited associativity
 - Emulation theorem
 - **Performance metric:** Total work, including memory activity
I/O Model

- **External memory** (slow, large)
- **Internal memory** (fast, small)

- **Model parameters**
 - M: size of internal memory
 - B: block size for I/O transfers
 - n: input size

- Computations can be performed only on elements present in internal memory
- Fully-associative mapping between external and internal memory blocks

- **Goal of algorithm design**: Minimize number of I/O operations
Cache Model

Main memory (slow, large)

Cache memory (fast, small)

- Model parameters
 - M: size of cache memory
 - B: block size for transfers between cache and main memory
 - n: input size
 - L: cache miss penalty (normalized)

- Computations can be performed only on elements present in cache
- Fixed mapping between cache blocks and memory blocks
- No explicit control on cache locations
- Goal of algorithm design: Minimize (# steps + $L \cdot$# of block transfers)
Emulation Theorem [Sen-Chatterjee 2000]

If an algorithm A in the I/O model uses T block transfers and I processing time, then the algorithm can be executed in the cache model in $O(I+(L+B) \cdot T)$ steps. The memory requirement is an additional $M/B+2$ blocks beyond that of the algorithm in the I/O model.

A block-efficient I/O algorithm can be emulated in $O(I+L \cdot T)$ steps.

- **Key idea behind emulation**: Careful copying of data structures into an additional buffer of size M over which we have explicit control.
- Note that this causes extra memory references, but reduces the number of misses.
 - In case of fast algorithm, might not be able to amortize copying cost over multiple uses of block.
Alternative Data Layouts
Layout and Cache Behavior

- A tile is not contiguous in memory with row/column-major layout
- Multi-word line size can cause cache capacity to be exceeded
- Fixed mapping from memory to cache causes conflict misses
Making Tiles Contiguous

- Elements of a quadrant are contiguous
- Recursive layout
- Elements of a tile are contiguous
- No conflict misses in cache
- Better behavior expected in multi-level hierarchies
 - L2 cache
 - TLB
Array Layout Functions

- **Required characteristics**
 - One-to-one: Each index point \((r,c)\) should map to a distinct location \(f\)
 - Onto/Dense: “Almost each” \(f\) should correspond to some \((r,c)\)

- **Desired characteristics**
 - Cheap address computation
 - Incremental address computation
 - *e.g.*, \(L(r+1,c) - n = L(r,c) = L(r,c+1) - 1\) for row-major layout

- **Questions for non-standard layouts**
 - How much does it enhance locality/performance?
 - What is the overhead of address computation?
 - Can addresses be computed incrementally?
 - What is the cost of **format conversion**?
Linear Layout Functions

- Array A with m rows and n columns
- \(L_{RM}(r,c;m,n) = n \cdot r + c \)
- \(L_{CM}(r,c;m,n) = m \cdot c + r \)
- These are canonical layouts
 - A d-dimensional array has d! canonical layouts
 - But language designer chooses and fixes one layout
- Canonical layouts favor one array axis, and dilate other axes
 - This can interact badly with caches and TLBs
- Can we do better with non-linear layouts?
Non-linear Layout Functions

- Different locality properties
- Different inclusion properties
- Different addressing costs

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

4-D blocked

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

Morton order

<table>
<thead>
<tr>
<th>0</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

Hilbert order
4-D Blocked Layout

- Point \((r, c)\) in matrix, tiles are \(p \times q\)
- Map to four-dimensional space
 - Tile row \(t_r\)
 - Tile column \(t_c\)
 - Row offset \(o_r\)
 - Column offset \(o_c\)
- Mapping \(R\) is nonlinear
 - Integer quotient and remainder
- Lay out each tile contiguously in some canonical order
- Order tiles lexicographically by \((t_r, t_c)\) co-ordinates
- Final layout is sum of two components
Recursive Layouts

- Point \((r,c)\) in matrix, tiles are \(p^*q\)

- Mapping \(R\) is nonlinear
 > Integer quotient and remainder

- Lay out each tile contiguously in some **canonical** order

- Order tiles **recursively** by \((t_r, t_c)\) co-ordinates
 > Also called **quadtree** or **space-filling curve** orderings

- Final layout is sum of two components
Single-Orientation Layouts

\[S(r,c) \]

Interleave Bits

\[B \]

\[B^{-1} \]
Quad-Orientation Layouts

Hilbert

State Machine

B^{-1}

$S(r,c)$
Morton Order Layout

```c
int offset(int r, int c, int n, int d, int k) {
    int b = 0;
    while (d > 0) {
        n /= 2;
        d--;
        b = 4*b+(r<n?(c<n?0:1):(c<n?2:3));
        r = r<n?r:r-n;
        c = c<n?c:c-n;
    }
    return (b*k+c)*k+r;
}
```

- **Code above computes position of element (r,c) of n*n matrix A**
 - d levels of subdivision
 - k*k tiles, column-major layout
- **This is expensive!**
 - Exploit incremental address calculation capability within single tile
 - “Embed” address calculation into control structure of algorithm
Appropriate Control Structures

\[C = A \cdot B \]

\[
\begin{bmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{bmatrix} =
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix} \cdot
\begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
\]

\[
= \begin{bmatrix}
A_{11} \cdot B_{11} + A_{12} \cdot B_{21} & A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\
A_{21} \cdot B_{11} + A_{22} \cdot B_{21} & A_{21} \cdot B_{12} + A_{22} \cdot B_{22}
\end{bmatrix}
\]

```
up_mm(A, B, C) {
    if (leaf_level) {
        dgemm(A, B, C);
        return;
    }
    up_mm(A11, B11, C11);
    dn_mm(A11, B12, C12);
    up_mm(A21, B12, C22);
    dn_mm(A21, B11, C21);
    up_mm(A22, B21, C21);
    dn_mm(A22, B22, C22);
    up_mm(A12, B22, C12);
    dn_mm(A12, B21, C11);
}
```

```
dn_mm(A, B, C) {
    if (leaf_level) {
        dgemm(A, B, C);
        return;
    }
    dn_mm(A12, B21, C11);
    up_mm(A12, B22, C12);
    dn_mm(A12, B22, C22);
    up_mm(A22, B22, C22);
    dn_mm(A22, B21, C21);
    up_mm(A22, B11, C21);
    dn_mm(A21, B12, C22);
    up_mm(A21, B12, C12);
    dn_mm(A11, B12, C12);
    up_mm(A11, B11, C11);
}
```
Evaluation
Nonlinear Layouts: Absolute Performance

Graph 1: RECMXM
- X-axis: Problem size (elements)
- Y-axis: Execution time, normalized w.r.t. native BLAS dgemm
- Lines: CM/Ultra 10 and MO/Ultra 10

Graph 2: STRASSEN
- X-axis: Problem size (elements)
- Y-axis: Normalized execution time w.r.t. native BLAS dgemm
- Lines: MO/Ultra 10, MO/Ultra 60, MO/Miata
Nonlinear Layouts: Performance Sensitivity

...to choice of tile size for a fixed problem size

...to variations in problem size for a fixed tile size
Algorithm 1: RAM Model

```
for (i = 0; i < n; i++) {
    for (j = i+1; j < n; j++) {
        tmp = A[i][j];
        A[i][j] = A[j][i];
        A[j][i] = tmp;
    }
}
```

- **Optimal algorithm**
 - Statements executed $n \cdot (n-1)/2$ times
 - Each statement costs constant number of operations
 - Complexity of $\Theta(n^2)$
 - Optimal up to constant factors

- **Problem:** Almost every loop iteration has misses
 - Catastrophic conflict misses in data cache
 - Thrashing in TLB
Algorithm 2: Transposing with Merge [Floyd 1972]
Algorithm 3: “Half-Copying”
Algorithm 4: “Full-Copying”
Algorithm 5: Cache-Oblivious

- **Key idea**
 - Use divide-and-conquer to divide problems into smaller sub-problems
 - The sub-problems will fit in cache once they are small enough

- **Cache parameters not required in algorithm design stage, only for algorithm analysis**

- **Uses a different schedule of operations**
Algorithm 6: Recursive Layout

```
tr1(int src, int num)
{
  if (num==1) {
    /* base case */
  }
  else {
    tr1(NW(src),num/4);
    tr2(NE(src),SW(src),num/4);
    tr1(SE(src),num/4);
  }
}

tr2(int src, int dst, int num)
{
  if (num==1) {
    /* base case */
  }
  else {
    tr2(NW(src),NW(dst),num/4);
    tr2(NE(src),SW(dst),num/4);
    tr2(SW(src),NE(dst),num/4);
    tr2(SE(src),SE(dst),num/4);
  }
}
```
Experimental Platform

- 300 MHz UltraSPARC-II
- Memory architecture
 - L1 data cache: direct-mapped, 32-byte blocks, 16KB capacity
 - L2 data cache: direct-mapped, 64-byte blocks, 2MB capacity
 - RAM: 512MB
 - VM page size: 8KB
 - Data TLB: fully associative, 64 entries
- Operating system: SunOS 5.6
- Compiler: SUN’s Workshop Compilers 4.2
Comparative Performance of Algorithms

![Graph showing the comparative performance of different algorithms with block size = 64. The x-axis represents the log of the problem size, and the y-axis represents the running time (seconds). The graph includes lines for six algorithms, each with a different color and symbol, indicating their performance across different sizes of the problem.]
Memory System Behavior ($n = 2048, b = 64$)

- **Data references**
 - Algorithm 1
 - Algorithm 2
 - Algorithm 3
 - Algorithm 4
 - Algorithm 5
 - Algorithm 6

- **L1 misses**
 - Algorithm 1
 - Algorithm 2
 - Algorithm 3
 - Algorithm 4
 - Algorithm 5
 - Algorithm 6

- **TLB misses**
 - Algorithm 1
 - Algorithm 2
 - Algorithm 3
 - Algorithm 4
 - Algorithm 5
 - Algorithm 6
Related Work

- Mathematics
 - Peano (1890), Hilbert (1891)
 - Lebesgue

- Libraries
 - PhiPACK (Berkeley)
 - ATLAS (Tennessee)
 - FFTW (MIT)
 - Matrix++ (UT Austin)

- Algorithms
 - Frens/Wise (Indiana)
 - I/O algorithms (Duke)
 - Leiserson (MIT)
 - Gustavson (IBM Research)

- Compilers
 - Iteration space tiling
 - Hierarchical tiling (UCSD)
 - Shackling (Cornell)
 - Lam/Rothberg/Wolf (Stanford)
 - Coleman/McKinley (UMass)
 - Rivera/Tseng (Maryland)
 - Cache Miss Equations (Princeton)
 - Cierniak/Li (Rochester)
Future Directions

- Application to more problems
 - Wavelet-based computations
 - JPEG 2000

- Analytical modeling of memory hierarchy behavior for non-linear layouts
 - We have a solution technique
 - Applied to recursive matrix multiplication
 - Also works for set-associative caches

http://www.cs.unc.edu/Research/TUNE/