Multi-Core Microprocessor Chips: Motivation & Challenges

Dileep Bhandarkar, Ph. D.

Architect at Large Digital Enterprise Group Intel Corporation

May 2006

Copyright © 2006 Intel Corporation.

Intel[®] Higher Education Program 2006 Intel Distinguished Lecture

Agenda

Semiconductor Technology Evolution Design Challenges Why Multi-Core Processor Chips? 0 Power/Performance Trade-Offs • CMP Directions Beyond CMP Summary

©2006, Intel Corporation Intel, the Intel logo, Pentium, Itanium and Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countrie *Other names and brands may be claimed as the property of others www.intel.com/education 2006 Intel Distin

Intel only: On-time "2-year-cycle"

180nm 130nm 90nm 65nm 45nm Wafer Size (mm): 200/300 300 300 300 200 1999 2005 2007 1st Production: 2001 2003 Transistors: SiG SiGe Interconnects: 100nm L_G 50nm L_G 70nm L_G 35nm L_G **Details** CoSi₂ CoSi₂ NiSi NiSi **Coming! Strain Si Strain Si 8 Cu 6 AI 6** Cu **7** Cu

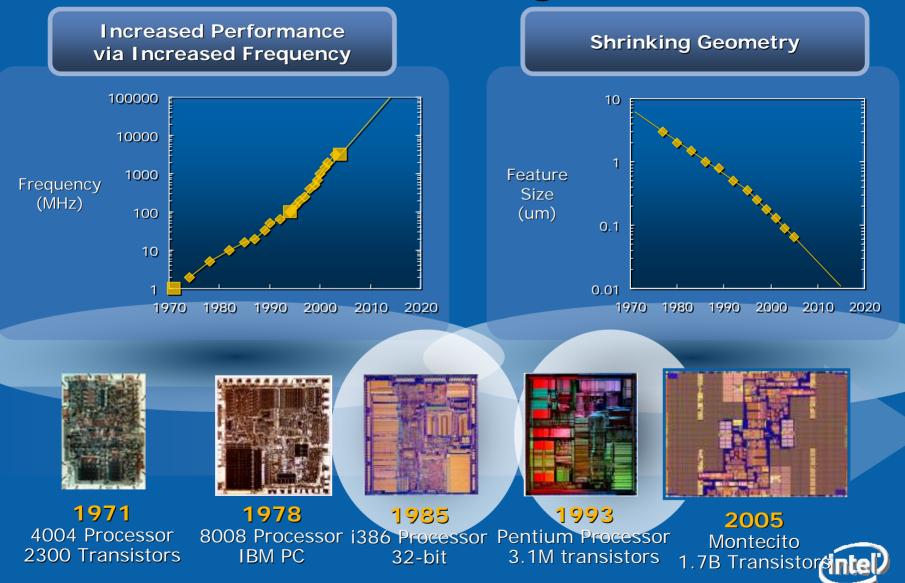
SiOF

Low-k

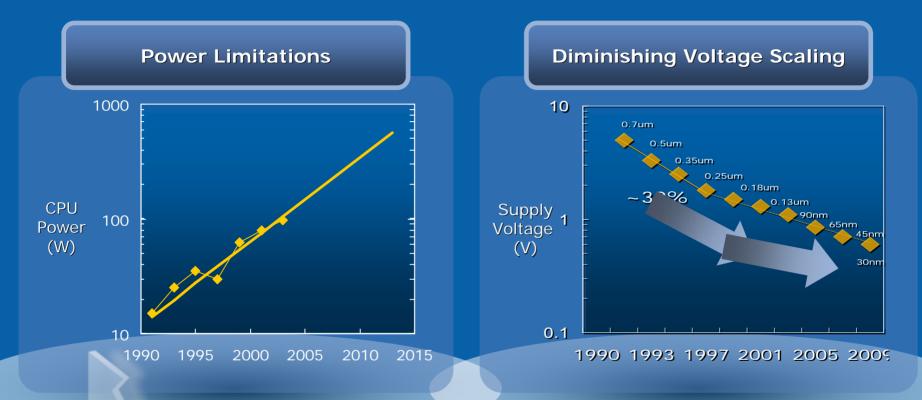
Low-k

SiOF

45 nm Logic Process on Track for Delivery in 2007


Moore's Law continues!

Intel continues to develop a new technology generation every 2 years


Intel 11th EMEA Academic Forum

Historical Driving Forces

Intel[®] Higher Education Program

The Challenges

Power = Capacitance x Voltage² x Frequency also Power ~ Voltage³

Agenda

Semiconductor Technology Evolution Design Challenges Why Multi-Core Processor Chips? Power/Performance Trade-Offs • CMP Directions Beyond CMP Summary

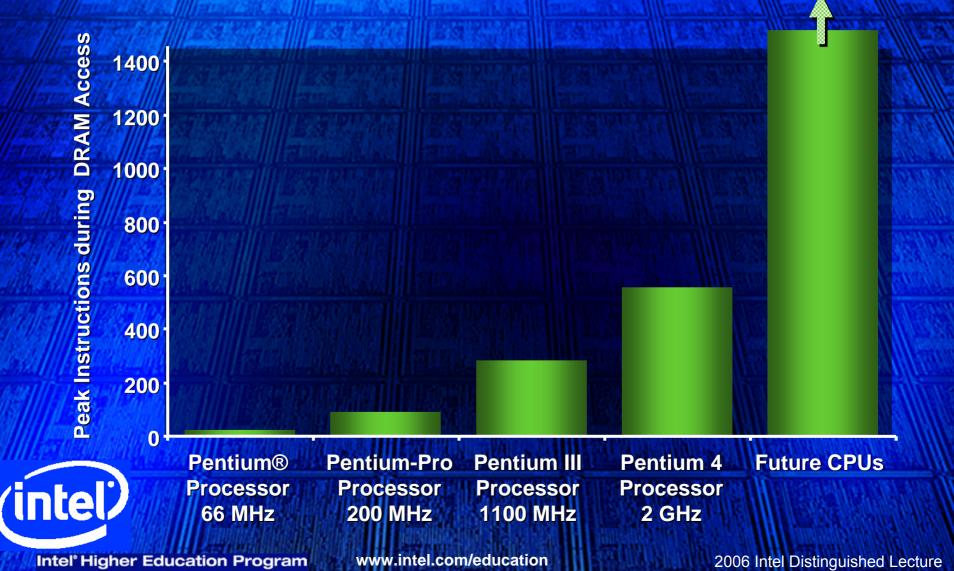
©2005, Intel Corporation

Intel, the Intel logo, Pentium, Itanium and Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries *Other names and brands may be claimed as the property of others

Intel[®] Higher Education Program

www.intel.com/education

Design Challenges


- Memory latency not scaling as fast as processor speed
- Power growing non-linearly with single thread performance
- Designer productivity lagging design complexity
- Ability to validate and test complex design
- Keeping up with new process technology every two years

Intel[®] Higher Education Program

www.intel.com/education

Long Latency DRAM Accesses: Needs Latency Tolerant Techniques

DRAM Latency Tolerance

Continue building even larger caches Every semiconductor process generation provides opportunity to double cache size Cache becomes larger part of die Hide multiple threads of execution behind memory latency Intel implemented simultaneous multithreading in 2000 Implement multi-core products as Moore's Law allows

Intel[®] Higher Education Program

www.intel.com/education

Agenda

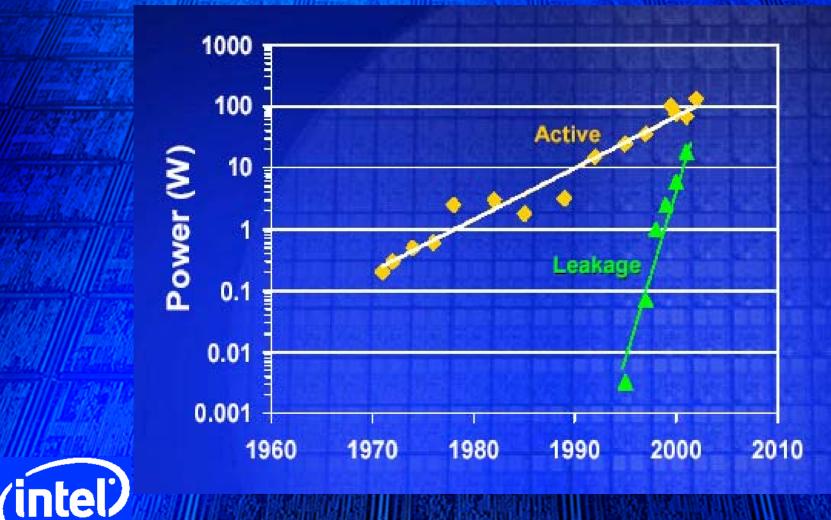
Semiconductor Technology Evolution Design Challenges Why Multi-Core Processor Chips? 0 Power/Performance Trade-Offs CMP Directions Beyond CMP Summary

©2005, Intel Corporation

Intel, the Intel logo, Pentium, Itanium and Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries *Other names and brands may be claimed as the property of others

Intel[®] Higher Education Program

www.intel.com/education


Situational Analysis

- With Each Process Generation transistor density doubles
 - Frequency has increased by ~1.5X; ~1.3x in future
 - Vcc has scaled by about ~0.8x; ~0.9x in future
 - Capacitance has scaled by 0.7x
 - Total power may not scale down due to increased leakage
- Instruction Level Parallelism harder to find
- Increasing single-stream performance often requires non-linear increase in design complexity
- Many server applications are inherently parallel
- Parallelism exists in multimedia applications
 Multi-tasking usage models becoming popular

Intel[®] Higher Education Program

www.intel.com/education

Processor Power

Intel[®] Higher Education Program

www.intel.com/education

Design Complexity and Productivity factors

- Huge transistor budgets stress ability to design and verify complex chips
- Multi-core fits well with increasing transistor budgets
- Multi-core design addresses density/designer gap

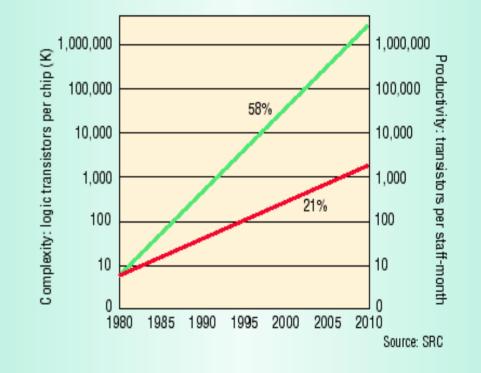


Figure 2. Design complexity and designer productivity. Since 1980, the design gap between growth in chip complexity and productivity growth in logic design tools has widened each year.

Intel[®] Higher Education Program

inte

www.intel.com/education

Agenda

Semiconductor Technology Evolution Design Challenges Why Multi-Core Processor Chips? • Power/Performance Trade-Offs CMP Directions Beyond CMP Summary

©2005, Intel Corporation Intel, the Intel logo, Pentium, Itanium and Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countrie *Other names and brands may be claimed as the property of others www.intel.com/education 2006 Intel Distin

Iron Law of Performance Execution Time is the product of – Path Length Cycles Per Instruction (CPI) - Cycle Time • CPI is the sum of – infinite-cache core cpi – miss rate * effective memory latency Bad (good) news is that performance does not scale up (down) linearly with frequency

Intel[®] Higher Education Program

www.intel.com/education

The Magic of Voltage Scaling

Power = Capacitance * Voltage² * Frequency Frequency α Voltage in region of interest Power increases as the cube of Frequency Good news is that voltage scaling works 10% reduction in voltage yields – 10% reduction in frequency 30% reduction in power – less than 10% reduction in performance

Intel[®] Higher Education Program

www.intel.com/education

Simple Dual Core Example

- Assume Single Core processor at 100W
 80W for core, 20W for cache and I/O
 - 50% die are is core
- Dual core within same power envelop
 - -20W for I/O and cache
 - 40W per core
 - Die size increases by 50%
 - Reduce voltage by 21% to reduce core power to 40W
 - Frequency reduces by ~20%
 - Single thread perf reduces by ~15%
 - Throughput increases by 70-80%

Intel[®] Higher Education Program

(inte

www.intel.com/education

Possible Improvements

- Develop new power efficient core
 - E.g. extensive clock gating
 - Big power savings with little or no performance loss
- Design a smaller core with lower performance
 - Area and power savings much greater than performance loss
 - Use larger number of cores
- Adjust frequency and power of each core with load factor
 - Inactive cores can be put in sleep mode
 - Maintain overall die power constant

Intel[®] Higher Education Program

(intel

www.intel.com/education

A New Era...

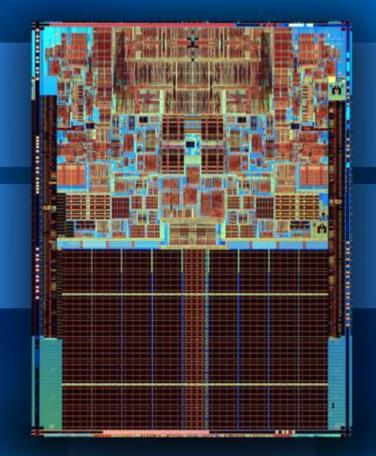
THE NEW

THE OLD

Performance Equals Frequency

Unconstrained Power

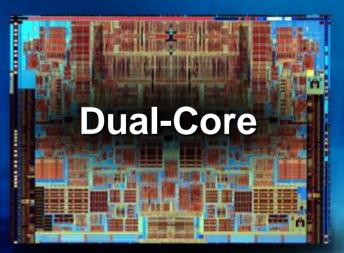
Voltage Scaling


Performance Equals IPC Multi-Core Power Efficiency Microarchitecture Advancements

Intel Core Micro-architecture Five Key Innovations

Intel[®] Wide Dynamic Execution

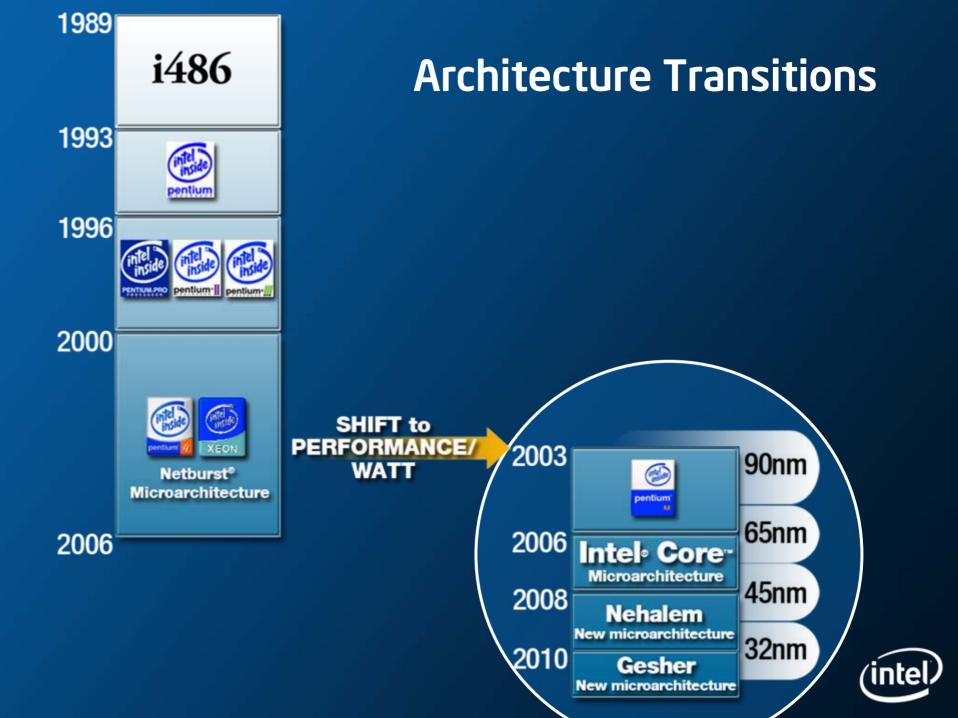
Intel[®] Advanced Digital Media Boost

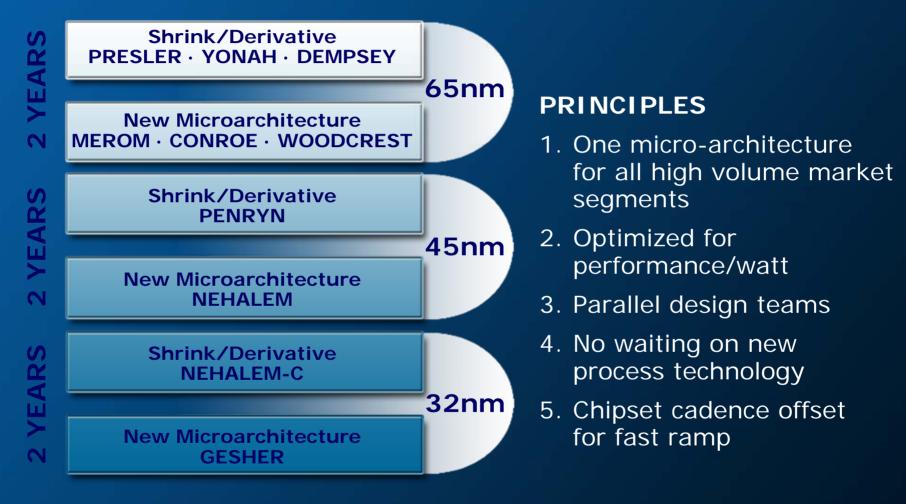


Intel[®] Intelligent Power Capability

Intel[®] Smart Memory Access

Intel[®] Advanced Smart Cache


Multi-Core Trajectory


2H 2006

1H 2007

Quad-Core

Microprocessor Design Model

OBJECTIVE: Sustained Technology Leadership

Agenda

Semiconductor Technology Evolution Design Challenges Why Multi-Core Processor Chips? Power/Performance Trade-Offs CMP Directions Beyond CMP Summary

©2005, Intel Corporation

Intel, the Intel logo, Pentium, Itanium and Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries *Other names and brands may be claimed as the property of others

Intel[®] Higher Education Program

www.intel.com/education

Possible Evolution

- Transistor density doubles with each process generation
- New generation enables complex new core
- Possible alternative design point
 - Double the cache capacity in same area
 - Double the number of processor cores
 - Frequency improves with process technology

	Core	Core	Core		ero2 Core	eroD eroD	
	Cache	2 x C	ache		4 x Cache		
Intel [®] Hig	90 nm gher Education Program	65 www.intel.com/	nm /education	all trans	in the start .	nm D6 Intel Distingu	ished Lectur

ire

Ramping Multi-core Everywhere

	2005	2006*	2007*					
Desktop Mainstream/Performance	Shipping	>70%	>90%	Desktop Client				
Mobile Mainstream/Performance	Shipping	>70%	>90%	Mobile Client				
Server	Shipping	>85%	~100%	Server & Workstation				
* Data is projected run rate exiting the year. Source: Intel								
Expect to ship >60 million multi-core processors by end of 2006								

All products and dates are preliminary and subject to change without notice.

CMP Challenges

- How much Thread Level Parallelism is there in most workloads?
- Ability to generate code with lots of threads & performance scaling
- Thread synchronization
- Operating systems for parallel machines
- Single thread performance tradeoff
- Power limitations
- On-chip interconnect/cache infrastructure
 Memory and I/O bandwidth required

Intel[®] Higher Education Program

www.intel.com/education

Intel's Software Tools and Support

Intel[®] Higher Education Program

www.intel.com/education

How Many Cores?

- Where does the doubling stop?
 Driven by software issues
 Today Microsoft Windows supports only 64 threads!
 How many applications scale to 64 threads?
- How well does performance scale with thread count?

Intel[®] Higher Education Program

www.intel.com/education

Agenda

Semiconductor Technology Evolution Design Challenges Why Multi-Core Processor Chips? Power/Performance Trade-Offs • CMP Directions Beyond CMP Summary

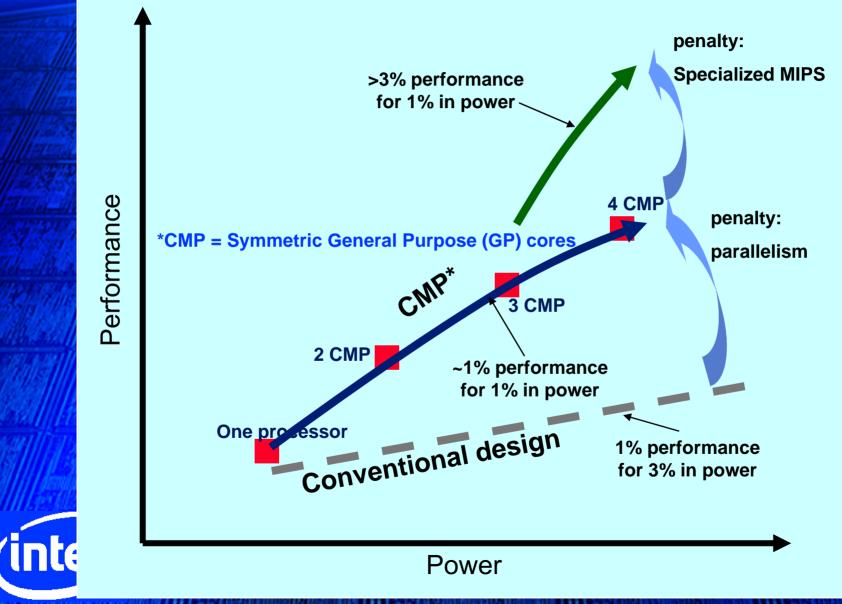
©2005, Intel Corporation

Intel, the Intel logo, Pentium, Itanium and Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries *Other names and brands may be claimed as the property of others

Intel[®] Higher Education Program

www.intel.com/education

Looking Beyond CMP


How far do we push the number of general purpose cores?
Is there are role for application specific engines?
Programming model for heterogeneous cores

Intel[®] Higher Education Program

www.intel.com/education

Improving Power Efficiency

Intel[®] Higher Education Program

www.intel.com/education

Application Specific Engines

- Can achieve better power efficiency than general purpose cores
 Simpler design due to targeted application and lack of support for full operating
 - system
- Challenge
 - Needs to support high volume application
 - Reconfigurable?
- Graphics and Multimedia engines are good candidates

Intel[®] Higher Education Program

www.intel.com/education

Agenda

Semiconductor Technology Evolution Design Challenges Why Multi-Core Processor Chips? Power/Performance Trade-Offs • CMP Directions Beyond CMP Summary

©2005, Intel Corporatio

Intel, the Intel logo, Pentium, Itanium and Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries *Other names and brands may be claimed as the property of others

Intel[®] Higher Education Program

www.intel.com/education

Summary

One billion transistors are here already!
Chip Level Multiprocessing and large caches can exploit Moore's Law
Amount of parallelism in future microprocessor systems will increase

- Heterogeneous cores may emerge eventually
- Need applications and tools that can exploit parallelism
- Design challenges and software issues remain

Collaborate, Innovate, Lead!

Intel[®] Higher Education Program

www.intel.com/education

Closing Thought

"Don't be encumbered by past history, go off and do something wonderful."

- Robert Noyce Intel Co-founder

Intel[®] Higher Education Program

www.intel.com/education