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Abstract

Diminishing performance gains in conventional architectures are fueling novel designs which more effectively extract paral-
lelism and have the potential to change the nature of architectural bottlenecks. Consequently, workload characterization is of
a growing importance in the design of modern high performance computing architectures. However, the accurate performance

evaluation necessary for workload characterization can be prohibitively constrained by immature compilers.

In this paper, we present a workload characterization for High Performance Digital Signal Processing (HP-DSP) applications
on the TRIPS architecture. Included is a bottleneck analysis of this novel next-generation architecture and a discussion of our
evaluation methodology. Using a combination of hand and machine optimization techniques we succesfuly characterize the work-
load of the TRIPS architecture on HP-DSP applications under the constraint of a developing compiler. This detailed performance
characterization illustrates the potential of HP-DSP applications to successfully map to highly concurrent hardware and discusses

bottlenecks unique to the TRIPS architecture.

1 Introduction

By understanding a systems strengths and bottlenecks a compiler carigreedde better extract performance. Cur-
rent technology trends signal a paradigm shift towards architectusebelfier extract concurrency which present both
new challenges for optimizing compilers and an increased emphasis on eufaitespecific workload understanding.

However, as growing architectural complexity widens the gap betweédotppe and mature compiler, so does grow the

demand for accurate workload characterizations.



Using eight benchmarks of the Polymorphous Computer Architecture (FXCiRg¢rnel benchmark suite, we have
performed a workload characterization and bottleneck analysis of theS Richitecture on HP-DSP applications. The
PCA C kernel benchmark suite was developed by MIT Lincoln Laboratarieconjunction with the DARPA PCA
program as part of an effort to develop next generation architecforeHP-DSP applications, of which this suite of
kernels is representative [4]. The kernels are designed to test saspects of a system with a mix and memory and

computationally bound algorithms.

By utilizing a combination of hand and machine optimization techniques, we wireécabuccessfully evaluate the
performance of the TRIPS architecture on HP-DSP applications undeotistraint of an immature compiler. As a
metric for comparison, an aggressive out-of-order general pammicroprocessor, the Alpha 21264, was benchmarked
with a mature, industry developed compiler. Our results include a static venilyta@tency cost of key operations on

the critical path of these benchmarks on the TRIPS architecture.

The rest of this paper is organized as follows: Section 2 provides adraiew of the TRIPS and Alpha ar-
chitectures, and the LL Kernel benchmark suite. Section 3 details therparfice of the TRIPS compiler as well as
characterizes each benchmark. Section 4 discusses our methodal@gdfessing the immature compiler. Section
5 is an analysis of the architectural bottlenecks of the TRIPS architeatdr&ection 6 concludes with a quantitative

analysis of our results.

2 Background

21 TRIPS

The TRIPS architecture is the firstimplementation of an Explicit Data Grapbufixe (EDGE) ISA, which offers a non-
conventional solution to the emerging difficulties of achieving high perfooaavhile maintaining power efficiency [2].
The EDGE ISA uses a limited data-flow execution model in which instructionstatieally assigned by the compiler
to execution tiles and are dynamically executed as soon as their operaraisdable. By relying on instruction level

communication, the architecture removes the need to communicate intermedilgstihesugh a global register file and
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Figure 1. Overview of the TRIPS Design

supports distributed out of order execution. Rather than a monolithic gsmgecore, computations are carried out on a
grid of replicated ALUs allowing for an increased potential to exploit ingtomdevel parallelism. These characteristics
give TRIPS the potential to perform well on signal processing algorithimshwtypically contain a high degree of
parallelism.

Figure 1 shows a block diagram of the TRIPS architecture. The protdggign contains 16 execution tiles arranged
in a 2-D mesh topology. Each execution tile consists of 1 ALU, input poressaoq buffers, 64 instruction buffers, and
routing hardware to control operand flow. Execution tiles process oi&ins concurrently, with a window size of 1024
instructions. When an operand must be forwarded to multiple consumer® amith fanout instructions are used to
construct trees that route data. Ideally, instructions are schedulegigitboring execution tiles to mitigate this routing
delay.

Instructions are aggregated into instruction blocks, forming the atomic usiesfution. Blocks are generated and
scheduled by the compiler onto the microarchitecture with a limitation of 128 instnsctier block. These statically
scheduled blocks resemble the basic execution unit of VLIW architectuegver the key difference is that instructions
are not required to be independent and are dynamically issued [1ditidxthl block constraints include a maximum of
32 register reads and writes to the global register banks and a maximurmuér@dry accesses to memory tiles. The
TRIPS prototype supports concurrent execution of up to 8 blocks, witbcks executing speculatively.

Several simplifying assumptions were made in order to produce the TRIB®dr& prototype, some of which had a

substantial impact on the overall performance of this benchmark suitd.iipsrtantly the hardware lacks support for
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floating point division, square root, and 32 bit floating point operatidhg. solution used in the prototype is to emulate
division and square root in software and to convert all floating poihtegto double precision before performing any
floating point operations. The cost to emulate the division and squarevesobetween five to ten times higher than
a hardware implementation. To guarantee that all bits of the floating point aedueorrect, the double value must be

converted back and forth to a single after each operation.

TRIPS uses the Scale compiler which is an optimizing research compiler with an€efnd which supports the
TRIPS ISA. It performs classic scalar along with TRIPS specific optimizati@oth the O3 and O4 level of optimiza-
tions were utilized which vary primarily by hyperblock formation at O4 [9]. W/lScale is continually improving, it is
still an immature compiler and has not evolved to the level of an industry deaelopmpiler. A cycle accurate simula-
tor, t si mpr oc, which provides detailed performance information such as branch gisedicache performance, and

network contention was used to simulate the applications.

2.2 Alpha

The Alpha 21264 is an industry developed, 4-wide, super-scaler nnaregsor. With an ISA that closely resembles that
of the TRIPS architecture and support for aggressive out-oframtspeculative execution, it provides a good metric for
comparison [7]. However, the Alpha does have several hardwaentatjes over the TRIPS prototype such as hardware
floating point division and square root functions. The QR and SVDedenmequire the square root operation, while QR,

FIR, PM, and SVD all require the floating point division operation [4].

To generate the Alpha results, we first compiled each benchmark using8iec@mpiler with architectural op-
timizations turned on ¢4 -arch ev6 ) [1]. We ran these optimized benchmarks ®nmal pha, which is a
previously developed and validated cycle-accurate Alpha 21264 sim{Bat®}. This simulator provides very detailed
information about a program’s execution and allows fine tuning of paramt&ieninimize difference in the memory

systems of the two processors.



2.3 Benchmark Introduction

We have characterized eight benchmarks from the Polymorphous Camdgatetecture (PCA) C Kernel benchmark
suite which was developed by MIT Lincoln Laboratories in conjunction withDA&RPA PCA program. The goal of
the PCA program is to develop next-generation architectures for higbrpemnce signal processing [4]. The PCA suite
of benchmarks contains many operations that are representative af pigoessing. The represented algorithms are
found in the libraries of many DSP applications such as radar, softwénedeadio, image analysis, and noise filtering.
These kernels were chosen to be representative of a wide spect@Pdipplications with some focusing on memory

operations while others stress the system’s computational throughput.

Each kernel contains verification code to ensure that the various optinmgajuplied still preserved the correctness
of the algorithm. The base data type for all of the kernels is either integéisats. In the original implementation, the
kernels read input from data files. In order to avoid clouding the resiititsfie handling, the kernels were modified to

read their inputs from statically linked data sets. The core algorithms that thel&éested were left unchanged.

3 Characterization

This section provides a characterization of each benchmark on the ERiRiEcture and compares these results to those
of the Alpha 21264 processor. For each benchmark, we preseristiciasummary from cycle accurate simulators.

Percent value characteristics are fractions of overall fetched itistngc Some of these entries are TRIPS specific, such
as hyperblock counts and percent executed instructions. In addition, percent floating point conversions provide a

useful metric for accounting for prototype simplifications.

Across the benchmarks, several trends are observable. From tR& T3 to O4 optimization levels, hyperblock
formation is turned on which combines basic blocks into a single hyperbloslka #sult, a reduction in block counts
should be observable which will also impact the number of branches thabmpsedicted. Larger blocks provide more
opportunities for operands to bypass the register file but require mardnstructions. A significant difference in the

number of register accesses is consistently observed across thenaekslfrom TRIPS O4 to Alpha, as a result of the



direct instruction communication of the TRIPS architecture.

3.1 CPUBound Kernels

Several of the signal processing kernels relied heavily on repeatettiavise computations to perform operations
such as vector add, multiply, and divide. While independent instructioreiinte opportunities for concurrency on the
replicated resources on the TRIPS architecture, dependent instaiat®accelerated by instruction level communica-
tion that bypasses the global register file. In the following sections, waatesthe CPU intensive QR, convolution, and

FIR kernels.

3.1.1 Convolution

The convolution kernel performs element-wise complex multiplications usinges s filters on an input vector defined
in the frequency domain. The convolution operation is used extensivels Biomedical engineering, and graphics
for smoothing, filtering, and image analyses. This kernel uses a loop t separticular filter and a nested loop to
apply the filter to an input vector.

The vast majority of convolution’s execution time is spent in a element-wise multiplicavhere the complex
structs - a pack of two single precision floating point values must be loattkdecomposed. Additionally, the TRIPS
architecture only supports computation on 64-bit floating point numberado & the floating point values must be
converted to and from double-precision before and after the multiplicatigndcantee single precision accuracy. This
results in a lengthy data dependence chain which accounts for the majdtity éecution.

The most striking difference between the TRIPS Scale O4 and the AlphadsEMs benchmark is a 2-fold increase
of cycles from TRIPS to Alpha and a 2-fold decrease of instructions @énchmark is highly parallel and independent

unrolled inner loop bodies can execute concurrently.

3.1.2 FiniteImpulse Response Filter (FIR)

The Finite Impulse Response (FIR) kernel is a software implementation of@etidime filter system. It is commonly

used in digital signal processing systems to filter out input frequency aoems while preserving the phase of the
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Characteristic | TRIPS -0O3] TRIPS -0O4| Alpha |

Cycles 198,391 187,663 | 334,479
Fetched Instructions 857,293 857,611 | 442,573
% Instructions Executed 99.5% 99.6% 98.3%
% Executedv’s 21.0% 21.0% N/A
% Floating Point Conversions 22.9% 22.9% N/A
% Useful Floating Point Ops 22.9% 22.9% 44.4%
% Memory Executed 23.7% 23.7% 48.6%
Blocks 9,976 9,803 N/A
Branch Flush PKI 0.20 0.22 .67
Register Accesses per Instructign  0.11 0.11 2.57
L1 I-cache hit rate 95.6% 95.5% 99.7%
L1 D-cache hit rate 96.3% 96.0% 99.5%

Table 1: Characterization of Convolution

input signal. These characteristics make it extremely useful in applicatiasas digital communication systems,
signal conditioning, and radar. The kernel's main operation consistdbate-4 Fast Fourier Transform (FFT), a fast
convolution, and a base-4 Inverse Fast Fourier Transform. TheaREBTFFT operations are @{ogn) and dominate
execution time.

Working on single precision complex data sets, FIR spends over 46% tifisperforming sine and cosine arith-
metic. While FIR does exercise floating point divisions, they are infreiaet account for less than 1% of the overall
execution time at TRIPS O4. The instruction count increase and block dearease, seen in Table 2, from O3 to O4
can both be attributed to optimizations associated with hyperblock formatioorperd at O4.

In FIR we see the Alpha accessing its registers a factor of 10 more tharRiRSTarchitecture. This demonstrates
a benefit of the block-atomic execution model which bypasses the glajisteefile for inter-block temporary values.
Since the register file is a shared global resource, it can become acedmitleneck especially on CPU intensive
programs. This approach to reducing register pressure by redueimgithber of accesses rather than increasing the size

or number of ports of the register file allows the hardware design to scakeeffectively.

3.1.3 QR Factorization

QR factorization is a linear algebra operation that factors a matrix into anganttad component Q and a triangular

component R. This operation is widely used in adaptive systems and sigiealging in conjunction with a triangular
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Characteristic | TRIPS -0O3] TRIPS -0O4] Alpha |

Cycles 111,342 101,628 | 50,350
Fetched Instructions 144,456 147,276 | 59,691
% Instructions Executed 89.4% 88.9% 93.2%
% Executedov’s 20.1% 21.3% N/A
% Floating Point Conversions 6.3% 6.2% N/A
% Useful Floating Point Ops 14.6% 14.3% 39.3%
% Memory Executed 13.7% 13.6% 27.8%
Blocks 5742 5294 N/A
Branch Flush PKI 3.52 2.99 6.52
Register Accesses per Instructign  0.28 0.28 2.56
L1 I-cache hit rate 92.4% 90.6% 97.7%
L1 D-cache hit rate 92.2% 92.6% 96.1%

Table 2: Characterization of FIR

solver to approximate over-determined systems, with applications in communisgBtems, radar, and biomedical
engineering. The Fast-Givens algorithm is used, which is charactdrzédrations through several loops on disjoint

paths composed of fine-grained computations on floating point numbeesegging complex data.

The many conditionals within the primary loop of QR adversely affect the lwegerformance on the TRIPS ar-
chitecture. By using single precision floating point numbers and perfordiingjons and square roots, QR exercises
several prototype simplifications of the TRIPS architecture. As in convoluéach complex number must be fetched
from memory, decomposed into the two single precision floating points beéing lconverted into double precision
floating points. Also, because the TRIPS architecture does not sufgadihg point division or square root, software
routines to do these computations must be used. Table 3 shows a similasdénriglack count, increase in instructions,

and increase inov’s as FIR.

Software emulation of floating point division was responsible for 41.6%ebterall execution time. When software
emulation of floating point division is disregarded the TRIPS O4 versioougs in 77,710 cycles of which another 25%
can be attributed to emulating square root. Disregarding emulation of squedrend floating point division the TRIPS

04 achieves a 31.2% speedup over Alpha.



Characteristic | TRIPS -0O3] TRIPS -O4]| Alpha |

Cycles 140,700 133,417 | 84,649
Fetched Instructions 288,131 298,169 | 95,004
% Instructions Executed 95.1% 93.2% 84.1%
% Executedrov’s 22.5% 23.3% N/A
% Floating Point Conversions 14.0% 13.5% N/A
% Useful Floating Point Ops 12.3% 11.9% 38.0%
% Memory Executed 12.0% 11.9% 35.3%
Blocks 7,690 6,831 N/A
Branch Flush PKI 1.63 1.58 5.06
Register Accesses per Instructign  0.23 0.23 2.51
L1 I-cache hit rate 92.6% 90.2% 98.4%
L1 D-cache hit rate 93.7% 94.7% 97.6%

Table 3: Characterization of QR

3.2 Memory Bound Kernels

Many HP-DSP applications operate on large data sets and therefore theyrepabilities of a system must be con-
sidered. Several kernels made extensive access to large strucithessslatabases and matrices, which placed a heavy
demand on the memory system. The TRIPS architecture employs a banked mgsteny ® provide high memory
bandwidth. This allows memory accesses to different banks to be pedayomeurrently. The following subsections

characterize the memory bound CT and DB kernels.

3.2.1 Corner Turn (CT)

The CT kernel performs a matrix transpose on a contiguous block of menhajrix transposition is fundamental
to linear algebra and is used widely in multimedia, radar, and image analysisadigpigc By using the corner turn
operation, lower dimensional problems can be transformed into higher domahgroblems to exploit the inherent
parallelism for significant performance gains. The matrix transpose is imptecheith a double loop and operates on
a matrix of 50x750 single precision floating point values. Consisting entifdlyads, stores, and address calculations,
this algorithm stresses the memory throughput of the system. Because thithalgoaverses in both row and column
major order, it presents a challenge for memory systems.

Table 4 shows a slowdown in cycle counts from O3 to O4. This is due to dbmten the operand network resulting

from poorly scheduled larger blocks. Because larger blocks are sugrptible to dynamic contention a more mature



Characteristic | TRIPS -0O3] TRIPS -0O4| Alpha |

Cycles 150,957 154,457 | 165,073
Fetched Instructions 720,686 761,492 | 369,819
% Instructions Executed 99.2% 98.9% 99.4%
% Executedv’s 14.6% 17.2% N/A
% Floating Point Conversions 10.4% 9.9% N/A
% Useful Floating Point Ops 0.0% 0.0% 0.0%
% Memory Executed 10.7% 10.2% 22.6%
Blocks 13,264 13,109 N/A
Branch Flush PKI 0.14 0.15 0.67
Register Accesses per Instructign  0.15 0.14 2.49
L1 I-cache hit rate 97.9% 97.8% 99.6%
L1 D-cache hit rate 33.1% 33.6% 87.5%

Table 4: Characterization of CT

scheduler could realize performance gains.

The TRIPS banked memory system provides high memory bandwidth whialciglicior this application. The poor
d-cache performance observed on TRIPS for this benchmark is ati@flef the unusually high instruction window
which allows many independent loads to the same cache line to issue cotiguiesulting in an artificially high miss
rate. Under the constraint of an immature compiler, the TRIPS architectsrabl@ato achieve a speedup over Alpha of
only 6.4%. The TRIPS prototype has twice the memory bandwidth of Alpha smaxénum expected speedup would

be 100%.

3.22 Signal Database (DB)

The DB kernel operates on a large database of signals. The keppateelly inserts, searches, and deletes various entries
in the database. The database operations are implemented with a serieblatketiee permutations. Because of the
large size of the database, the kernel places a large stress on the mgsteny. s

DB’s internal data structure is a Red-Black Tree. 50% of the overatiugian time can be attributed to Red-Black
Tree operations and memory management. In particular, traversing theetpgees many memory accesses to find
the next node. At 04, the many small functions can be grouped togetbegthhyperblock formation to see a overall
decrease of dynamic block count of 25%. This in turn, causes a 26%tred in flushes caused by branch mispredictions

shown in Table 5.
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Characteristic | TRIPS -0O3] TRIPS -O4]| Alpha |

Cycles 258,088 230,867 | 75,843
Fetched Instructions 127,339 148,599 | 89,270
% Instructions Executed 90.5% 85.8% 80.0%
% Executedrov’s 30.4% 39.0% N/A
% Floating Point Conversions 2.9% 2.4% N/A
% Useful Floating Point Ops 1.4% 1.2% 1.7%
% Memory Executed 23.8% 22.1% 39.6%
Blocks 16,365 12,294 N/A
Branch Flush PKI 9.93 7.38 19.22
Register Accesses per Instructign  0.58 0.52 2.29
L1 I-cache hit rate 89.4% 85.1% 98.9%
L1 D-cache hit rate 96.6% 96.7% 97.8%

Table5: Characterization of DB

In contrast, the Alpha branch flush rate is 2.6 times higher than the TRIPSuSMrfite. Since flushes are costly,
this can have a significant impact on performance. However, the Alpkaahie@ to output the TRIPS O4 compiler
by a factor of 3. This is because rather than experiencing a single lattjeneck, we found the DB kernel to have
numerous opportunities for small performance gains across many fusiabiowhich the mature GEM compiler, but not

the immature TRIPS compiler, was equipped to handle.

3.3 CPU and Memory Bound Kernels

Some DSP operations place both a computational and memory demand on the 3ystse algorithms are particularly
important to analyze for identifying potential bottlenecks in a systems overdfigpnance on more robust applications.

The following subsections discuss the CFAR, SVD and PM kernels.

3.3.1 Constant False Alarm Rate Detection (CFAR)

The CFAR kernel searches for randomly placed targets in an envirdritteshwith background noise. This algorithm
is used in radar, sonar, and image processing. In radar applicatiorgp#hition is crucial to removing environment
noise. The algorithm loops though a data cube and looks for cells with argoweeding a threshold relative to their
neighbors.

The CFAR kernel uses a doubly nested loop to examine each dimension adtdneube. This kernel performs
11



Characteristic | TRIPS -0O3] TRIPS -0O4| Alpha |

Cycles 205,131 204,701 | 130,542
Fetched Instructions 257,845 357,455 | 210,782
% Instructions Executed 96.9% 97.3% 87.3%
% Executedv’s 20.1% 40.0% N/A
% Floating Point Conversions 14.5% 10.4% N/A
% Useful Floating Point Ops 15.5% 11.2% 19.0%
% Memory Executed 15.7% 15.0% 36.2%
Blocks 18,874 14,991 N/A
Branch Flush PKI 2.17 1.34 3.59
Register Accesses per Instructign  0.82 0.71 2.51
L1 I-cache hit rate 95.7% 95.9% 99.5%
L1 D-cache hit rate 97.5% 97.3% 98.8%

Table 6: Characterization of CFAR

limited floating point division and on TRIPS uses software emulation to perfbendivision, which accounts for 8%
of execution. A striking statistic of this benchmark is the large percentagewfinstructions. Table 6 shows that at
the O4 optimization level, nearly 40% of all fetched instructions are operandfers. This demonstrates a significant
overhead of the TRIPS architecture.

In contrast to the TRIPS results, the Alpha experienced a relatively lisvaginstructions executed to fetched. This
can be attributed to the factor of 2.69 increase of branch flushes ov@RIRS O4 results. This application exhibits

less concurrency than the other benchmarks and the Alpha outperf®RS T4 by 57%.

3.3.2 Pattern Matching (PM)

The Pattern Matching (PM) kernel randomly adds noise to a test signat@ngares this signal to a library of test
patterns to determine what pattern the signal was originally. The metric forarisop is weighted mean square error.
The combination of the large library of test patterns and this mathematically wealgjorithm provides a balanced

mix between CPU and memory operations. This kernel is representative pattern matching needs of many DSP
applications including radar and signal identification, where noisy inpugd @ be matched to a library of known

signals. This kernel is composed of one main loop that uses the weightedsmesne error for each test pattern in the
library.

On TRIPS 04 the kernel spends approximately 12% of its time performingltgreetic and exponential operations.
12



Characteristic | TRIPS -0O3] TRIPS -0O4| Alpha |

Cycles 319,833 303,184 | 123,736
Fetched Instructions 281,194 364,375 | 149,279
% Instructions Executed 95.5% 94.9% 94.7%
% Executedv’s 20.7% 30.0% N/A
% Floating Point Conversions 9.5% 8.1% N/A
% Useful Floating Point Ops 14.3% 11.0% 27.0%
% Memory Executed 15.3% 19.2% 27.4%
Blocks 24,675 19,076 N/A
Branch Flush PKI 3.42 1.72 3.93
Register Accesses per Instructign  0.43 0.33 2.59
L1 I-cache hit rate 96.5% 96.2% 99.1%
L1 D-cache hit rate 98.5% 97.5% 98.2%

Table 7: Characterization of PM

Another 11% of its time is devoted to emulating floating point division. On the TRieBitecture, there is less correla-
tion between instructions and performance because of the block atomigiexremodel and this is further pronounced
at O4 when hyperblock formation is performed. This can be seen in Tablei® there is an increase in the number of

instructions executed from O3 to O4 but a reduction in cycle and blocktcoun

3.3.3 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a linear algebra transformation thanmsnonly used to eliminate noise from
data. There are applications for SVD in image processing, seismologigmodraphy. There are several different oper-
ations with order of magnitude® that make up the SVD operation. These include QR factorization, bi-ditigatian,

diagonalization and matrix multiplication all of which have the potential to map welltewwent hardware [8].

The SVD main loop is a single loop that traverse each column of a matrix of corfipling point values. The
main performance bottleneck for SVD on TRIPS is the lack of hardwarareqoot - software emulation accounts for

43% of execution time. Another 9% of time is devoted to performing softwarérippoint division.

A striking result in the Alpha and TRIPS O4 results is a 5.14 fold increase frugt®n counts depicted in Table 8.
The instruction increase can be attributed to the following three factonsvas@f floating point division and square root

emulation, single precision to double precision conversions, and opgeargfler (rov) instructions.
13



Characteristic | TRIPS -0O3] TRIPS -O4]| Alpha |

Cycles 270,700 249,349 | 55,601
Fetched Instructions 340,069 354,849 | 68,989
% Instructions Executed 81.4% 80.1% 78.2%
% Executedrov’s 32.5% 34.3% N/A
% Floating Point Conversions 3.5% 3.4% N/A
% Useful Floating Point Ops 3.0% 2.9% 17.0%
% Memory Executed 5.5% 5.5% 32.9%
Blocks 13,694 12,129 N/A
Branch Flush PKI 6.92 7.35 14.00
Register Accesses per Instructign  0.38 0.38 2.45
L1 I-cache hit rate 90.5% 86.6% 97.2%
L1 D-cache hit rate 93.5% 94.6% 96.3%

Table 8: Characterization of SVD

4 Optimizations

4.1 Fill Blocks

Filling hyperblocks on the TRIPS architecture is a key optimization goal. Wham Umrolling is performed within a

block, independent loop bodies can take better advantage of the esdturatdware in the execution grid and execute
concurrently. Additionally, by increasing the number of instructions withitogaky one can increase the opportunities
for fine-grained instruction level parallelism within that block by exposieg independent instructions to the hard-
ware. However, these increased opportunities for parallelism can soreetiwersely affect performance by increasing

contention on the operand network.

4.2 Reduce Dynamic Block Count

Analogous to instruction counts in conventional architectures, the nunitgynamic hyper-blocks correlates with
overall runtime performance in the block-atomic execution model. It is thereftrategic optimization principle to
aggressively construct hyperblocks in a way as to minimize the numberaK fatches.

By merging the instructions of two or more smaller blocks into a single large btoekcan amortize the overhead
of fetching the blocks. By indirectly creating fuller blocks, block mergingvides additional performance gains by ex-

posing new opportunities for concurrency to the hardware. Howsieple block merging cannot always be performed
14



because of block constraints and function calls. Function calls createialtifiock boundaries in a block-atomic ex-
ecution model because all branches must target block entries. Inlintrmptyoamortizes the large block overhead of

these function calls, but it can create new opportunities for subsebloshktmerging.

4.3 Removing Control Flow

Control dependences naturally create artificial block boundariespddufor predication on the TRIPS architecture
provides a means to convert control dependences into a data depesdaerich provides many new opportunities for
block merging. Also, by removing difficult to predict control dependeartbe number of branch flushes can be reduced.
Even though predication is supported at O3 and used extensively dyegblock formation at O4, further predication

was necessary during hand optimization in light of the immature compiler.

4.4 Resultsof Hand Optimization

By applying the aforementioned TRIPS specific optimization principles and wimgan Scale’s conventional opti-
mizations such as loop unrolling, inlining, and constant propagation, we al@e to realize an average performance
speed up of nearly 35% over O4 with floating point division hardwar@stsimulated. Table 9 shows the results of
performing the hand optimizations discussed in the previous subsectioasdiVltolumn header indicates that for the
benchmarks that used floating point division the cost to emulate floatinggieision was ignored in both the compiled
and hand optimized code.

While an increased ratio of useful floating point operations to total instiuctioints can be mostly attributed to the
significant overall instruction reductions, some benchmarks such asvCioB| and FIR show an overall decrease in
floating point operations. This can be attributed to the construction of fubbekb. With larger blocks, a value can be

calculated and shared among more instructions without being register allacatralculated.

45 Simulated Annealing

The TRIPS architecture is one of several recent projects that shifplexity from the hardware to the software. In the

TRIPS architecture, the software is responsible for not only translatagitih level language into machine code but
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Benchmark|| Cycle Speedup Instruction Reduction %nov % Useful FP Ops
over -O4 fdiv over -O4 fdiv -O4 fdiv | hand | -O4 fdiv | hand
CFAR 21.7% 7.7% 40.0% | 34.1%| 11.2% | 11.2%
CONV 33.2% 17.1% 21.1% | 23.6% | 22.9% | 22.7%
CT 61.9% 63.4% 17.2% | 32.7% 0% 0%
DB 18.0% 20.9% 39.0% | 37.7%| 1.2% | 1.3%
FIR 10.1% 10.5% 21.3% | 21.9% | 14.4% | 13.6%
PM 48.9% 19.6% 30.1% | 32.8% | 12.7% | 14.1%
QR 19.3% 25.6% 21.7% | 33.5% | 17.0% | 21.9%
SvD 66.0% 67.6% 34.9% | 28.7%| 3.1% | 12.6%
Average 34.9% 29.1% 28.2% | 30.5% | 10.3% | 12.2%

Table 9: Resultsof Hand Optimization

also for mapping each instruction to an execution tile in the hardware. Qfsesae passed between execution tiles via
an OPerand Network (OPN) which has a 1 cycle static cost between tile®PAhbandwidth limitation of 1 operand
per line per cycle creates potential contention situations whenever two eraperands need to be routed on the same
line at the same time. In these situations, contending operands which may be aitital path of a block, must be
delayed.

The performance critical task of assigning operations to execution tilesnidldthby the scheduler. However,
since the scheduler is still in development, one must isolate its effects to satglueaaluate the performance of this
architecture. To accomplish this we used a simulated annealing procegsuphgdeveloped to find the best schedule
[3]. The simulated annealer permutes the schedule of the most critical bidckadculates the resulting critical path
to determine if the permutation was effective. This is an iterative processstbath time and resource consuming;
however, once completed the resulting schedule isolates the effectinfjfmmvimmature scheduler for a more accurate

performance evaluation.

4.6 Resultsof Annealing

Table 10 details the absolute cycle counts before and after the simulategliagrn@rocess along with the percent
improvement. The table also shows the percent of the critical path spéotmigrg operand routing. This is the portion

of execution the annealer aims to improve. Those benchmarks in which QRiNgdelays were most critical, such as
16



Kernel Hand Til Cycles| Annealed Cycles % Annealer Improvement % Operand Transfe
of Critical Path

CFAR 159,541 149,925 6.0% 40.2%
CONV 125,444 113,830 9.3% 39.5%

CT 58,775 50,325 14.4% 35.7%

DB 189,352 184,285 2.7% 26.0%
FIR 90,253 89,680 0.6% 18.6%

PM 134,844 * * *

QR 62,703 62,566 0.2% 27.3%
SVD 77,321 * * *
Average - - 5.5% 31.2%

Table 10: Results of Simulated Annealing * to appear in final version

CT and convolution observed the best gains.

In CT, rapid successive memory accesses generate a heavy load ©ORMeshuffling operands to and from the
data tiles. In the case of convolution, its lengthy data dependence of flgadingmultiplications, subtractions and
additions inside the inner most loop, make it particularly schedule sensitbaibe any contention along that path will
be propagated along the entire critical path. In contrast, the relatively amallnt (7%) of dynamic delay associated
with operand transfer offered little opportunity for scheduling improveradithately resulting in QR’s observed small

performance gain.

5 Bottleneck

The TRIPS architecture exhibits a set of performance constraints. Wihag consuming instructions need to share a
single producer’s value, a fanout tree is created withr instructions to route the data. Thasev instructions often
lie on and thus lengthen the critical path significantly. On average, thmgeénstructions account for over 33% of the
overall dynamic instruction count.

Figure 2 breaks down the instruction mix of each benchmark into perfomraitical fields such as branch, integer,
memory, floating point, andov instructions. The branches account for a relatively few number olictidns because
many control dependences are converted to data dependences wigpierblock. Although these benchmarks operate

primarily on floating points, integer operations account for a significaritqoof these benchmarks because of the many
17
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Figure 2: Instruction Mix for Optimized Benchmarks

operations necessary for address calculation. On average, n@&tlyflall instructions are floating point precision
conversions which is an artifact of a prototype simplification. Additionatqiype simplifications which proved to
be performance bottlenecks include lack of floating point division andreguoot support. These simplifications are

addressable, however, with an ISA extension.

Because instructions fire when their operands are ready, it is crudidlinS to consider the dynamic latencies of a
program. Operands can be delayed significantly from arriving at thgiettanstruction by OPN contention in addition
to cache misses. To accurately express these latencies within the criticalveatimployed a previously developed
tool,t si mcri ti cal , which enumerates the critical path of a program [10]. Figure 3 breaka the cost associated
with each type of operation on the critical path of each benchmark into treeegstatic and additional dynamic costs.
The dynamic block overhead is a function of block-fetch miss-predictiodsnaisses in the 16kB instruction cache.
While the critical block schedules have been improved via the simulated argpaticess, it is clear from the graph a
significant dynamic delay still persist in operand transfer operatiortsiré&work could include an investigation of how

to address this problem including increasing OPN bandwidth and employimgrtmn-aware routing logic.
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Figure 3: Breakdown of Critical Path

6 Conclusion

In this paper we have presented a detailed characterization and bottkmegkis of a next-generation processor on
High-Performance Digital Signal Processing applications. As a metriofoparison we provided a performance eval-
uation of these applications on an industry standard Alpha 21264 micegsocutilizing the highly optimizing GEM

compiler. This comparison shows the potential for HP-DSP applications tomeapssfully to concurrent hardware and

highlights the growing importance of an optimizing compiler for future architestur

The workload characterization necessary for hardware evaluatibigbly concurrent hardware can be prohibitively
constrained by an immature compiler. By using a combination of hand and maugtingzation techniques we were

able to mitigate these effects and successfully characterize the TRIR®eiaie on HP-DSP applications.

Our analysis highlights several TRIPS specific architectural bottlen@ecksP-DSP applications. In addition to
the addressable prototype simplifications, we found two other performaiimal bottlenecks unique to the TRIPS
architecture. In particular, fanout trees - necessary for routingtse® many consumers - account for an average of

32.8% of the overall instruction count. Additionally 31.2% of the critical pathpisng performing operand routing,
19



29% of which can be attributed to network contention. This work succdésgdantifies TRIPS specific bottlenecks on

HP-DSP applications and signals the importance of early stage workloaactérézation on future highly concurrent

architectures.
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