
Technical Report #TR-06-62, Department of Computer Sciences, University of Texas

A Characterization of High Performance DSP Kernels
on the TRIPS Architecture

Kevin B. Bush Mark Gebhart Doug Burger Stephen W. Keckler

Computer Architecture and Technology Laboratory

Department of Computer Sciences

The University of Texas at Austin

cart@cs.utexas.edu - www.cs.utexas.edu/users/cart

Abstract

Diminishing performance gains in conventional architectures are fueling novel designs which more effectively extract paral-

lelism and have the potential to change the nature of architectural bottlenecks. Consequently, workload characterization is of

a growing importance in the design of modern high performance computing architectures. However, the accurate performance

evaluation necessary for workload characterization can be prohibitively constrained by immature compilers.

In this paper, we present a workload characterization for High Performance Digital Signal Processing (HP-DSP) applications

on the TRIPS architecture. Included is a bottleneck analysis of this novel next-generation architecture and a discussion of our

evaluation methodology. Using a combination of hand and machine optimization techniques we succesfuly characterize the work-

load of the TRIPS architecture on HP-DSP applications under the constraint of a developing compiler. This detailed performance

characterization illustrates the potential of HP-DSP applications to successfully map to highly concurrent hardware and discusses

bottlenecks unique to the TRIPS architecture.

1 Introduction

By understanding a systems strengths and bottlenecks a compiler can be designed to better extract performance. Cur-

rent technology trends signal a paradigm shift towards architectures that better extract concurrency which present both

new challenges for optimizing compilers and an increased emphasis on architectural specific workload understanding.

However, as growing architectural complexity widens the gap between prototype and mature compiler, so does grow the

demand for accurate workload characterizations.
1

Using eight benchmarks of the Polymorphous Computer Architecture (PCA)C Kernel benchmark suite, we have

performed a workload characterization and bottleneck analysis of the TRIPS architecture on HP-DSP applications. The

PCA C kernel benchmark suite was developed by MIT Lincoln Laboratories in conjunction with the DARPA PCA

program as part of an effort to develop next generation architectures for HP-DSP applications, of which this suite of

kernels is representative [4]. The kernels are designed to test various aspects of a system with a mix and memory and

computationally bound algorithms.

By utilizing a combination of hand and machine optimization techniques, we were able to successfully evaluate the

performance of the TRIPS architecture on HP-DSP applications under theconstraint of an immature compiler. As a

metric for comparison, an aggressive out-of-order general purpose microprocessor, the Alpha 21264, was benchmarked

with a mature, industry developed compiler. Our results include a static vs dynamic latency cost of key operations on

the critical path of these benchmarks on the TRIPS architecture.

The rest of this paper is organized as follows: Section 2 provides a briefoverview of the TRIPS and Alpha ar-

chitectures, and the LL Kernel benchmark suite. Section 3 details the performance of the TRIPS compiler as well as

characterizes each benchmark. Section 4 discusses our methodology for addressing the immature compiler. Section

5 is an analysis of the architectural bottlenecks of the TRIPS architecture and Section 6 concludes with a quantitative

analysis of our results.

2 Background

2.1 TRIPS

The TRIPS architecture is the first implementation of an Explicit Data Graph Execution (EDGE) ISA, which offers a non-

conventional solution to the emerging difficulties of achieving high performance while maintaining power efficiency [2].

The EDGE ISA uses a limited data-flow execution model in which instructions arestatically assigned by the compiler

to execution tiles and are dynamically executed as soon as their operands are available. By relying on instruction level

communication, the architecture removes the need to communicate intermediate results through a global register file and
2

G

E

R

Global Control:

Protocols: fill, flush, commit

Contains I-cache tags, block header state,

r/w instructions, branch predictor, ITLB

Register Banks:

32 registers per bank x 4 threads

64 static rename registers per bank

Dynamically forwards inter-block values

Execution Nodes:

Single-issue ALU unit, single-issue

Full integer and floating point units (no FDIV)

Buffers 64 instructions (8 insts x 8 blocks) per tile

D-cache Banks

8KB 2-way, 1-port, cache-line interleaved banks

DTLB, 8 MSHRs, LSQ, dependence pred. per bank

Supports load speculation and distributed commit

D

I-cache Banks

16KB 2-way, 1-port L1 instruction cache banks

Each bank delivers four insts/cycle

Banks are slaves to global control unit tag store

I

G RR R R

Router

Input ports

Output ports

Operand

buffers

Integer
FP

64 Instruction

buffers

A61
A62
A63

A0
A1

 TRIPS Execution Node TRIPS Processor Core

I

I

I

I

I

D

D

D

D

S

e
c
o
n
d
a
ry

C
a
c
h
e

In

te
rf

a
c
e

I

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

Figure 1: Overview of the TRIPS Design

supports distributed out of order execution. Rather than a monolithic processing core, computations are carried out on a

grid of replicated ALUs allowing for an increased potential to exploit instruction level parallelism. These characteristics

give TRIPS the potential to perform well on signal processing algorithms which typically contain a high degree of

parallelism.

Figure 1 shows a block diagram of the TRIPS architecture. The prototypedesign contains 16 execution tiles arranged

in a 2-D mesh topology. Each execution tile consists of 1 ALU, input ports, operand buffers, 64 instruction buffers, and

routing hardware to control operand flow. Execution tiles process instructions concurrently, with a window size of 1024

instructions. When an operand must be forwarded to multiple consumers on the grid, fanout instructions are used to

construct trees that route data. Ideally, instructions are scheduled on neighboring execution tiles to mitigate this routing

delay.

Instructions are aggregated into instruction blocks, forming the atomic unit ofexecution. Blocks are generated and

scheduled by the compiler onto the microarchitecture with a limitation of 128 instructions per block. These statically

scheduled blocks resemble the basic execution unit of VLIW architectures, however the key difference is that instructions

are not required to be independent and are dynamically issued [11]. Additional block constraints include a maximum of

32 register reads and writes to the global register banks and a maximum of 32memory accesses to memory tiles. The

TRIPS prototype supports concurrent execution of up to 8 blocks, with 7blocks executing speculatively.

Several simplifying assumptions were made in order to produce the TRIPS hardware prototype, some of which had a

substantial impact on the overall performance of this benchmark suite. Most importantly the hardware lacks support for
3

floating point division, square root, and 32 bit floating point operations.The solution used in the prototype is to emulate

division and square root in software and to convert all floating point values to double precision before performing any

floating point operations. The cost to emulate the division and square rootwas between five to ten times higher than

a hardware implementation. To guarantee that all bits of the floating point valueare correct, the double value must be

converted back and forth to a single after each operation.

TRIPS uses the Scale compiler which is an optimizing research compiler with a C front-end which supports the

TRIPS ISA. It performs classic scalar along with TRIPS specific optimizations. Both the O3 and O4 level of optimiza-

tions were utilized which vary primarily by hyperblock formation at O4 [9]. While Scale is continually improving, it is

still an immature compiler and has not evolved to the level of an industry developed compiler. A cycle accurate simula-

tor, tsim proc, which provides detailed performance information such as branch prediction, cache performance, and

network contention was used to simulate the applications.

2.2 Alpha

The Alpha 21264 is an industry developed, 4-wide, super-scaler microprocessor. With an ISA that closely resembles that

of the TRIPS architecture and support for aggressive out-of-order and speculative execution, it provides a good metric for

comparison [7]. However, the Alpha does have several hardware advantages over the TRIPS prototype such as hardware

floating point division and square root functions. The QR and SVD kernels require the square root operation, while QR,

FIR, PM, and SVD all require the floating point division operation [4].

To generate the Alpha results, we first compiled each benchmark using the GEM compiler with architectural op-

timizations turned on (-O4 -arch ev6) [1]. We ran these optimized benchmarks onsim alpha, which is a

previously developed and validated cycle-accurate Alpha 21264 simulator[5, 6]. This simulator provides very detailed

information about a program’s execution and allows fine tuning of parameters to minimize difference in the memory

systems of the two processors.
4

2.3 Benchmark Introduction

We have characterized eight benchmarks from the Polymorphous Computer Architecture (PCA) C Kernel benchmark

suite which was developed by MIT Lincoln Laboratories in conjunction with theDARPA PCA program. The goal of

the PCA program is to develop next-generation architectures for high performance signal processing [4]. The PCA suite

of benchmarks contains many operations that are representative of signal processing. The represented algorithms are

found in the libraries of many DSP applications such as radar, software defined radio, image analysis, and noise filtering.

These kernels were chosen to be representative of a wide spectrum ofDSP applications with some focusing on memory

operations while others stress the system’s computational throughput.

Each kernel contains verification code to ensure that the various optimizations applied still preserved the correctness

of the algorithm. The base data type for all of the kernels is either integers orfloats. In the original implementation, the

kernels read input from data files. In order to avoid clouding the results with file handling, the kernels were modified to

read their inputs from statically linked data sets. The core algorithms that the kernels tested were left unchanged.

3 Characterization

This section provides a characterization of each benchmark on the TRIPSarchitecture and compares these results to those

of the Alpha 21264 processor. For each benchmark, we present a statistical summary from cycle accurate simulators.

Percent value characteristics are fractions of overall fetched instructions. Some of these entries are TRIPS specific, such

as hyperblock counts and percent executedmov instructions. In addition, percent floating point conversions provide a

useful metric for accounting for prototype simplifications.

Across the benchmarks, several trends are observable. From the TRIPS O3 to O4 optimization levels, hyperblock

formation is turned on which combines basic blocks into a single hyperblock. As a result, a reduction in block counts

should be observable which will also impact the number of branches that must be predicted. Larger blocks provide more

opportunities for operands to bypass the register file but require moremov instructions. A significant difference in the

number of register accesses is consistently observed across the benchmarks from TRIPS O4 to Alpha, as a result of the
5

direct instruction communication of the TRIPS architecture.

3.1 CPU Bound Kernels

Several of the signal processing kernels relied heavily on repeated element-wise computations to perform operations

such as vector add, multiply, and divide. While independent instructions introduce opportunities for concurrency on the

replicated resources on the TRIPS architecture, dependent instructions are accelerated by instruction level communica-

tion that bypasses the global register file. In the following sections, we evaluate the CPU intensive QR, convolution, and

FIR kernels.

3.1.1 Convolution

The convolution kernel performs element-wise complex multiplications using a series of filters on an input vector defined

in the frequency domain. The convolution operation is used extensively in DSP, biomedical engineering, and graphics

for smoothing, filtering, and image analyses. This kernel uses a loop to select a particular filter and a nested loop to

apply the filter to an input vector.

The vast majority of convolution’s execution time is spent in a element-wise multiplication where the complex

structs - a pack of two single precision floating point values must be loaded and decomposed. Additionally, the TRIPS

architecture only supports computation on 64-bit floating point numbers so each of the floating point values must be

converted to and from double-precision before and after the multiplication toguarantee single precision accuracy. This

results in a lengthy data dependence chain which accounts for the majority ofthe execution.

The most striking difference between the TRIPS Scale O4 and the Alpha GEMon this benchmark is a 2-fold increase

of cycles from TRIPS to Alpha and a 2-fold decrease of instructions. This benchmark is highly parallel and independent

unrolled inner loop bodies can execute concurrently.

3.1.2 Finite Impulse Response Filter (FIR)

The Finite Impulse Response (FIR) kernel is a software implementation of a discrete time filter system. It is commonly

used in digital signal processing systems to filter out input frequency components while preserving the phase of the
6

Characteristic TRIPS -O3 TRIPS -O4 Alpha

Cycles 198,391 187,663 334,479
Fetched Instructions 857,293 857,611 442,573
% Instructions Executed 99.5% 99.6% 98.3%
% Executedmov’s 21.0% 21.0% N/A
% Floating Point Conversions 22.9% 22.9% N/A
% Useful Floating Point Ops 22.9% 22.9% 44.4%
% Memory Executed 23.7% 23.7% 48.6%
Blocks 9,976 9,803 N/A
Branch Flush PKI 0.20 0.22 .67
Register Accesses per Instruction 0.11 0.11 2.57
L1 I-cache hit rate 95.6% 95.5% 99.7%
L1 D-cache hit rate 96.3% 96.0% 99.5%

Table 1: Characterization of Convolution

input signal. These characteristics make it extremely useful in applications such as digital communication systems,

signal conditioning, and radar. The kernel’s main operation consists of abase-4 Fast Fourier Transform (FFT), a fast

convolution, and a base-4 Inverse Fast Fourier Transform. The FFTand IFFT operations are O(n log n) and dominate

execution time.

Working on single precision complex data sets, FIR spends over 46% of it’stime performing sine and cosine arith-

metic. While FIR does exercise floating point divisions, they are infrequent and account for less than 1% of the overall

execution time at TRIPS O4. The instruction count increase and block count decrease, seen in Table 2, from O3 to O4

can both be attributed to optimizations associated with hyperblock formation performed at O4.

In FIR we see the Alpha accessing its registers a factor of 10 more than the TRIPS architecture. This demonstrates

a benefit of the block-atomic execution model which bypasses the global register file for inter-block temporary values.

Since the register file is a shared global resource, it can become a resource bottleneck especially on CPU intensive

programs. This approach to reducing register pressure by reducing the number of accesses rather than increasing the size

or number of ports of the register file allows the hardware design to scale more effectively.

3.1.3 QR Factorization

QR factorization is a linear algebra operation that factors a matrix into an orthogonal component Q and a triangular

component R. This operation is widely used in adaptive systems and signal processing in conjunction with a triangular
7

Characteristic TRIPS -O3 TRIPS -O4 Alpha

Cycles 111,342 101,628 50,350
Fetched Instructions 144,456 147,276 59,691
% Instructions Executed 89.4% 88.9% 93.2%
% Executedmov’s 20.1% 21.3% N/A
% Floating Point Conversions 6.3% 6.2% N/A
% Useful Floating Point Ops 14.6% 14.3% 39.3%
% Memory Executed 13.7% 13.6% 27.8%
Blocks 5742 5294 N/A
Branch Flush PKI 3.52 2.99 6.52
Register Accesses per Instruction 0.28 0.28 2.56
L1 I-cache hit rate 92.4% 90.6% 97.7%
L1 D-cache hit rate 92.2% 92.6% 96.1%

Table 2: Characterization of FIR

solver to approximate over-determined systems, with applications in communicationsystems, radar, and biomedical

engineering. The Fast-Givens algorithm is used, which is characterizedby iterations through several loops on disjoint

paths composed of fine-grained computations on floating point numbers representing complex data.

The many conditionals within the primary loop of QR adversely affect the i-cache performance on the TRIPS ar-

chitecture. By using single precision floating point numbers and performingdivisions and square roots, QR exercises

several prototype simplifications of the TRIPS architecture. As in convolution, each complex number must be fetched

from memory, decomposed into the two single precision floating points before being converted into double precision

floating points. Also, because the TRIPS architecture does not supportfloating point division or square root, software

routines to do these computations must be used. Table 3 shows a similar decrease in block count, increase in instructions,

and increase inmov’s as FIR.

Software emulation of floating point division was responsible for 41.6% of the overall execution time. When software

emulation of floating point division is disregarded the TRIPS O4 version executes in 77,710 cycles of which another 25%

can be attributed to emulating square root. Disregarding emulation of square root and floating point division the TRIPS

O4 achieves a 31.2% speedup over Alpha.
8

Characteristic TRIPS -O3 TRIPS -O4 Alpha

Cycles 140,700 133,417 84,649
Fetched Instructions 288,131 298,169 95,004
% Instructions Executed 95.1% 93.2% 84.1%
% Executedmov’s 22.5% 23.3% N/A
% Floating Point Conversions 14.0% 13.5% N/A
% Useful Floating Point Ops 12.3% 11.9% 38.0%
% Memory Executed 12.0% 11.9% 35.3%
Blocks 7,690 6,831 N/A
Branch Flush PKI 1.63 1.58 5.06
Register Accesses per Instruction 0.23 0.23 2.51
L1 I-cache hit rate 92.6% 90.2% 98.4%
L1 D-cache hit rate 93.7% 94.7% 97.6%

Table 3: Characterization of QR

3.2 Memory Bound Kernels

Many HP-DSP applications operate on large data sets and therefore the memory capabilities of a system must be con-

sidered. Several kernels made extensive access to large structures such as databases and matrices, which placed a heavy

demand on the memory system. The TRIPS architecture employs a banked memory system to provide high memory

bandwidth. This allows memory accesses to different banks to be performed concurrently. The following subsections

characterize the memory bound CT and DB kernels.

3.2.1 Corner Turn (CT)

The CT kernel performs a matrix transpose on a contiguous block of memory. Matrix transposition is fundamental

to linear algebra and is used widely in multimedia, radar, and image analysis applications. By using the corner turn

operation, lower dimensional problems can be transformed into higher dimensional problems to exploit the inherent

parallelism for significant performance gains. The matrix transpose is implemented with a double loop and operates on

a matrix of 50x750 single precision floating point values. Consisting entirely of loads, stores, and address calculations,

this algorithm stresses the memory throughput of the system. Because this algorithm traverses in both row and column

major order, it presents a challenge for memory systems.

Table 4 shows a slowdown in cycle counts from O3 to O4. This is due to contention in the operand network resulting

from poorly scheduled larger blocks. Because larger blocks are moresusceptible to dynamic contention a more mature
9

Characteristic TRIPS -O3 TRIPS -O4 Alpha

Cycles 150,957 154,457 165,073
Fetched Instructions 720,686 761,492 369,819
% Instructions Executed 99.2% 98.9% 99.4%
% Executedmov’s 14.6% 17.2% N/A
% Floating Point Conversions 10.4% 9.9% N/A
% Useful Floating Point Ops 0.0% 0.0% 0.0%
% Memory Executed 10.7% 10.2% 22.6%
Blocks 13,264 13,109 N/A
Branch Flush PKI 0.14 0.15 0.67
Register Accesses per Instruction 0.15 0.14 2.49
L1 I-cache hit rate 97.9% 97.8% 99.6%
L1 D-cache hit rate 33.1% 33.6% 87.5%

Table 4: Characterization of CT

scheduler could realize performance gains.

The TRIPS banked memory system provides high memory bandwidth which is crucial for this application. The poor

d-cache performance observed on TRIPS for this benchmark is a reflection of the unusually high instruction window

which allows many independent loads to the same cache line to issue concurrently resulting in an artificially high miss

rate. Under the constraint of an immature compiler, the TRIPS architecture was able to achieve a speedup over Alpha of

only 6.4%. The TRIPS prototype has twice the memory bandwidth of Alpha so themaximum expected speedup would

be 100%.

3.2.2 Signal Database (DB)

The DB kernel operates on a large database of signals. The kernel repeatedly inserts, searches, and deletes various entries

in the database. The database operations are implemented with a series of red-black tree permutations. Because of the

large size of the database, the kernel places a large stress on the memory system.

DB’s internal data structure is a Red-Black Tree. 50% of the overall execution time can be attributed to Red-Black

Tree operations and memory management. In particular, traversing the tree requires many memory accesses to find

the next node. At O4, the many small functions can be grouped together through hyperblock formation to see a overall

decrease of dynamic block count of 25%. This in turn, causes a 26% reduction in flushes caused by branch mispredictions

shown in Table 5.
10

Characteristic TRIPS -O3 TRIPS -O4 Alpha

Cycles 258,088 230,867 75,843
Fetched Instructions 127,339 148,599 89,270
% Instructions Executed 90.5% 85.8% 80.0%
% Executedmov’s 30.4% 39.0% N/A
% Floating Point Conversions 2.9% 2.4% N/A
% Useful Floating Point Ops 1.4% 1.2% 1.7%
% Memory Executed 23.8% 22.1% 39.6%
Blocks 16,365 12,294 N/A
Branch Flush PKI 9.93 7.38 19.22
Register Accesses per Instruction 0.58 0.52 2.29
L1 I-cache hit rate 89.4% 85.1% 98.9%
L1 D-cache hit rate 96.6% 96.7% 97.8%

Table 5: Characterization of DB

In contrast, the Alpha branch flush rate is 2.6 times higher than the TRIPS O4 flush rate. Since flushes are costly,

this can have a significant impact on performance. However, the Alpha was able to output the TRIPS O4 compiler

by a factor of 3. This is because rather than experiencing a single large bottleneck, we found the DB kernel to have

numerous opportunities for small performance gains across many functions, of which the mature GEM compiler, but not

the immature TRIPS compiler, was equipped to handle.

3.3 CPU and Memory Bound Kernels

Some DSP operations place both a computational and memory demand on the system. These algorithms are particularly

important to analyze for identifying potential bottlenecks in a systems overall performance on more robust applications.

The following subsections discuss the CFAR, SVD and PM kernels.

3.3.1 Constant False Alarm Rate Detection (CFAR)

The CFAR kernel searches for randomly placed targets in an environment filled with background noise. This algorithm

is used in radar, sonar, and image processing. In radar applications thisoperation is crucial to removing environment

noise. The algorithm loops though a data cube and looks for cells with a power exceeding a threshold relative to their

neighbors.

The CFAR kernel uses a doubly nested loop to examine each dimension of thedata cube. This kernel performs
11

Characteristic TRIPS -O3 TRIPS -O4 Alpha

Cycles 205,131 204,701 130,542
Fetched Instructions 257,845 357,455 210,782
% Instructions Executed 96.9% 97.3% 87.3%
% Executedmov’s 20.1% 40.0% N/A
% Floating Point Conversions 14.5% 10.4% N/A
% Useful Floating Point Ops 15.5% 11.2% 19.0%
% Memory Executed 15.7% 15.0% 36.2%
Blocks 18,874 14,991 N/A
Branch Flush PKI 2.17 1.34 3.59
Register Accesses per Instruction 0.82 0.71 2.51
L1 I-cache hit rate 95.7% 95.9% 99.5%
L1 D-cache hit rate 97.5% 97.3% 98.8%

Table 6: Characterization of CFAR

limited floating point division and on TRIPS uses software emulation to performthe division, which accounts for 8%

of execution. A striking statistic of this benchmark is the large percentage ofmov instructions. Table 6 shows that at

the O4 optimization level, nearly 40% of all fetched instructions are operand transfers. This demonstrates a significant

overhead of the TRIPS architecture.

In contrast to the TRIPS results, the Alpha experienced a relatively low ratio of instructions executed to fetched. This

can be attributed to the factor of 2.69 increase of branch flushes over theTRIPS O4 results. This application exhibits

less concurrency than the other benchmarks and the Alpha outperforms TRIPS O4 by 57%.

3.3.2 Pattern Matching (PM)

The Pattern Matching (PM) kernel randomly adds noise to a test signal andcompares this signal to a library of test

patterns to determine what pattern the signal was originally. The metric for comparison is weighted mean square error.

The combination of the large library of test patterns and this mathematically intensive algorithm provides a balanced

mix between CPU and memory operations. This kernel is representative of the pattern matching needs of many DSP

applications including radar and signal identification, where noisy inputs need to be matched to a library of known

signals. This kernel is composed of one main loop that uses the weighted meansquare error for each test pattern in the

library.

On TRIPS 04 the kernel spends approximately 12% of its time performing log-arithmetic and exponential operations.
12

Characteristic TRIPS -O3 TRIPS -O4 Alpha

Cycles 319,833 303,184 123,736
Fetched Instructions 281,194 364,375 149,279
% Instructions Executed 95.5% 94.9% 94.7%
% Executedmov’s 20.7% 30.0% N/A
% Floating Point Conversions 9.5% 8.1% N/A
% Useful Floating Point Ops 14.3% 11.0% 27.0%
% Memory Executed 15.3% 19.2% 27.4%
Blocks 24,675 19,076 N/A
Branch Flush PKI 3.42 1.72 3.93
Register Accesses per Instruction 0.43 0.33 2.59
L1 I-cache hit rate 96.5% 96.2% 99.1%
L1 D-cache hit rate 98.5% 97.5% 98.2%

Table 7: Characterization of PM

Another 11% of its time is devoted to emulating floating point division. On the TRIPSarchitecture, there is less correla-

tion between instructions and performance because of the block atomic execution model and this is further pronounced

at O4 when hyperblock formation is performed. This can be seen in Table 7where there is an increase in the number of

instructions executed from O3 to O4 but a reduction in cycle and block count.

3.3.3 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a linear algebra transformation that is commonly used to eliminate noise from

data. There are applications for SVD in image processing, seismology, andtomography. There are several different oper-

ations with order of magnituden3 that make up the SVD operation. These include QR factorization, bi-diagonalization,

diagonalization and matrix multiplication all of which have the potential to map well to concurrent hardware [8].

The SVD main loop is a single loop that traverse each column of a matrix of complexfloating point values. The

main performance bottleneck for SVD on TRIPS is the lack of hardware square root - software emulation accounts for

43% of execution time. Another 9% of time is devoted to performing software floating point division.

A striking result in the Alpha and TRIPS O4 results is a 5.14 fold increase in instruction counts depicted in Table 8.

The instruction increase can be attributed to the following three factors: software floating point division and square root

emulation, single precision to double precision conversions, and operandtransfer (mov) instructions.
13

Characteristic TRIPS -O3 TRIPS -O4 Alpha

Cycles 270,700 249,349 55,601
Fetched Instructions 340,069 354,849 68,989
% Instructions Executed 81.4% 80.1% 78.2%
% Executedmov’s 32.5% 34.3% N/A
% Floating Point Conversions 3.5% 3.4% N/A
% Useful Floating Point Ops 3.0% 2.9% 17.0%
% Memory Executed 5.5% 5.5% 32.9%
Blocks 13,694 12,129 N/A
Branch Flush PKI 6.92 7.35 14.00
Register Accesses per Instruction 0.38 0.38 2.45
L1 I-cache hit rate 90.5% 86.6% 97.2%
L1 D-cache hit rate 93.5% 94.6% 96.3%

Table 8: Characterization of SVD

4 Optimizations

4.1 Fill Blocks

Filling hyperblocks on the TRIPS architecture is a key optimization goal. When loop unrolling is performed within a

block, independent loop bodies can take better advantage of the redundant hardware in the execution grid and execute

concurrently. Additionally, by increasing the number of instructions within a block, one can increase the opportunities

for fine-grained instruction level parallelism within that block by exposing new independent instructions to the hard-

ware. However, these increased opportunities for parallelism can sometimes adversely affect performance by increasing

contention on the operand network.

4.2 Reduce Dynamic Block Count

Analogous to instruction counts in conventional architectures, the number of dynamic hyper-blocks correlates with

overall runtime performance in the block-atomic execution model. It is therefore a strategic optimization principle to

aggressively construct hyperblocks in a way as to minimize the number of block fetches.

By merging the instructions of two or more smaller blocks into a single large block,one can amortize the overhead

of fetching the blocks. By indirectly creating fuller blocks, block merging provides additional performance gains by ex-

posing new opportunities for concurrency to the hardware. However,simple block merging cannot always be performed
14

because of block constraints and function calls. Function calls create artificial block boundaries in a block-atomic ex-

ecution model because all branches must target block entries. Inlining not only amortizes the large block overhead of

these function calls, but it can create new opportunities for subsequentblock merging.

4.3 Removing Control Flow

Control dependences naturally create artificial block boundaries. Support for predication on the TRIPS architecture

provides a means to convert control dependences into a data dependences which provides many new opportunities for

block merging. Also, by removing difficult to predict control dependences the number of branch flushes can be reduced.

Even though predication is supported at O3 and used extensively duringhyperblock formation at O4, further predication

was necessary during hand optimization in light of the immature compiler.

4.4 Results of Hand Optimization

By applying the aforementioned TRIPS specific optimization principles and improving on Scale’s conventional opti-

mizations such as loop unrolling, inlining, and constant propagation, we were able to realize an average performance

speed up of nearly 35% over O4 with floating point division hardware support simulated. Table 9 shows the results of

performing the hand optimizations discussed in the previous subsections. The fdiv column header indicates that for the

benchmarks that used floating point division the cost to emulate floating pointdivision was ignored in both the compiled

and hand optimized code.

While an increased ratio of useful floating point operations to total instruction counts can be mostly attributed to the

significant overall instruction reductions, some benchmarks such as CONV, DB, and FIR show an overall decrease in

floating point operations. This can be attributed to the construction of fuller blocks. With larger blocks, a value can be

calculated and shared among more instructions without being register allocated or recalculated.

4.5 Simulated Annealing

The TRIPS architecture is one of several recent projects that shift complexity from the hardware to the software. In the

TRIPS architecture, the software is responsible for not only translating the high level language into machine code but
15

Benchmark Cycle Speedup Instruction Reduction %mov % Useful FP Ops
over -O4 fdiv over -O4 fdiv -O4 fdiv hand -O4 fdiv hand

CFAR 21.7% 7.7% 40.0% 34.1% 11.2% 11.2%
CONV 33.2% 17.1% 21.1% 23.6% 22.9% 22.7%
CT 61.9% 63.4% 17.2% 32.7% 0% 0%
DB 18.0% 20.9% 39.0% 37.7% 1.2% 1.3%
FIR 10.1% 10.5% 21.3% 21.9% 14.4% 13.6%
PM 48.9% 19.6% 30.1% 32.8% 12.7% 14.1%
QR 19.3% 25.6% 21.7% 33.5% 17.0% 21.9%
SVD 66.0% 67.6% 34.9% 28.7% 3.1% 12.6%
Average 34.9% 29.1% 28.2% 30.5% 10.3% 12.2%

Table 9: Results of Hand Optimization

also for mapping each instruction to an execution tile in the hardware. Operands are passed between execution tiles via

an OPerand Network (OPN) which has a 1 cycle static cost between tiles. AnOPN bandwidth limitation of 1 operand

per line per cycle creates potential contention situations whenever two or more operands need to be routed on the same

line at the same time. In these situations, contending operands which may be on the critical path of a block, must be

delayed.

The performance critical task of assigning operations to execution tiles is handled by the scheduler. However,

since the scheduler is still in development, one must isolate its effects to accurately evaluate the performance of this

architecture. To accomplish this we used a simulated annealing process previously developed to find the best schedule

[3]. The simulated annealer permutes the schedule of the most critical block and calculates the resulting critical path

to determine if the permutation was effective. This is an iterative process thatis both time and resource consuming;

however, once completed the resulting schedule isolates the effect of having an immature scheduler for a more accurate

performance evaluation.

4.6 Results of Annealing

Table 10 details the absolute cycle counts before and after the simulated annealing process along with the percent

improvement. The table also shows the percent of the critical path spent performing operand routing. This is the portion

of execution the annealer aims to improve. Those benchmarks in which OPN routing delays were most critical, such as
16

Kernel Hand Til Cycles Annealed Cycles % Annealer Improvement % Operand Transfer
of Critical Path

CFAR 159,541 149,925 6.0% 40.2%
CONV 125,444 113,830 9.3% 39.5%
CT 58,775 50,325 14.4% 35.7%
DB 189,352 184,285 2.7% 26.0%
FIR 90,253 89,680 0.6% 18.6%
PM 134,844 * * *
QR 62,703 62,566 0.2% 27.3%
SVD 77,321 * * *
Average - - 5.5% 31.2%

Table 10: Results of Simulated Annealing * to appear in final version

CT and convolution observed the best gains.

In CT, rapid successive memory accesses generate a heavy load on theOPN, shuffling operands to and from the

data tiles. In the case of convolution, its lengthy data dependence of floatingpoint multiplications, subtractions and

additions inside the inner most loop, make it particularly schedule sensitive because any contention along that path will

be propagated along the entire critical path. In contrast, the relatively smallamount (7%) of dynamic delay associated

with operand transfer offered little opportunity for scheduling improvementultimately resulting in QR’s observed small

performance gain.

5 Bottleneck

The TRIPS architecture exhibits a set of performance constraints. Whenmany consuming instructions need to share a

single producer’s value, a fanout tree is created withmov instructions to route the data. Thesemov instructions often

lie on and thus lengthen the critical path significantly. On average, thesemov instructions account for over 33% of the

overall dynamic instruction count.

Figure 2 breaks down the instruction mix of each benchmark into performance critical fields such as branch, integer,

memory, floating point, andmov instructions. The branches account for a relatively few number of instructions because

many control dependences are converted to data dependences within a hyperblock. Although these benchmarks operate

primarily on floating points, integer operations account for a significant portion of these benchmarks because of the many
17

 Branches
 Integer
 Memory
 FP Operations
 FP Conversions
mov Instructions

 0%

 20%

 40%

 60%

 80%

 100%

m
ea

n

S
V

D

Q
R

P
M

F
IRD
B

C
T

C
F

A
R

C
on

v

P
er

ce
nt

 o
f I

ns
tr

uc
tio

ns

Benchmark

Figure 2: Instruction Mix for Optimized Benchmarks

operations necessary for address calculation. On average, nearly 10% of all instructions are floating point precision

conversions which is an artifact of a prototype simplification. Additional prototype simplifications which proved to

be performance bottlenecks include lack of floating point division and square root support. These simplifications are

addressable, however, with an ISA extension.

Because instructions fire when their operands are ready, it is crucial inTRIPS to consider the dynamic latencies of a

program. Operands can be delayed significantly from arriving at their target instruction by OPN contention in addition

to cache misses. To accurately express these latencies within the critical path, we employed a previously developed

tool,tsim critical, which enumerates the critical path of a program [10]. Figure 3 breaks down the cost associated

with each type of operation on the critical path of each benchmark into the expected static and additional dynamic costs.

The dynamic block overhead is a function of block-fetch miss-predictions and misses in the 16kB instruction cache.

While the critical block schedules have been improved via the simulated annealing process, it is clear from the graph a

significant dynamic delay still persist in operand transfer operations. Future work could include an investigation of how

to address this problem including increasing OPN bandwidth and employing contention-aware routing logic.
18

Figure 3: Breakdown of Critical Path

6 Conclusion

In this paper we have presented a detailed characterization and bottleneckanalysis of a next-generation processor on

High-Performance Digital Signal Processing applications. As a metric for comparison we provided a performance eval-

uation of these applications on an industry standard Alpha 21264 microprocessor utilizing the highly optimizing GEM

compiler. This comparison shows the potential for HP-DSP applications to map successfully to concurrent hardware and

highlights the growing importance of an optimizing compiler for future architectures.

The workload characterization necessary for hardware evaluation onhighly concurrent hardware can be prohibitively

constrained by an immature compiler. By using a combination of hand and machineoptimization techniques we were

able to mitigate these effects and successfully characterize the TRIPS architecture on HP-DSP applications.

Our analysis highlights several TRIPS specific architectural bottleneckson HP-DSP applications. In addition to

the addressable prototype simplifications, we found two other performancecritical bottlenecks unique to the TRIPS

architecture. In particular, fanout trees - necessary for routing results to many consumers - account for an average of

32.8% of the overall instruction count. Additionally 31.2% of the critical path is spent performing operand routing,
19

29% of which can be attributed to network contention. This work successfully identifies TRIPS specific bottlenecks on

HP-DSP applications and signals the importance of early stage workload characterization on future highly concurrent

architectures.

References

[1] D. Blickstein, P. Craig, C. Davidson, N. Faiman, K. Glossop, R. G. S. Hobbs, and W. Noyce. The GEM Optimizing Compiler System.

4(4):121–136, 1992.

[2] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John, C. Lin, C. R. Moore, J. Burrill, R. G. McDonald, and W. Yoder. Scaling

to the End of Silicon with EDGE Architectures.IEEE Computer, pages 44–55, July 2004.

[3] K. Coons, X. Chen, S. Kushwaha, K. S. McKinley, and D. Burger. A Spatial Path Scheduling Algorithm for EDGE Architectures. InThe

Twelth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), San Jose, CA,

October 2006.

[4] DARPA. Polymorphous Computing Architecture Program, http://www.darpa.mil/ipto/programs/pca, January 2006.

[5] R. Desikan, D. Burger, S. Keckler, and T. M. Austin. Sim-alpha: aValidated, Execution-Driven Alpha 21264 Simulator. Technical Report

TR-01-23, Department of Computer Sciences, The University of Texas at Austin, October 2001.

[6] R. Desikan, D. Burger, and S. W. Keckler. Measuring Experimental Error in Microprocessor Simulation. In28th International Symposium

on Computer Architecture, July 2001.

[7] R. E. Kessler. The Alpha 21264 Microprocessor. 19(2):24–36,March 1999.

[8] B. A. Maher. Optimization of Singular Value Decomposition. Technicalreport, University of Texas at Austin, December 2005.

[9] K. S. McKinly, J. Burrill, D. Burger, B. Cahoon, J. Gibson, J. E. B. Moss, A. Smith, Z. Wang, and C. Weems. The Scale Compiler. Technical

report, University of Massachusetts, University of Texas, 2005.

[10] R. Nagarajan, X. Chen, R. G. McDonald, D. Burger, and S. W. Keckler. Critical Path Analysis of the TRIPS Architecture. InIEEE

International Symposium on Performance Analysis of Systems and Software, 2006.

[11] R. Nagarajan, S. K. Kushwaha, D. Burger, K. McKinley, C. Lin,and S. W. Keckler. Static Placement, Dynamic Issue (SPDI) Scheduling for

EDGE Architectures. InInternational Conference on Compilation Techniques (PACT), September 2004.

20

