
TRIPS Processor Reference Manual

Robert McDonald Doug Burger Stephen W. Keckler
Karthikeyan Sankaralingam Ramadass Nagarajan

March 10, 2005 - Version 1.2

Tech Report TR-05-19
Department of Computer Sciences
The University of Texas at Austin

This document describes the TRIPS Processor, including its instruction set, register set, and
general processing model. TRIPS is a novel, scalable, and low power architecture for future tech-
nologies.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 2 March 10, 2005

Notices

Copyright © 2004-2005 by The University of Texas at Austin. All
rights reserved.

This document describes technology developed as part of the TRIPS
project in the Computer Architecture and Technology Laboratory,
Department of Computer Sciences, at The University of Texas at
Austin. This is a preliminary draft and should not be redistributed
without permission.

Acknowledgements

This work is supported by DARPA / IPTO and the Air Force Research
Laboratory under contracts F33615-01-C-1892 and F33615-03-C-
4106.

Contact Information

Computer Architecture and Technology Laboratory
Department of Computer Sciences
1 University Station C0500
The University of Texas at Austin
Austin, TX 78712-0233
cart@cs.utexas.edu

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 3 March 10, 2005

Contents

Chapter 1 - Introduction.. 7

1.1 Overview... 7
1.2 Processor Architecture ... 7
1.3 Processor Implementation.. 9
1.4 Document Organization.. 11

Chapter 2 - Processing Model .. 12

2.1 Processor States .. 12
2.2 Processor Modes.. 12
2.3 Threads Slots ... 13
2.4 Data Formats.. 13
2.5 Block-Atomic Execution.. 14
2.6 Dataflow Execution... 15
2.7 Predicated Execution.. 17
2.8 Output Nullification ... 19
2.9 Dataflow Tokens... 21
2.10 Load Dependences .. 21
2.11 Execution Flags .. 22

Chapter 3 - Programs... 24

3.1 Program Format ... 24
3.2 Block Format .. 24
3.3 Header Chunk Format .. 25
3.4 Instruction Chunk Format ... 28
3.5 Block Capacity Restrictions .. 29

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 4 March 10, 2005

Chapter 4 - Registers ... 30

4.1 Register Set.. 30
4.1.1 Register Summary... 30
4.1.2 Processor Control and Status Registers 31
4.1.3 TLB Registers.. 31
4.1.4 Thread Control and Status Registers 32
4.1.5 Program Counters ... 32
4.1.6 General Registers.. 32
4.1.7 Performance Monitor Registers............................... 33

4.2 Register Map .. 33
4.3 Register Descriptions ... 35

4.3.1 Alphabetical Register List .. 35

Chapter 5 - Queues.. 51

5.1 Execution Queues .. 51
5.2 Instruction Queue ... 51
5.3 Read Queue ... 53
5.4 Write Queue ... 53
5.5 Load & Store Queue... 55
5.6 Program Counter Writes... 56

Chapter 6 - Memory.. 57

6.1 Addressing.. 57
6.2 Segments ... 57
6.3 TLBs ... 58
6.4 Caches ... 59
6.5 Byte Ordering ... 60
6.6 Byte Alignment ... 60

Chapter 7 - Exceptions... 61

7.1 Exception Model ... 61
7.2 Exception Status... 61

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 5 March 10, 2005

7.2.1 Processor Exception Status 61
7.2.2 Thread Exception Status ... 62

7.3 Exception Types ... 62
7.3.1 Processor Exception Types..................................... 62
7.3.2 Thread Exception Types.. 63

7.4 Exception Descriptions ... 64
7.4.1 Alphabetical Exception List...................................... 64

Chapter 8 - Instructions .. 75

8.1 Instruction Formats... 75
8.2 Instruction Fields .. 77
8.3 Target Specifiers .. 80
8.4 Instruction Set Summary .. 81

8.4.1 Read Instructions... 81
8.4.2 Write Instructions... 81
8.4.3 Load Instructions ... 81
8.4.4 Store Instructions... 82
8.4.5 Integer Arithmetic Instructions 82
8.4.6 Integer Logical Instructions...................................... 83
8.4.7 Integer Shift Instructions.. 84
8.4.8 Integer Extend Instructions...................................... 84
8.4.9 Integer Relational Instructions 85
8.4.10 Floating-Point Arithmetic Instructions 86
8.4.11 Floating-Point Conversion Instructions.................. 86
8.4.12 Floating-Point Relational Instructions 87
8.4.13 Branch Instructions.. 87
8.4.14 Other Instructions .. 88

8.5 Instruction Codes.. 89
8.5.1 Primary Opcode Map... 89
8.5.2 Opcode Table .. 89

8.6 Floating-Point Support.. 92
8.7 Instruction Descriptions .. 94

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 6 March 10, 2005

8.7.1 Notation and Conventions 94
8.7.2 Alphabetical Instruction List..................................... 96

Chapter 9 - Performance Monitor ... 190

9.1 Overview... 190
9.2 Register Map .. 190
9.3 Register Descriptions ... 192

9.3.1 Count Registers... 192
9.3.2 Address Registers ... 194

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 7 March 10, 2005

Chapter 1 - Introduction

1.1 Overview

This document describes the TRIPS processor, including its instruction
set, register set, and general processing model. It defines the interface
between TRIPS hardware and TRIPS software and is intended to be used
by both hardware and software developers.

The TRIPS processor is part of a broader TRIPS chip and TRIPS system
that will demonstrate several innovative techniques for building high-
performance, highly-adaptive computing systems. The TRIPS
architecture is the first member of a class of post-RISC architectures
referred to as EDGE architectures. Key features include a block-atomic
execution model and explicit support for data-driven (out-of-order)
instruction execution.

The TRIPS processor is a prototype. It embodies many, but not all, of the
ideas that have been developed as part of the TRIPS project. Some
potential features have been omitted from the prototype in the interest of
simplicity and a manageable development schedule.

Throughout this document, we sometimes distinguish between the
processor architecture and the processor implementation. The term
architecture refers to an abstracted view of the TRIPS processor and its
software-visible resources. The term implementation refers to a more
detailed view of the TRIPS processor and its internal organization. Most
aspects of the implementation are beyond the scope of this document.

1.2 Processor Architecture

The following diagram shows an abstract representation of the TRIPS
processor. Most elements of the architecture are based upon this abstract
view of the processor.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 8 March 10, 2005

TRIPS Processor

Operand Network

Processor Control LSQ
(32)

IQ
(128)

RQ
(32)

WQ
(32)

Data
Cache,

TLB

Inst
Cache,

TLB
ALUs Special

Regs
General

Regs

Fetch and Control Networks

System Network

System Controller System Memory

Like a conventional processor, the TRIPS processor includes arithmetic
units, caches, and registers. One or more arithmetic units (ALUs) are
available for performing integer and floating-point operations. Separate
caches are defined for holding instruction and data memory. TLBs are
defined for translating virtual addresses to physical addresses. Registers
are divided into two categories. General Registers may be used by a
program to hold any type of data. Special Registers have predefined
purposes and are used for configuration, control, and status.

Unlike a conventional processor, the TRIPS processor explicitly defines a
set of internal queues. These queues are a fundamental part of the
TRIPS instruction set and execution model. Architected queues enable
efficient processing of whole blocks of instructions, rather than just
individual instructions. An Instruction Queue (IQ) holds up to 128
executable instructions. A Read Queue (RQ) holds information for up to
32 pending General Register reads. A Write Queue (WQ) holds
information for up to 32 pending General Register writes. A Load & Store
Queue (LSQ) holds information for up to 32 pending memory loads and

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 9 March 10, 2005

stores. Queues only hold transient execution state. Persistent program
state is stored in registers, caches, and system memory.

The TRIPS processor connects to the rest of the system using a system
interconnection network. The processor may access instructions and data
stored in system memory. A system controller running system software
may access registers within the processor. The system controller is
responsible for configuring and servicing the processor.

1.3 Processor Implementation

In order to fully understand the TRIPS architecture, it is useful to
understand a little more about the processor implementation. TRIPS
processors are partitioned into tiles that are placed adjacent to one
another on a chip. These tiles are arranged in a grid (or 2D array) and
connected by one or more light-weight networks, as depicted in the
following diagram.

The five tile types are summarized below.

• Execution Tiles – These tiles hold the Instruction Queue and the
arithmetic units.

• Register Tiles – These tiles hold the General Registers, the Read
Queue, and the Write Queue.

• Data Tiles – These tiles hold the Data Cache, the Data TLB, and
the Load & Store Queue.

• Instruction Tiles – These tiles hold the Instruction Cache and the
Instruction TLB.

• Global Control Tile – This tile holds the Special Registers and the
global processor control logic.

Most of the processor’s resources are divided evenly into banks and
distributed across multiple tiles. The Instruction Queue, for example, is
divided into sixteen banks and distributed across sixteen Execution Tiles.
Each tile can perform certain types of operations on every cycle. For
example, on every cycle an Execution Tile can execute an instruction,
transfer a previously-computed value to an adjacent tile, and receive a
value from an adjacent tile. A high level of concurrency is possible.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 10 March 10, 2005

This approach (referred to as a Grid Processor Architecture) fits well with
future semiconductor technologies. It allows faster clock rates than
conventional approaches, while also providing superior instruction-level
parallelism and extensibility.

Another important aspect of the processor implementation is that it
includes multiple copies of the architected queues and registers. The
processor includes eight copies of each queue, allowing it to process up to
8 blocks and 1024 instructions (128 x 8) at once. The processor includes
four copies of most registers, allowing it to process up to four threads at
once. These capabilities will be described in subsequent chapters.

Exec
Tile 0

Data
Tile 0

Reg
Tile 0

Global
Control

Tile

Inst
Tile 1

Inst
Tile 0

Exec
Tile 1

Reg
Tile 1

Exec
Tile 2

Reg
Tile 2

Exec
Tile 3

Reg
Tile 3

Exec
Tile 4

Data
Tile 1

Inst
Tile 2

Exec
Tile 5

Exec
Tile 6

Exec
Tile 7

Exec
Tile 8

Data
Tile 2

Inst
Tile 3

Exec
Tile 9

Exec
Tile 10

Exec
Tile 11

Exec
Tile 12

Data
Tile 3

Inst
Tile 4

Exec
Tile 13

Exec
Tile 14

Exec
Tile 15

Operand Network Links
On-Chip Netw ork Links
Global Fetch Network Links

Some networks are not shown

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 11 March 10, 2005

1.4 Document Organization

The remainder of this document is divided into the following chapters.

• Chapter 2 describes the processing model.

• Chapter 3 describes the program format.

• Chapter 4 describes the registers.

• Chapter 5 describes the queues.

• Chapter 6 describes the memory model.

• Chapter 7 describes the exception model.

• Chapter 8 describes the instruction set.

• Chapter 9 describes the performance monitor.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 12 March 10, 2005

Chapter 2 - Processing Model

2.1 Processor States

A TRIPS processor will always be in one of the following two states.

• Running – The processor is executing one or more program
threads.

• Halted – The processor has encountered an exceptional condition
and is waiting to be serviced.

The processor state is reflected in a Processor Status Register (PSR) and
also on a HALTED output signal.

When the processor is first powered on (or otherwise reset), it will enter
the halted state. The processor will remain in the halted state until
serviced by the system software (running on an external system
controller). The system software may configure the processor by
programming its registers and may restart the processor by clearing the
PSR. This will cause the processor to enter the running state. The
processor will remain in the running state until it encounters an exception
condition (which includes external interrupts and system calls). See
Chapter 7 for more information about exceptions.

2.2 Processor Modes

A TRIPS processor may operate in any of the following modes.

• Default Mode (D-Morph) – In this mode, the processor devotes all
of its resources to executing a single program thread.

• Multi-Threading Mode (T-Morph) – In this mode, the processor
divides or shares its resources for simultaneously executing up to
four program threads.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 13 March 10, 2005

A field in the Processor Control Register (PCR) determines the processor
mode. (Other modes have also been proposed, but are not demonstrated
in this prototype.)

2.3 Threads Slots

A TRIPS processor includes support for four thread slots. Thread slots
are numbered starting from zero (thread slot 0, thread slot 1, etc). Each
thread slot includes a set of registers used to hold and maintain program
state for a single program thread as it executes. These registers are
described in Chapter 4.

In its default mode (D-Morph), a TRIPS processor processes the thread
loaded into thread slot 0 and other thread slots are ignored (they should
be marked invalid). In its multi-threading mode (T-Morph), a TRIPS
processor simultaneously processes threads from all four thread slots.
The threads may belong to a single multi-threaded program or to separate
programs.

2.4 Data Formats

The TRIPS architecture supports byte (8-bit), halfword (16-bit), word (32-
bit), and doubleword (64-bit) data.

Some instructions interpret the data as a signed (2’s complement) or
unsigned integer. Some instructions interpret the data as an IEEE-754
compatible single-precision or double-precision floating-point number.
Other instructions consider the data to be generic binary data.

Data stored in registers is always right-justified (stored in the least-
significant bits). Data stored in memory is always aligned to a natural
boundary (its address is always a multiple of its size). Data stored in
memory is always stored in big-endian byte order.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 14 March 10, 2005

2.5 Block-Atomic Execution

TRIPS programs execute in a block-atomic manner. Large groups of
instructions (up to 128) are processed together as a block, rather than as
individual instructions. This enables more efficient processing and helps
expose more instruction-level parallelism.

A Program Counter (PC) holds the address of the block that is currently
being processed (when the processor is running) or the block that will be
processed next (when the processor is halted). For each block, the
processor performs the following steps:

• Block Fetch – Fetch the block from memory (or cache) into the
processors queues.

• Block Execute – Execute the instructions in dataflow order,
computing and saving one or more results in the queues.

• Block Commit – Copy the results from the queues to the committed
program state.

Each step is conditioned upon the success of the previous step. If an
exception is discovered while fetching a block, the fetch is aborted. The
block execute step only occurs if the fetch was successful. If an exception
is discovered while executing a block, the execution is aborted. The block
commit step only occurs if the execution was successful.

From a software perspective, blocks are never partially executed. If an
exception (or interrupt) occurs, the processor will always stop the program
thread on a precise block boundary. The intermediate results are not
visible.

TRIPS processors preserve these simple sequential semantics at the
block level, but are free to use techniques such as pipelining and
speculative execution to improve performance. Our implementation does,
in fact, use these techniques to overlap the processing of up to 8 blocks.
A branch predictor is employed to predict which block will execute next.
By default, the processor speculatively fetches and executes multiple
blocks. Blocks are always committed non-speculatively and in program
order.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 15 March 10, 2005

2.6 Dataflow Execution

While a familiar sequential execution model is defined at the block level, a
very different execution model is defined at the instruction level.
Instructions inside a block execute in dataflow order, rather than in
program order. Instruction dependences are explicitly encoded in the
instructions. The TRIPS processor is capable of executing each
instruction as soon as its operands (and the required execution resources)
become available.

This model of execution can be better understood by looking at a simple
example. Consider the following trivial bit of C code:

This code might be compiled to the following TRIPS Assembly Language
(TASL).

With this notation, each line beginning with “R” defines a General Register
(GR) read instruction and a corresponding entry in the Read Queue (RQ).
Each line beginning with “N” defines a regular instruction and a
corresponding entry in the Instruction Queue (IQ). Each line beginning
with “W” defines a GR write instruction and a corresponding entry in the
Write Queue (WQ). Notice that the queue entries do not necessarily need

.bbegin foo$1
 R[3] read G[3] N[2,0] ; read x from GR3
 R[4] read G[4] N[2,1] N[1,0] ; read y from GR4

 N[2] mul N[3,0] W[3] ; x’ = x * y
 N[1] addi 7 W[4] ; y’ = y + 7
 N[3] addi 5 W[5] ; z’ = x’ + 5
 N[0] bro foo$2 ; branch to foo$2

 W[3] write G[3] ; write x’ to GR3
 W[4] write G[4] ; write y’ to GR4
 W[5] write G[5] ; write z’ to GR5
.bbend

 // assume x, y, and z are local variables
 x = x * y;
 y = y + 7;
z = x + 5;

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 16 March 10, 2005

to be assigned in order. (The complete TASL syntax is described in a
separate document.)

Each instruction sends its result to one or more dependent target
instructions. In some cases, the targets reside in the IQ. For example,
“N[2,0]” refers to the OP0 slot of IQ entry 2. In other cases, the targets
reside in the WQ. For example, “W[3]” refers to WQ entry 3. The branch
instruction implicitly targets a Program Counter (PC).

The following diagram shows a corresponding dataflow graph. In this
example, GR3 and GR4 are considered block inputs. GR3, GR4, GR5,
and the PC are considered block outputs. The read instructions (shown in
blue) retrieve the block inputs. The write instructions and implied PC write
(shown in red) deliver the block outputs (at commit time). The regular
instructions (shown in white) compute intermediate values.

read GR3 read GR4

mul addi 7

addi 5 write GR3

write GR5

write GR4

write PC

bro foo$2

x y

x’ y’

z’

Some instructions (like MUL) require two operands. Some instructions
(like ADDI) require only one operand. Other instructions (like BRO) do not
require any operands. Each instruction may execute as soon as all its
required operands have been delivered. The precise order of execution is
not defined by the architecture and not necessarily knowable at compile
time.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 17 March 10, 2005

Block execution is considered complete when all of the block outputs have
been produced. As explained in the next section, it is sometimes possible
to produce all of the outputs without executing all of the instructions.

2.7 Predicated Execution

Predication plays an important role in the TRIPS architecture. Predication
allows a value to be selected from multiple potential values. It is essential
for encoding conditional branches and for constructing large, efficient
blocks from general-purpose programs. All control dependences inside of
a block are represented using predication, rather than control flow.

Almost any regular instruction can be predicated. Almost any regular
instruction can produce a predicate. Instructions may be predicated upon
a true or a false predicate. Predicated instructions must receive all of their
required operands plus a matching (true or false) predicate before they
can execute. Instructions that do not receive a matching predicate will not
execute (and will not deliver a result). Instructions that do not receive all
required operands or predicates are considered indirectly predicated.

To better understand predication, let’s look at a simple example. Consider
the following bit of C code.

This code might be compiled to the following TRIPS Assembly Language
(TASL). Instruction names ending in “_t” and “_f” are predicated on true
and false, respectively.

 // assume x and y are local variables
 if (x > 0) y++;
 else if (x < 0) y--;
 else y = 0;

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 18 March 10, 2005

The following diagram shows the corresponding dataflow graph. This
graph uses the same conventions as the previous example. Normal lines
represent operands, while dashed lines represent predicates. Predicated
instructions are shown in yellow.

read GR3

tgt

addi_t 1

write GR4

write PC

bro foo$2

x

y

read GR4 movi 0

tlt_f

movi 0

subi_t 1 movi_f 0

y’

p0

p1

For this example, two predicates are computed and used to control each
of the three possible assignments. The first predicate (p0) is based upon

.bbegin foo$1
 R[3] read G[3] N[1,0] N[4,0] ; read x from GR3
 R[4] read G[4] N[2,0] N[5,0] ; read y from GR4

 N[0] movi 0 N[1,1]
 N[1] tgt N[2,P] N[4,P] ; p0 = x > 0
 N[2] addi_t 1 W[4] ; if (p0) y’ = y + 1
 N[3] movi 0 N[4,1]
 N[4] tlt_f N[5,P] N[6,P] ; if (!p0) p1 = x < 0
 N[5] subi_t 1 W[4] ; if (p1) y’ = y – 1
 N[6] movi_f 0 W[4] ; if (!p1) y’ = 0
 N[7] bro foo$2 ; branch to foo$2

 W[4] write G[4] ; write y’ to GR4
.bbend

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 19 March 10, 2005

the result of the first test (x > 0). The second predicate (p1) is based upon
the result of the second test (x < 0), which is only performed if the first
predicate is false. Three different instructions (N[2], N[5], and N[6]) target
W[4], but the predicates guarantee that only one will actually execute and
deliver a result. For any possible outcome, only a subset of the
instructions will execute.

Although the previous example is simple, a similar approach may be used
to form larger and more complex predicated blocks (which are usually
called hyperblocks).

From a compiler’s (or hand-coder’s) perspective, each predicate may be
thought of as a 3-state variable. The possible states are true, false, and
undefined. By default, each predicate begins in the undefined state. Any
number of predicates may be defined, computed, and used inside of a
block – but predicates do not exist outside of a block.

2.8 Output Nullification

When using predication, it is possible that some block outputs will only
need to be produced under certain conditions. The TRIPS architecture
supports a technique called output nullification that allows individual writes
or stores to be cancelled. When a write or store instruction is nullified, the
write or store is not performed when the block execution is committed.

Output nullification is similar to but different than instruction predication. In
order for block execution to be considered complete, a value must be
produced for every potential block output. In most cases, a normal value
is delivered. But in some cases, a special value may be delivered to
nullify the output. Null values are produced by NULL instructions and
represented as null tokens (described in the next section).

To better understand nullification, let’s look at a simple example. Consider
the following bit of C code.

 // assume x and y are local variables
 if (x > 0) y++;

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 20 March 10, 2005

This code might be compiled to the following TRIPS Assembly Language
(TASL).

And here is a corresponding dataflow graph.

read GR3 read GR4

tgt

write GR4

write PC

bro foo$2

x y

y’

movi 0

null_f addi_t 1

p0

Based upon the predicate, variable y is either incremented or left
unchanged. A similar approach may be used to nullify stores. In that
case, the target of the NULL instruction is a store instruction instead of a
write instruction.

.bbegin foo$1
 R[3] read G[3] N[1,0] ; read x from GR3
 R[4] read G[4] N[2,0] ; read y from GR4

 N[0] movi 0 N[1,1]
 N[1] tgt N[2,P] N[3,P] ; p0 = x > 0
 N[2] addi_t 1 W[4] ; if (p0) y’ = y + 1
 N[3] null_f W[4] ; if (!p0) y’ = NULL
 N[7] bro foo$2 ; branch to foo$2

 W[4] write G[4] ; write y’ to GR4
.bbend

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 21 March 10, 2005

2.9 Dataflow Tokens

The TRIPS processor uses dataflow tokens to represent values being
delivered from one instruction to another as a block executes. Each arrow
in the previous dataflow diagrams represents a dataflow token. These
tokens usually communicate data, but must sometimes communicate
nullifications or exceptions.

Each dataflow token includes a type field, which must be one of the
following:

• Normal Token

• Null Token

• Exception Token

Most instructions generate normal tokens when executed. The NULL
instruction generates null tokens. Null tokens that arrive at a write or store
instruction result in a nullified block output (as described in section 2.8).
Instructions that encounter exceptions as they execute generate exception
tokens. Exception tokens that arrive at a write or store instruction result in
a block execute exception.

When an instruction receives a null token or an exception token, it usually
propagates a similar token to each of its targets. Because some
instructions receive multiple tokens as operands and predicates, a set of
policies are needed to define the expected result for every possible
combination of tokens. These policies are defined in Chapter 5.

With predication, it is possible for instructions to generate exception
tokens that never reach a write or store instruction. For these cases, the
exception is considered a false exception and should not be reported. To
ensure that all real exceptions are reported and that no false exceptions
are reported, predicated code must preserve the program’s original control
dependences.

2.10 Load Dependences

Although most dependences are known at compile time and explicitly
encoded in the instructions, load dependences present a special
challenge. Because load and store addresses are computed at run time, it

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 22 March 10, 2005

is difficult to know whether a load and a store will be accessing the same
location in memory. Loads may sometimes be dependent upon prior
stores in the same block. When a dependence does exist, the processor
must ensure that the correct value is forwarded from the store to the load.
This is called store forwarding.

The architecture allows instructions to execute in dataflow order, rather
than program order – this is true even for load and store instructions. The
processor continuously checks for load dependence violations (using the
LSQ). As long as each load executes after all stores that it depends upon,
store forwarding will occur as needed and everything is fine. If a load
happens to execute before a store that it depends upon, the processor
must take special action to enforce the correct load and store ordering.
This usually involves re-executing the block.

Our processor implementation employs a load dependence predictor to
dynamically predict potential load dependences in a program. For each
load executed, the processor predicts whether it will be dependent upon a
not-yet-executed store. If a dependence is predicted, the processor will
defer execution of the load until all prior stores have executed.

Some information about the original program order must be maintained to
allow the processor to recognize load dependences. The LSQ entries
must be assigned in such a way that each load has a greater index than
all prior stores. The LSQ index is also referred to as a Load Store
Identifier (LSID) throughout this document. See Chapter 5 for more
information about the LSQ.

2.11 Execution Flags

The TRIPS processor defines a set execution flags that control various
aspects of block execution. Separate copies of these flags exist in the
Processor Control Register (PCR) and in each block’s header. Both
copies are combined to produce the actual execution flags for each
particular program block.

The name and function of each execution flag is described below:

• Inhibit Branch Predictor – When this flag is set, the processor’s
branch predictor will not be used to predict the next block. Instead,

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 23 March 10, 2005

the processor will wait for the block to execute a branch instruction
and then use the result to control subsequent speculation.

• Inhibit Load Predictor – When this flag is set, the processor’s load
predictor will not be used to predict dependences for loads in the
block. Instead, the processor will defer execution of each load in
the block until all prior stores have executed.

• Block Synchronization Required – When this flag is set, the
processor will synchronize the execution of the block with all prior
and subsequent blocks from the same thread. The processor
enforces a synchronization “barrier” just before and just after the
block. The synchronized block will not be allowed to execute until
all prior blocks have executed and their results have been
committed. This includes synchronization of all external stores in
the system. Similarly, subsequent blocks will not be allowed to
execute until the synchronized block has been executed and all of
its results have been committed throughout the system.

• Thread Synchronization Required – When this flag is set, the
processor will synchronize the execution of the block with similarly
flagged blocks from other active threads. The processor
guarantees that it will not overlap execution for these “exclusive”
blocks. It will execute and commit one of these blocks before
allowing another of these blocks to execute.

• Break Before Block – When this flag is set, the processor will report
a Breakpoint Exception just prior to executing the block. This flag is
used to support debugger breakpoints.

• Break After Block – When this flag is set, the processor will report a
Breakpoint Exception just after executing and committing the block.
This flag is used to support debugger single-stepping.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 24 March 10, 2005

Chapter 3 - Programs

3.1 Program Format

Each TRIPS program consists of one or more program blocks (or just
“blocks” for short). Each block may contain multiple instructions that are
to be executed together. TRIPS programs are executed in a block-atomic
manner – one block at a time rather than one instruction at a time. Based
upon the program characteristics and the compiler techniques applied,
TRIPS blocks may be formed from conventional basic blocks,
superblocks, or hyperblocks (these are compiler terms whose definition is
beyond the scope of this document).

During execution, a Program Counter (PC) is maintained that always
holds the base address of the currently executing program block.

Each TRIPS program block consists of one or more program chunks.
Chunks are always 128 bytes in size and aligned to a 128-byte boundary
in memory. Therefore, each program block must also be aligned to a 128-
byte boundary in memory.

Most programs will consist of multiple program blocks. These blocks will
usually be placed adjacent to one another in memory, but no specific
sequence or placement of blocks is required. In the TRIPS architecture,
there is no notion of sequential control flow. Every block must include a
branch instruction that explicitly updates the PC, transferring control from
one block to the next.

3.2 Block Format

The following diagram illustrates the supported formats for a TRIPS
program block. Each block consists of a header chunk, followed by one to
four instruction chunks. The header chunk holds a block header, up to 32
read instructions, and up to 32 write instructions. The instruction chunks
each hold 32 regular instructions (up to 128 per block).

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 25 March 10, 2005

Header
Chunk

Instruction
Chunk 0

Instruction
Chunk 1

Instruction
Chunk 2

Instruction
Chunk 3

PC

128 Bytes

TRIPS Program Block Formats

128 Bytes

128 Bytes

128 Bytes

128 Bytes

Header
Chunk

Instruction
Chunk 0

Instruction
Chunk 1

Instruction
Chunk 2

Header
Chunk

Instruction
Chunk 0

Instruction
Chunk 1

Header
Chunk

Instruction
Chunk 0

Type 1 Type 2 Type 3 Type 4

3.3 Header Chunk Format

The following diagram describes the format of a header chunk. Each
header chunk consists of 32 consecutive words (each 32 bits wide). Each
word includes the following:

• One 4-bit header nibble

• One 22-bit read instruction

• One 6-bit write instruction

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 26 March 10, 2005

H0

Header Chunk Format

Read 0 Write 0

H1 Read 1 Write 1

H2 Read 2 Write 2

H3 Read 3 Write 3

H4 Read 4 Write 4

H5 Read 5 Write 5

H26 Read 26 Write 26

H27 Read 27 Write 27

H28 Read 28 Write 28

H29 Read 29 Write 29

H30 Read 30 Write 30

H31 Read 31 Write 31

...

0

4

8

12

112

116

120

124

16

20

104

108

Byte
Offsets

Bit Offsets

31 27 6 5 0

Each header chunk includes a block header that provides general
information about the block. The block header is assembled from multiple
4-bit nibbles. These nibbles are concatenated together to form a 128-bit
header. Nibbles are stored in a big-endian order (nibble H0 holds the
most significant bits and nibble 31 holds the least significant bits).

The 128-bit block header includes multiple fields. Its format is described
in the following diagram.

64

-

MARK

127 119 120

0

-

SMASK

63 31 32

TYPE XFLAGS

112 111 104 103

These fields are described in the following table.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 27 March 10, 2005

Bits Field Description

127:120 MARK
Header Mark – This field helps to distinguish header
chunks from other chunks. It should always hold
the value 0xFF.

119:112 TYPE

Block Type – This field identifies the type of
program block. The following block types are
allowed.

0 – Default Block (same as type 4)

1 – 32 Inst Block (1 Inst Chunk)

2 – 64 Inst Block (2 Inst Chunks)

3 – 96 Inst Block (3 Inst Chunks)

4 – 128 Inst Block (4 Inst Chunks)

111:104 XFLAGS
Block Execution Flags – This field holds one or
more special execution flags. These flags indicate
special execution requirements.

103:64 - Reserved

63:32 SMASK

Store Mask – This field indicates which of the 32
LSQ entries (if any) have been assigned to stores.
The mask bits are numbered from 31 down to 0
(with bit i corresponding to LSID i).

31:0 - Reserved

A Header Mark is used to help distinguish header chunks from other
program chunks. All header chunks should include the mark 0xFF.
Attempts to fetch a program block without a valid header mark will result in
a Fetch Exception.

The Block Type is used to determine the size of the program block.
Attempts to fetch a program block with an illegal block type will result in a
Fetch Exception. The legal block types are defined in the table above.

Block Execution Flags are included in the header and control certain
aspects of block execution. Normally these flags are all clear (zeroed),
but in some cases they will need to be set to ensure proper program
execution. The XFLAGS field holds eight bits, numbered from 7 (msb)

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 28 March 10, 2005

down to 0 (lsb). The following individual flags are defined. Each flag’s
function was described in Chapter 2.

Flag Bit Description

XFLAGS[0] Inhibit Branch Predictor

XFLAGS[1] Inhibit Load Predictor

XFLAGS[2] Block Synchronization Required

XFLAGS[3] Thread Synchronization Required

XFLAGS[4] Break Before Block

XFLAGS[5] Break After Block

XFLAGS[6] Reserved

XFLAGS[7] Reserved

The Store Mask identifies individual LSQ entries that have been assigned
for stores. Information must be received for each of these stores before
the block is allowed to complete. See Chapter 5 for more information
about the LSQ.

The read and write instructions within a header chunk allow access to a
program’s General Registers. Read instructions are numbered in order
from 0 to 31. Write instructions are also numbered in order from 0 to 31.
These numbers are referred to, respectively, as Read IDs and Write IDs.
They correspond to positions within the Read Queue and Write Queue.
See Chapter 5 for more information about the queues.

3.4 Instruction Chunk Format

The following diagram describes the format of an instruction chunk. Each
instruction chunk consists of 32 words (each 32 bits wide). Each word
holds a 32-bit instruction.

Instructions are numbered in order, beginning with instruction 0. The first
instruction chunk holds instructions 0 through 31, the second holds
instructions 32 through 63, the third holds instructions 64 through 95, and
the fourth holds instructions 96 through 127. These numbers are referred

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 29 March 10, 2005

to as Instruction IDs and correspond to positions within the Instruction
Queue.

Instruction Chunk Format

Instruction i + 0

Instruction i + 1

Instruction i + 2

Instruction i + 3

Instruction i + 4

Instruction i + 5

Instruction i + 26

Instruction i + 27

Instruction i + 28

Instruction i + 29

Instruction i + 30

Instruction i + 31

...

0

4

8

12

112

116

120

124

16

20

104

108

Byte
Offsets

Bit Offsets

31 0

3.5 Block Capacity Restrictions

The specified block format, along with other constraints in the architecture,
lead to a number of capacity restrictions. These restrictions are
summarized here.

• Each block may hold up to 32 read instructions (8 per bank)

• Each block may hold up to 32 write instructions (8 per bank)

• Each block may hold up to 128 regular instructions

• Each block may hold up to 32 total loads and stores

• Each block may hold up to 8 total branches (or unique exits)

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 30 March 10, 2005

Chapter 4 - Registers

4.1 Register Set

4.1.1 Register Summary

The following diagram summarizes the TRIPS Processor register set.
Some registers are associated with the entire processor, while others are
associated with individual processor thread slots. Registers associated
with individual thread slots are replicated for each supported thread.

Thread 3 Registers

Thread 2 Registers

Thread 1 Registers

Thread 0 Registers

PCR

PSR

DTLB0

DTLB15
...

ITLB0

ITLB15
...

TCR

TSR

PC

GR0

GR127
...

Processor Control
and Status
Registers

TLB Registers

Thread Control
and Status
Registers

Program
Counter

General
Registers

TVR

COR

LPCR

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 31 March 10, 2005

4.1.2 Processor Control and Status Registers

A few internal registers are defined for configuring and controlling the
processor. A Processor Control Register (PCR) is defined for configuring
the TRIPS Processor. A Processor Status Register (PSR) provides
processor-level status information. The Timeout Value Register (TVR) is
used to specify a timeout limit. The Cache Operation Register (COR) is
used to initiate cache flush operations. The Load Predictor Control
Register (LPCR) is used to configure the load predictor. See section 4.2
for descriptions of each control and status register.

4.1.3 TLB Registers

The TRIPS Processor includes two sets of Translation-Lookaside Buffer
(TLB) registers. A set of sixteen ITLB Registers are used to describe
memory segments that the processor may fetch from. A set of sixteen
DTLB Registers are used to describe memory segments that the
processor may load from or store to. Each TLB register is 16-bytes wide
(formed from two 8-byte doublewords). This is illustrated in the following
diagram.

See section 4.2 for descriptions of the TLB registers. See section 6.3 for
an overview of the TLBs.

ITLB0 (High)

ITLB0 (Low)

...

ITLB

ITLB1 (High)

ITLB1 (Low)

ITLB15 (High)

ITLB15 (Low)

DTLB0 (High)

DTLB0 (Low)

...

ITLB

DTLB1 (High)

DTLB1 (Low)

DTLB15 (High)

DTLB15 (Low)

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 32 March 10, 2005

4.1.4 Thread Control and Status Registers

Several internal registers are defined for configuring and controlling
individual processor thread slots. A set of Thread Control Registers
(TCRs) allow each thread slot to be configured. A set of Thread Status
Registers (TSRs) provide thread-level status information. See section 4.2
for descriptions of each control and status register.

4.1.5 Program Counters

A set of Program Counters (PCs) are defined that maintain the current
program address for each active thread. These are actually just special
registers (not counters). Each PC may be explicitly loaded by software
(when the processor is halted) and is also updated during thread
execution as a thread transitions from one program block to another.

4.1.6 General Registers

The TRIPS Processor architecture defines 128 General Registers (GRs)
for each processor thread slot. Each of these registers may be used to
store a 64-bit value (which can be an integer, a floating-point number, or
any other generic value). For each thread slot, the General Registers are
numbered from 0 to 127 and referred to as GR0 – GR127. These
registers may be used for any purpose (but software is expected to define
register usage conventions).

Each thread’s General Register set is divided into four register banks.
Each bank holds 32 General Registers. (This banking technique makes it
much easier for the processor to support multiple concurrent General
Register accesses and speculative execution.)

General Registers are distributed across register banks so that bank 0
holds GR0, GR4, GR8, etc. Bank 1 holds GR1, GR5, GR9, etc. In
general, register bank i holds General Registers i + 4*j (where j
ranges from 0 to 31). This is illustrated in the following diagram.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 33 March 10, 2005

General Registers may be read and written by an external controller when
the processor is halted. This allows an external controller to perform
context switches, handle system calls, etc.

General Registers may also be read and written by a program thread
during execution. Of course, each thread can only access its own copy of
the General Registers. See Chapter 5 for more information about General
Register reads and writes during execution.

4.1.7 Performance Monitor Registers

Several additional registers are associated with a built-in Performance
Monitor. These special registers are not defined in this chapter. See
Chapter 9 for a full description of the Performance Monitor and its
registers.

4.2 Register Map

Each TRIPS Processor provides memory-mapped access to its internal
registers. A configuration port on the TRIPS Processor allows an external
controller to read or write the registers (only when the processor is halted).
A 64 KB window of address space may be used to map the following
registers. (Some registers are grouped for convenience. All other
locations within the 64 KB window are reserved.)

GR0

GR8

GR4

...

GR116

GR120

GR124

GR1

GR9

GR5

...

GR117

GR121

GR125

GR2

GR10

GR6

...

GR118

GR122

GR126

GR3

GR11

GR7

...

GR119

GR123

GR127

GR Bank 0 GR Bank 1 GR Bank 2 GR Bank 3

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 34 March 10, 2005

Offset Bytes Registers

0x0008 4 Processor Control Register (PCR)

0x000C 4 Processor Status Register (PSR)

0x0014 4 Timeout Value Register (TVR)

0x0018 4 Cache Operation Register (COR)

0x001C 4 Load Predictor Control Register (LPCR)

0x0400 4 Thread 0 Thread Control Register (TCR)

0x0404 4 Thread 0 Thread Status Register (TSR)

0x0408 8 Thread 0 Program Counter (PC)

0x0440 4 Thread 1 Thread Control Register (TCR)

0x0444 4 Thread 1 Thread Status Register (TSR)

0x0448 8 Thread 1 Program Counter (PC)

0x0480 4 Thread 2 Thread Control Register (TCR)

0x0484 4 Thread 2 Thread Status Register (TSR)

0x0488 8 Thread 2 Program Counter (PC)

0x04C0 4 Thread 3 Thread Control Register (TCR)

0x04C4 4 Thread 3 Thread Status Register (TSR)

0x04C8 8 Thread 3 Program Counter (PC)

0x0800 256 ITLB Registers (ITLB0 – ITLB15)

0x0C00 256 DTLB Registers (DTLB0 – DTLB15)

0x1000 1024 Thread 0 General Registers (GR0 – GR127)

0x1400 1024 Thread 1 General Registers (GR0 – GR127)

0x1800 1024 Thread 2 General Registers (GR0 – GR127)

0x1C00 1024 Thread 3 General Registers (GR0 – GR127)

0x2000 (512) Performance Monitor Registers

External accesses must always read or write 4 or 8 bytes at a time.
Registers that are 4 bytes wide must be accessed as 4 bytes. Registers

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 35 March 10, 2005

that are 8 bytes wide must be accessed as 8 bytes. Registers that are 16
bytes wide require two 8-byte accesses. All accesses must use naturally-
aligned addresses.

4.3 Register Descriptions

4.3.1 Alphabetical Register List

The rest of this chapter includes individual register descriptions, listed in
alphabetical order.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 36 March 10, 2005

0

OP

1 2

-

31

COR
Cache Operation Register

Format:

Description:

The Cache Operation Register (COR) is used to initiate special cache
operations. In order to initiate a cache operation, the processor must first
be halted. Writing a non-zero value into the OP field will initiate a cache
flush operation. When the cache operation is complete, the processor will
automatically clear the OP field.

Fields:

The following table describes each field of the COR.

Bits Field Description

1:0 OP

Operation Status:

0 – Idle

1 – Inst Cache Flush

2 – Data Cache Flush

31:2 - Reserved

Notes:

All COR fields are cleared (zeroed) during reset.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 37 March 10, 2005

64

V SIZE

65

PHYSICAL BASE

127 66

7

- ASID

8

79 80

0

R

1

VIRTUAL BASE

63 2

67

W

11 12

C - M

68

-

15 16

-

-

103 104

39 40

DTLB0 – DTLB15
Data TLB Registers

Format:

Description:

The Data TLB Registers (DTLBs) define attributes and address
translations for up to sixteen memory segments. Each register includes
128-bits of information (accessible as a high 64-bits and a low 64-bits).
See section 6.3 for more information about TLBs.

Fields:

The following table describes each field of a DTLB register.

Bits Field Description

0 V

Valid Bit – Identifies whether the TLB register contains
valid information.

0 – Invalid

1 – Valid

1 - Reserved

7:2 SIZE

Segment Size – This field describes the segment size.
The minimum size is 64 KB. The size is computed as 64 *
2SIZE KB. Here are some sample encodings.

0 – 64 KB

1 – 128 KB

4 – 1 MB

24 – 1 TB

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 38 March 10, 2005

Bits Field Description

11:8 ASID
Address Space Identifier – This field determines which
virtual address space may use this TLB entry.

15:12 - Reserved

39:16
VIRTUAL

BASE

Virtual Base Address – Specifies the virtual base address
of the segment. Depending upon the segment size, some
of the lower bits may be ignored.

63:40 - Reserved

64 R
Readable – Specifies whether bytes within this segment
may be read.

65 W
Writeable – Specifies whether bytes within this segment
may be written.

66 C
Cacheable – Specifies whether bytes within this segment
may be cached.

67 M
Mergeable – Specifies whether individual loads and stores
may be merged and issued to the system as larger loads
and stores.

79:68 - Reserved

103:80
PHYSICAL

BASE

Physical Base Address – Specifies the physical base
address of the segment. Depending upon the segment
size, some of the lower bits may be ignored.

127:104 - Reserved

Notes:

All DTLB fields are cleared (zeroed) during reset.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 39 March 10, 2005

64

V SIZE

65

PHYSICAL BASE

127

7

- ASID

8

79 80

0

X

1

VIRTUAL BASE

63 2 11 12

- - C

66 67

-

15 16

-

-

39 40

103 104

ITLB0 – ITLB15
Instruction TLB Registers

Format:

Description:

The Instruction TLB Registers (ITLBs) define attributes and address
translations for up to sixteen segments. Each register includes 128-bits of
information (accessible as a high 64-bits and a low 64-bits). See section
6.3 for more information about TLBs.

Fields:

The following table describes each field of an ITLB register.

Bits Field Description

0 V

Valid Bit – Identifies whether the TLB register contains
valid information.

0 – Invalid

1 – Valid

1 - Reserved

7:2 SIZE

Segment Size – This field describes the segment size.
The minimum size is 64 KB. The size is computed as 64 *
2SIZE KB. Here are some sample encodings.

0 – 64 KB

1 – 128 KB

4 – 1 MB

24 – 1 TB

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 40 March 10, 2005

Bits Field Description

11:8 ASID
Address Space Identifier – This field determines which
virtual address space may use this TLB entry.

15:12 - Reserved

39:16
VIRTUAL

BASE

Virtual Base Address – Specifies the virtual base address
of the segment. Depending upon the segment size, some
of the lower bits may be ignored.

63:40 - Reserved

64 X
Executable – Specifies whether blocks within this segment
may be executed.

65 - Reserved

66 C
Cacheable – Specifies whether bytes within this segment
may be cached.

79:65 - Reserved

103:80
PHYSICAL

BASE

Physical Base Address – Specifies the physical base
address of the segment. Depending upon the segment
size, some of the lower bits may be ignored.

127:104 - Reserved

Notes:

All ITLB fields are cleared (zeroed) during reset.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 41 March 10, 2005

0

RI

31

-

7 8

M

1

LPCR
Load Predictor Control Register

Format:

Description:

The Load Predictor Control Register (LPCR) is used to configure the
processor’s load predictor.

Fields:

The following table describes each field of the LPCR.

Bits Field Description

0 M

Predictor Mode

0 – Always predict no dependence

1 – Use the predictor history table

7:1 - Reserved

31:8 RI

Reset Interval – Specifies the number of blocks that
should be allowed to commit before resetting the load
predictor’s history. The reset interval is computed by
multiplying this field’s value by 256. Each time a block
commits, the processor increments a committed block
count and compares the results to the reset interval. If the
values are equal, the load predictor and committed block
count are both reset. A zero in this field is interpreted as
an interval of 232 blocks.

Notes:

The LPCR is cleared (zeroed) during reset.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 42 March 10, 2005

ADDR

63 0

-

40 39

PCs
Program Counters

Format:

Description:

The TRIPS processor includes four Program Counters (PCs). Each PC is
associated with an independent processor thread slot. These are similar
to conventional program counters. Each PC is used to hold the virtual
address of the currently-executing program block.

The address stored in a PC must always be aligned to a 128-byte
boundary (the lower seven bits must always be zero). Otherwise, a Fetch
Exception will occur when a fetch is attempted.

During execution, the PC may be read using a MFPC instruction and
written (or modified) using a branch instruction.

Fields:

The following table describes each field of a PC.

Bits Field Description

63:40 - Reserved

39:0 ADDR Address

Notes:

Each PC is cleared (zeroed) during reset.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 43 March 10, 2005

0

M -

1 6

-

31 7 8 15

XFLAGS

16

PCR
Processor Control Register

Format:

Description:

The Processor Control Register (PCR) is used to configure the TRIPS
processor. It controls the overall mode of the processor and includes a
number of global execution flags that affect how program blocks are
executed.

Fields:

The following table describes each field of the PCR.

Bits Field Description

0 M

Mode Control – Configures the processor to run in a
specific mode.

0 – Default Mode (D-Morph)

1 – Multi-Threading Mode (T-Morph)

7:1 - Reserved

15:8 XFLAGS

Global Execution Flags

XFLAGS[0] – Inhibit Branch Predictor

XFLAGS[1] – Inhibit Load Predictor

XFLAGS[2] – Block Synchronization Required

XFLAGS[3] – Thread Synchronization Required

XFLAGS[4] – Break Before Block

XFLAGS[5] – Break After Block

XFLAGS[6] – Reserved

XFLAGS[7] – Reserved

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 44 March 10, 2005

Bits Field Description

63:16 - Reserved

Notes:

All PCR fields are cleared (zeroed) during reset.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 45 March 10, 2005

0

E

1

-

31 3 4 15 16

RE - IE - T0 T1 T2 T3

17 18 19 20 2

PSR
Processor Status Register

Format:

Description:

The Processor Status Register (PSR) is used to record status information
for the entire TRIPS processor. Only the processor may set status flags.
Software must clear this register to restart the processor.

Fields:

The following table describes each field of the PSR.

Bits Field Description

0 E
Exception Flag – Indicates that the processor has halted
due to an exception. One or more of the following flags
will also be set to indicate the exception type.

1 RE
Reset Exception Flag – Indicates that a Reset Exception
has occurred.

2 - Reserved

3 IE
Interrupt Exception Flag – Indicates that an Interrupt
Exception has occurred.

15:4 - Reserved

16 T0
Thread 0 Exception Flag – Indicates that an exception has
occurred for thread slot 0.

17 T1
Thread 1 Exception Flag – Indicates that an exception has
occurred for thread slot 1.

18 T2
Thread 2 Exception Flag – Indicates that an exception has
occurred for thread slot 2.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 46 March 10, 2005

Bits Field Description

19 T3
Thread 3 Exception Flag – Indicates that an exception has
occurred for thread slot 3.

31:20 - Reserved

Notes:

All PSR fields are cleared (zeroed) during reset, but the processor will
immediately report a Reset Exception after the reset signal has been
deasserted.

The processor will come to a halt as soon as possible after a processor
exception has been detected.

This register is not generally writeable, just clearable. A write to this
register will cause all fields to be cleared.

In some cases, the processor may set multiple exception flags to indicate
simultaneous exceptions.

See Chapter 7 for additional details related to exceptions.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 47 March 10, 2005

0

V - ASID

1 3 4

-

31 7 8

TCRs
Thread Control Registers

Format:

Description:

The TRIPS processor includes four Thread Control Registers (TCRs).
Each TCR is associated with an independent processor thread slot. TCRs
associated with threads 1-3 are ignored when the processor is not in the
Multi-Threading Mode (T-Morph).

Fields:

The following table describes each field of the TCR.

Bits Field Description

0 V

Valid Bit – Indicates whether this thread is valid and
should be run or is not valid and should remain idle.

0 – Thread is not valid

1 – Thread is valid

3:1 - Reserved

7:4 ASID
Address Space Identifier – This field determines which
virtual address space the thread will use.

31:8 - Reserved

Notes:

All TCR fields are cleared (zeroed) during reset.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 48 March 10, 2005

0
E

1

-

31 7 6 3 4
FE BR TO EX ST SC

5 2

TSRs
Thread Status Registers

Format:

Description:

The TRIPS processor includes four Thread Status Registers (TSRs).
Each TSR is associated with an independent processor thread slot. The
TSR is used to record status information for the corresponding program
thread. Only the processor may set status flags. Software must clear this
register after servicing a thread exception.

Fields:

The following table describes each field of the TSR.

Bits Field Description

0 E
Exception Flag – Indicates that a thread exception has
occurred. One or more of the following flags will also be
set to indicate the exception type.

1 FE
Fetch Exception Flag – Indicates that a Fetch Exception
has occurred.

2 BR
Breakpoint Exception – Indicates that a Breakpoint
Exception has occurred.

3 TO
Timeout Exception – Indicates that a Timeout Exception
has occurred.

4 EX
Execute Exception – Indicates that an Execute Exception
has occurred.

5 ST
Store Exception – Indicates that a Store Exception has
occurred.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 49 March 10, 2005

Bits Field Description

6 SC
System Call Exception – Indicates that a System Call
Exception has occurred.

31:7 - Reserved

Notes:

All TSR fields are cleared (zeroed) during reset.

This register is not generally writeable, just clearable. A write to this
register will cause all fields to be cleared.

In some cases, the processor may set multiple exception flags to indicate
simultaneous exceptions.

See Chapter 7 for additional details related to exceptions.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 50 March 10, 2005

0

VALUE

31

TVR
Timeout Value Register

Format:

Description:

The Timeout Value Register (TVR) is used to specify a Timeout Value for
the TRIPS processor. This value specifies the maximum number of clock
cycles that the processor will wait for an individual program block to
execute before reporting a Timeout Exception. See Chapter 7 for
additional details related to Timeout Exceptions.

Fields:

The following table describes each field of the TVR.

Bits Field Description

31:0 VALUE Timeout Value

Notes:

The TVR is cleared (zeroed) during reset.

A zero in the Timeout Value field is interpreted as 232, rather than 0.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 51 March 10, 2005

Chapter 5 - Queues

5.1 Execution Queues

This chapter describes the processor’s architected queues, which include
the Instruction Queue, Read Queue, Write Queue, and Load & Store
Queue. Collectively, these are referred to as execution queues. They are
used to buffer instructions, operands, and results as a program block
executes.

NOTE: The following high-level descriptions correspond to the TRIPS
processor architecture. Details may vary within the actual processor
implementation.

5.2 Instruction Queue

The Instruction Queue (IQ) manages up to 128 instructions for each
executed program block. Instructions are loaded into the queue when a
block is fetched. Each instruction executes only after receiving all
required operands and predicates. Instructions are invalidated from the
queue after being executed or when the block is committed.

Each instruction within the IQ is assigned an Instruction ID that
corresponds to its position in the queue. Instructions with lower IDs
generally have higher priority than instructions with higher IDs.

The following information is kept for each instruction in the IQ.

• VALID – Indicates a valid IQ entry

• INST – 32-bit instruction (as fetched from memory)

• OP0 – Operand 0 pending status and 64-bit value

• OP1 – Operand 1 pending status and 64-bit value

• PRED – Predicate pending status

• NULL – Null token received status

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 52 March 10, 2005

• EXCEPT – Exception token received status

• READY – Ready to execute status

Instructions are decoded as they are fetched into the IQ. If the instruction
requires one operand, the OP0 pending status will be set to true. If the
instruction requires two operands, both the OP0 and OP1 pending status
will be set to true. If the instruction is predicated, the PRED pending
status will be set to true. The NULL and EXCEPT status are initialized to
false.

If an instruction is valid (and not a NOP) but has no pending operands or
pending predicate, it will be immediately ready for execution and its
READY status will be set to true. Otherwise, its READY status will be set
to false. As long as an instruction has pending operands or a pending
predicate, the instruction will remain unready. Dataflow tokens must be
received (from other instructions) in order for a pending instruction to
become ready for execution.

If a dataflow token targets an instruction’s operand slot, the 64-bit value
will be saved and the corresponding OP0 or OP1 pending status will be
set to false. If the token is an exception or null token, the NULL or
EXCEPT status will also be set to true.

If a dataflow token targets an instruction’s predicate slot, the predicate
value will be examined. If the predicate value matches the instruction’s
predicating condition (true or false), the PRED pending status will be set to
false. However, special handling is required if the token is an exception or
null token. If an exception token is received for a predicate, the predicate
value will always be interpreted as a false predicate and the instruction’s
EXCEPT status will be set to true. If a null token is received for a
predicate, the token will be completely ignored.

Any time that an instruction’s operand or predicate pending status is
modified, the READY status is recomputed. If an instruction has no
pending operands or predicate, it will be marked ready for execution.

When an instruction executes, the NULL and EXCEPT status information
will be examined. If the EXCEPT status is true, the instruction will always
produce an exception token as a result. Otherwise, if the NULL status is
true, the instruction will produce a null token as a result. If the EXCEPT
and NULL status are both false, the instruction will produce a normal
token as a result.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 53 March 10, 2005

5.3 Read Queue

The Read Queue (RQ) manages up to 32 read instructions for each
executed program block. Read instructions are loaded into the queue
when a block is fetched. Each read executes as soon as the required
execution resources become available. Instructions are invalidated from
the queue after being executed or when the block is committed.

Each instruction within the RQ is assigned a Read ID that corresponds to
its position in the queue. Instructions with lower IDs generally have higher
priority than instructions with higher IDs.

The RQ is divided into four banks, just like the General Register set. RQ
bank 0 holds read instructions 0, 4, 8, etc. RQ bank 1 holds reads
instructions 1, 5, 9, etc. In general, bank i holds reads instructions i +
4*j (where j ranges from 0 to 7). Read instructions in RQ bank i may
only read General Registers in GR bank i.

The following information is kept for each read instruction in the RQ.

• VALID – Indicates a valid RQ entry

• GR – Identifies the GR to be read (from the same bank)

• RT0 – Describes the primary target of the read

• RT1 – Describes the secondary target of the read (optional)

See Chapter 8 for more information about the read instruction.

When speculative block execution is implemented, the Read Queue may
also need to wait for a previous write value to be written or forwarded.
Those details are beyond the scope of this document.

5.4 Write Queue

The Write Queue (WQ) manages up to 32 write instructions for each
executed program block. Write instructions are loaded into the queue
when a block is fetched. Write instructions operate only after block
execution is complete and during the block commit step.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 54 March 10, 2005

Each instruction within the WQ is assigned a Write ID that corresponds to
its position in the queue. Instructions with lower IDs generally have higher
priority than instructions with higher IDs.

The WQ is divided into four banks, just like the General Register set. WQ
bank 0 holds write instructions 0, 4, 8, etc. WQ bank 1 holds write
instructions 1, 5, 9, etc. In general, bank i holds write instructions i +
4*j (where j ranges from 0 to 7). Write instructions in WQ bank i may
only write General Registers in GR bank i.

The following information is kept for each write instruction in the WQ.

• VALID – Indicates a valid WQ entry

• GR – Identifies the GR to be written (from the same bank)

• DATA – 64-bit data value

• NULL – Null token received status

• EXCEPT – Exception token received status

• READY – Ready to complete status

Write instructions are examined as they are fetched into the WQ. For
each valid instruction, the NULL, EXCEPT, and READY status are
initialized to false. Dataflow tokens must be received in order for each
write instruction to become ready to complete. When a dataflow token
targets a write instruction, the corresponding READY status will be set to
true. If the token is a null or exception token, the NULL or EXCEPT status
will also be set to true.

Every valid write instruction must become READY in order for block
execution to complete. If any write instruction’s EXCEPT status is true, an
Execute Exception will be reported and no writes will be committed. If the
block does commit, the NULL status information determines whether each
individual write will be committed or nullified.

When speculative block execution is implemented, the Write Queue also
implements block-level register renaming and register forwarding. Those
details are beyond the scope of this document.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 55 March 10, 2005

5.5 Load & Store Queue

The Load & Store Queue (LSQ) manages up to 32 load and store
instructions for each executed program block. Store instructions are
identified when a block is fetched, but the load and store instructions do
not actually arrive at the LSQ until they are first executed from the IQ.
Information is added to the LSQ as each load and store instruction arrives.

Each instruction within the LSQ is assigned a Load & Store ID that
corresponds to its position in the queue. Instructions with lower IDs
generally have higher priority than instructions with higher IDs. However,
the IDs are primarily used to establish load dependences and to enforce
correct load and store ordering. A load may be dependent upon one or
more stores from the same block with matching addresses and lower IDs.
The LSQ is normally used in conjunction with a load dependence predictor
to satisfy load dependences without inhibiting independent loads.

When a dependence is discovered, the processor forwards one or more
bytes of data from the store to the load. Because loads and stores may
vary in size from one byte to eight bytes, several store forwarding
scenarios are possible. In some cases, the processor may need to
forward data from multiple stores to satisfy the load. In some cases, the
store(s) may provide only part of the required data and the processor must
retrieve the remaining bytes from the Data Cache or memory.

The following information is kept for each load instruction in the LSQ.

• LVALID – Indicates a valid LSQ load entry

• TYPE – Information about the load size and type

• ADDR – Virtual address for the load

Load instructions are delivered to the LSQ from the IQ as dataflow tokens
carrying information about the load instruction and address. If a null or
exception token is received, the load instruction produces an exception
token as a result. Otherwise, the load produces a normal token carrying
the load data.

The following information is kept for each store instruction in the LSQ.

• SVALID – Indicates a valid LSQ store entry

• TYPE – Information about the store size and type

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 56 March 10, 2005

• ADDR – Virtual address for the store

• DATA – Data to be stored (up to 64 bits)

• NULL – Null token received status

• EXCEPT – Exception token received status

• READY – Ready to complete status

Store instruction slots are identified (using the store mask) and marked in
the LSQ as each block is fetched. For each store instruction, the NULL,
EXCEPT, and READY status are initialized to false. Dataflow tokens must
be received in order for each store instruction to become ready to
complete (and ready to forward). These tokens are delivered to the LSQ
from the IQ and carry information about the store instruction, address, and
data. When a store instruction arrives at the LSQ, the corresponding
READY status will be set to true. If the token is a null or exception token,
the NULL or EXCEPT status will also be set to true. Stores that receive
null or exception tokens are not allowed to forward data to subsequent
loads. The store TYPE, ADDR, and DATA are also saved in the LSQ.

Every valid store instruction must become READY in order for block
execution to complete. If any store instruction’s EXCEPT status is true, an
Execute Exception will be reported and no stores will be committed. If the
block does commit, the NULL status information determines whether each
individual store will be committed or nullified.

The LSQ is one of the more complex mechanisms in the TRIPS
processor. Some implementation details have been omitted from the
previous description – in particular, details related to detecting and
enforcing load dependences. Those details are beyond the scope of this
document.

5.6 Program Counter Writes

Although Program Counter (PC) writes do not target a queue, they are
handled in much the same way as a register write. Every block must
execute a branch instruction in order for block execution to complete. A
branch instruction performs an implicit PC write and delivers its result as a
dataflow token. If the branch instruction produces a null or exception
token, an Execute Exception will be reported for the block.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 57 March 10, 2005

Chapter 6 - Memory

6.1 Addressing

TRIPS programs use 40-bit addresses to reference memory. Program
addresses are always treated as virtual addresses and translated to
physical addresses by the processor. Fetch addresses are translated by
an Instruction TLB (ITLB). Load and store addresses are translated by a
Data TLB (DTLB).

Each TRIPS program runs within a distinct virtual address space. A 4-bit
Address Space Identifier (ASID) is used to distinguish between multiple
address spaces. For example, one program may be assigned ASID 0 and
a second program may be assigned ASID 1. The first program’s address
0x0 will normally be translated differently than the second program’s
address 0x0. ASIDs are specified for each active thread in the TCRs.

The upper 24 bits of a 64-bit address operand should always be zero and
are ignored by the processor.

6.2 Segments

Each program’s virtual address space is divided into virtual segments.
Virtual segments may range is size from 64 KB all the way up to 240 bytes
(covering the entire virtual address space). Segment sizes must always
be a power of two (2N bytes, with 16 ≤ N ≤ 40).

Each virtual segment has a virtual base address that identifies its position
in the overall virtual address space. Each virtual segment corresponds to
an associated physical segment in the physical address space. The
physical segment is the same size as the virtual segment, but its base
address may be different than the virtual base address. Virtual and
physical segments must always be naturally aligned in memory.

Each segment may also be assigned protection attributes that allow or
prohibit certain types of access to that segment. For example, some
segments might be considered writeable, while others are not writeable.
The following segment attributes are defined:

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 58 March 10, 2005

• Executable – Indicates whether program blocks may be fetched
and executed from a segment.

• Readable – Indicates whether data may be read (or loaded) from a
segment.

• Writeable – Indicates whether data may be written (or stored) to a
segment.

• Cacheable – Indicates whether data from a segment may be
cached in a processor’s data caches.

• Mergeable – Indicates whether individual loads and stores may be
merged and issued to the system as larger loads and stores.

Multiple virtual and physical segments may be defined. Segments are
defined by software and communicated to the processor by programming
the TLBs. These segments may vary in size. Overlapping virtual
segments are disallowed. Virtual synonyms (two distinct virtual addresses
that translate to the same physical address) are also disallowed.

The TRIPS segment definitions are intended to support simple segment-
based memory management, but could also be used to support page-
based memory management.

6.3 TLBs

Each TRIPS processor includes an ITLB that may be used to
automatically translate virtual addresses to physical addresses for
program fetches. The ITLB can define up to sixteen segments at once.
Segments are defined by programming the corresponding ITLB Registers
(ITLB0 – ITLB15). See section 4.3 for a description of the ITLB register
format.

Each TRIPS processor includes a DTLB that may be used to automatically
translate virtual addresses to physical addresses for loads and stores.
The DTLB can define up to sixteen segments at once. Segments are
defined by programming the corresponding DTLB Registers (DTLB0 –
DTLB15). See section 4.3 for a description of the DTLB register format.

System software is responsible for managing segment definitions and
programming the TLBs appropriately. Depending upon the software
implementation and the runtime environment, the ITLB and DTLB

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 59 March 10, 2005

registers may need to be reprogrammed during system initialization, in
response to thread switches, and/or in response to dynamic TLB misses.

NOTE: Although the architecture manual defines a single ITLB and a
single DTLB, the processor implementation actually includes multiple
copies of the DTLB (distributed across rows). It is the hardware’s
responsibility to manage these redundant copies.

6.4 Caches

Each TRIPS processor includes a set of local (level 1) caches. An
Instruction Cache holds program blocks as they are fetched from system
memory by the processor. A Data Cache holds data values as they are
loaded from system memory by the processor.

A standard line size will be used when implementing the caches. Each
cache manages 64-byte cache lines.

The processor caches are not guaranteed to remain coherent with each
other or with other caches in a multi-processor system. No special
hardware cache coherency support should be assumed.

A Cache Operation Register (COR) is defined to allow system software to
explicitly manage the TRIPS processor’s caches. Special cache
operations may be initiated by writing an appropriate value to the COR.
Cache operations may only be initiated when the processor is halted.
Once an operation has been initiated, the COR must be read to determine
when the operation is complete. See section 4.3 for a description of the
COR.

The following cache operations are supported:

• Inst Cache Flush – Invalidate all lines in the Instruction Cache

• Data Cache Flush – Evict then invalidate all lines in the Data Cache

NOTE: Although the architecture manual defines a single Instruction
Cache and a single Data Cache, the processor implementation actually
includes multiple cache banks (distributed across rows). It is the
hardware’s responsibility to manage these distributed cache banks.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 60 March 10, 2005

6.5 Byte Ordering

When performing multi-byte (halfword, word, doubleword, or chunk)
memory accesses, the TRIPS processor uses big-endian byte ordering.
For example, a doubleword of data at address 0x0 would have its most
significant byte stored at address 0x0 and its least significant byte at
address 0x7.

6.6 Byte Alignment

When performing multi-byte (halfword, word, doubleword, or chunk)
memory accesses, the data being accessed must always be naturally
aligned in memory. A halfword address must always be even, with its
least significant bit equal to zero. A word address must always have its
two least significant bits equal to zero. And so on.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 61 March 10, 2005

Chapter 7 - Exceptions

7.1 Exception Model

The TRIPS processor operates with a relatively simple exception model.
Although a more sophisticated exception model is possible, we have
chosen to keeps things simple.

When an exceptional condition occurs, the TRIPS processor will come to
a halt and deliver a signal to a separate control processor. This separate
processor is expected to execute an exception handler that reads and
writes various registers in the TRIPS processor to diagnose and service
the exception. The TRIPS processor itself does not need to vector to an
exception handler, switch between operating modes, mask interrupts, or
perform special context synchronization while modifying its own control
registers.

7.2 Exception Status

7.2.1 Processor Exception Status

At any given time, a TRIPS processor may either be running or halted.
The processor status is indicated in the Processor Status Register (PSR).
The PSR’s Exception Flag will be clear (zero) when the processor is
running and set (one) when the processor is halted. The PSR also
includes some exception type information. The processor status is
reflected both in the PSR and on a special HALTED output pin.

The processor begins in the halted state after reset. Once halted, the
processor will remain halted until an external controller services the
processor and explicitly restarts it by clearing the Exception Flag in the
PSR. When running, the processor will continue running until an
exceptional event occurs that requires special service. Once an
exceptional event occurs, the processor will come to a halt as soon as
possible and report the exception by raising the Exception Flag in the
PSR.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 62 March 10, 2005

7.2.2 Thread Exception Status

Status information is also maintained for each processor thread slot and
reflected in the Thread Status Registers (TSRs). Each TSRs Exception
Flag will be clear (zero) when the associated thread slot is inactive or free
of exceptions and will be set (one) when the associated thread has
encountered a thread exception. Every thread exception also triggers a
processor exception (which halts the processor).

Exception handling software is expected to first examine the PSR to
determine what type of processor exception occurred. When the PSR
indicates that a thread exception has occurred, the exception handler
must then examine a specific TSR to determine additional exception type
information. The TSR must be cleared in order to restart a thread after a
thread exception has occurred. The PSR must also be cleared in order to
restart the processor.

7.3 Exception Types

The TRIPS architecture defines two broad categories of exceptions –
Processor Exceptions and Thread Exceptions. Processor exceptions are
associated with an entire TRIPS processor, while thread exceptions are
associated with just a single thread slot.

7.3.1 Processor Exception Types

Processor exceptions are divided into several types. These are
summarized in the following table.

Type PSR Bit

Reset Exception 1

Interrupt Exception 3

Thread 0 Exception 16

Thread 1 Exception 17

Thread 2 Exception 18

Thread 3 Exception 19

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 63 March 10, 2005

When a processor exception occurs, the processor will record the
exception type in the Processor Status Register (PSR) by setting one or
more exception type flags. It is possible for multiple processor exceptions
to be reported simultaneously.

Reset exceptions occur when the processor is first powered on (or
otherwise reset). Interrupt exceptions occur in response to an external
interrupt request. Thread exceptions occur when an active program
thread encounters a thread exception.

Most processor exceptions are considered asynchronous and may be
reported independent of any particular processor thread. If several
processor exceptions occur simultaneously, they may be prioritized by
software in the order listed above – with reset exceptions having the
highest priority and thread exceptions having the lowest priority.

Section 7.4 includes detailed descriptions for each type of exception.

7.3.2 Thread Exception Types

Thread exceptions are divided into several types. These are summarized
in the following table.

Type TSR Bit

Fetch Exception 1

Breakpoint Exception 2

Timeout Exception 3

Execute Exception 4

Store Exception 5

System Call Exception 6

When a thread exception occurs, the processor will record the exception
type in the corresponding Thread Status Register (TSR) by setting one or
more exception type flags. It is possible for multiple thread exceptions to

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 64 March 10, 2005

be reported simultaneously. For each block, thread exceptions are
normally detected and reported in the order listed above.

Most thread exceptions are block-precise, meaning that they are
discovered and reported while attempting to fetch or execute a particular
program block. The program state is precisely maintained, such that all
prior blocks (but no subsequent blocks) have completed before the
exception is reported. In most cases, the block that caused the exception
will not itself complete and an exception handler will be triggered with the
PC pointing to the block that caused the exception.

The System Call Exception is also considered block-precise, but triggers
the exception handler only after completing the block that issued the
system call instruction.

The Store Exception is a special case and may be reported imprecisely for
performance reasons. Stores are typically allowed to be buffered and
committed to memory in the background, without delaying subsequent
program execution. For this reason, one or more additional program
blocks may be allowed to complete before the exception is discovered and
reported.

Some thread exceptions are recoverable, while others are considered fatal
to the associated thread and program (but not the system). A software
exception handler is expected to diagnose each reported exception and
decide whether to proceed or to kill the associated program.

Section 7.4 includes detailed descriptions for each type of exception.

7.4 Exception Descriptions

7.4.1 Alphabetical Exception List

The rest of this chapter includes individual exception descriptions, listed in
alphabetical order. Thread exception descriptions and processor
exception descriptions are intermixed.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 65 March 10, 2005

BREAKPOINT EXCEPTION
Type:

Thread Exception
TSR[BR] == 1

Description:

A Breakpoint Exception occurs anytime a breakpoint is encountered
during program execution. Breakpoints are normally associated with
specific program blocks and are discovered after fetching the associate
program block. Breakpoint Exceptions may be triggered either before or
after executing the block, depending upon the type of breakpoint.

Breakpoints are defined by setting an appropriate Block Execution Flag in
a block header or a Global Execution Flag in the Program Control Register
(PCR). If the Break Before Block flag is set, the Breakpoint Exception will
occur just prior to executing the block. If, instead, the Break After Block
flag is set, the Breakpoint Exception will occur just after executing and
committing the block.

For blocks that execute a system call when the Break After Block flag is
set, the processor will report a Breakpoint Exception and a System Call
Exception simultaneously. The system call should be serviced before
processing the breakpoint.

Debugging systems are expected to use the Break Before Block flag for
implementing normal software breakpoints and the Break After Block flag
for single-stepping.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 66 March 10, 2005

EXECUTE EXCEPTION
Type:

Thread Exception
TSR[EX] == 1

Description:

An Execute Exception may occur while attempting to execute a program
block. This type of exception indicates that the program block could not
be fully or properly executed due to some form of execution error
(normally caused by a program error).

In most cases, this is considered a non-recoverable exception and the
exception handler must abort the associated program. In some cases, it
may be possible (or necessary) to emulate program block execution using
software and then resume normal execution from the subsequent program
block.

Several conditions are defined that can trigger an Execute Exception.
These are described below:

• Divide-By-Zero Error – This type of error occurs whenever an
integer divide instruction attempts to divide by zero.

• Misaligned Branch Error – This type of error occurs whenever a
branch instruction executes and computes a target address or an
offset that is not aligned to a 128-byte program chunk boundary.

• Misaligned Load Error – This type of error occurs whenever a load
instruction executes and computes an address that is not naturally
aligned.

• Misaligned Store Error – This type of error occurs whenever a load
instruction executes and computes an address that is not naturally
aligned.

• DTLB Translation Error – This type of error occurs whenever a load
or store address cannot be translated by any valid DTLB register.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 67 March 10, 2005

• DTLB Protection Error – This type of error occurs whenever a load
addresses an unreadable memory segment or a store addresses
an unwriteable memory segment.

• Lock Error – This type of error occurs whenever a LOCK instruction
addresses a cacheable memory segment.

• External Load Error – This type of error occurs whenever an
external load request results in an error message from the system.

The TRIPS execution model and its support for predicated execution lead
to some special requirements for processing Execute Exceptions.
Execute Exceptions are represented using exception tokens. These
tokens are generated whenever exceptions are detected during instruction
execution. Tokens propagate from instruction to instruction. If a block
produces one or more exception tokens as block outputs (write, store, or
branch), an Execute Exception will be reported for that block. See
Chapter 5 for more information about exception tokens and exception
propagation.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 68 March 10, 2005

FETCH EXCEPTION
Type:

Thread Exception
TSR[FE] == 1

Description:

A Fetch Exception may occur while attempting to fetch a program block.
This type of exception indicates that the block could not be properly
fetched or that it included some illegal information.

In most cases, this is considered a non-recoverable exception and the
exception handler must abort the associated program. It may be
necessary to emulate program block fetching in order to diagnose the
exception and decide whether to continue or abort the program.

Several conditions are defined that can trigger a Fetch Exception. These
are described below:

• Misaligned PC Error – This type of error occurs whenever the
Program Counter (PC) holds an address that is not aligned to a
128-byte program chunk boundary. This should only occur if the
PC is misprogrammed by the system software.

• ITLB Translation Error – This type of error occurs whenever a fetch
address cannot be translated by any valid ITLB register.

• ITLB Protection Error – This type of error occurs whenever a fetch
address accesses an unexecutable memory segment.

• External Fetch Error – This type of error occurs whenever an
external fetch request results in an error message from the system.

• Block Header Error – This type of error occurs whenever a block is
fetched that does not include the proper header mark and a legal
block type.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 69 March 10, 2005

INTERRUPT EXCEPTION
Type:

Processor Exception
PSR[IE] == 1

Description:

Interrupt Exceptions occur in response to an external interrupt request
signal. Whenever the interrupt request signal is asserted, the processor
will halt all active threads and trigger an Interrupt Exception. All threads
will stop on valid block boundaries. In some cases, threads may be
stopped with one or more thread exceptions pending.

Interrupts may be used for thread switching, aborting programs, or other
types of periodic service.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 70 March 10, 2005

RESET EXCEPTION
Type:

Processor Exception
PSR[RE] == 1

Description:

A Reset Exception occurs any time the processor is reset. This could be
due to system power-on or a system soft reset mechanism. During the
reset or immediately after the reset condition is deasserted, the processor
will report a Reset Exception.

The processor also treats the case in which all thread slots are invalid
(based upon the TCR bits) as a reset condition.

The system software will normally respond to the Reset Exception by
configuring the processor and activating one or more threads. In some
cases, it may choose to ignore the exception and leave the processor
halted.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 71 March 10, 2005

STORE EXCEPTION
Type:

Thread Exception
TSR[ST] == 1

Description:

A Store Exception occurs whenever an error is encountered while
attempting to store to system memory. Because external stores are
typically buffered and allowed to complete in the background (without
delaying subsequent execution), Store Exceptions may be discovered and
reported imprecisely. This means that one or more additional program
blocks may be allowed to complete before the Store Exception is reported.
Subsequent exceptions, however, should never be reported ahead of the
Store Exception. It is possible for a Store Exception to be reported
simultaneously with one or more additional thread exceptions.

Only one condition is currently defined that can trigger a Store Exception:

• External Store Error – This type of error occurs whenever an
external store request results in an error message from the system.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 72 March 10, 2005

SYSTEM CALL EXCEPTION
Type:

Thread Exception
TSR[SC] == 1

Description:

A System Call Exception occurs in response to a system call instruction
(SCALL) being executed. The processor will allow the program block that
executed the system call instruction to commit its results (assuming that
there are no other exceptions) before reporting the System Call Exception.

A software convention determines how the system call will be processed.
The exception handler is expected to read one or more General Registers
to determine which system function to perform and to obtain any required
arguments. After performing the system function, execution should
resume at the address indicated in the return address register (see the
TRIPS ABI document for details). The exception handler is responsible
for copying the return address into the PC before restarting the processor.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 73 March 10, 2005

THREAD EXCEPTION
Type:

Processor Exception
PSR[T#] == 1

Description:

Thread Exceptions occur whenever an active thread encounters an
exceptional condition. The Processor Status Register (PSR) identifies
which thread encountered the exception. One of the Thread Status
Registers (TSRs) must be examined in order to determine the specific
type of thread exception.

If multiple threads are active, it is possible for multiple Thread Exceptions
to be reported simultaneously. The system software is expected to
service (or switch) all threads before restarting the processor.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 74 March 10, 2005

TIMEOUT EXCEPTION
Type:

Thread Exception
TSR[TO] == 1

Description:

A Timeout Exception may occur while attempting to execute a program
block. With the TRIPS execution model, programming errors can
sometimes lead to missing operands and instructions that never fire. If
block execution does not complete within a specified number of cycles, a
Timeout Exception will be reported.

The Timeout Value Register (TVR) specifies the maximum number of
cycles that the processor will wait for execution to complete before
reporting a Timeout Exception. System software is expected to program
the TVR with an appropriate value during system initialization.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 75 March 10, 2005

Chapter 8 - Instructions

8.1 Instruction Formats

The TRIPS processor architecture defines eight regular instruction formats
(G, I, L, S, B, C, M3, and M4), as shown in the following diagram.

OPCODE T1 T0 XOP PR

OPCODE IMM T0

OPCODE OFFSET

Branch Instruction Format

Load and Store Instruction Formats

General Instruction Formats

Extended Move Instruction Formats

L

B

G

I

OPCODE M3

LSID PR

31 25 24 23 22 8 18 17 9 0

PR

31 25 24 23 22 8 18 17 9 0

OPCODE IMM T0 XOP PR

M3T2

31 25 24 0 6 7

EXIT

31 25 24 23 0 22 20 19

OPCODE IMM 0 S LSID PR

OPCODE M4T3

31 25 24 0 4 5

Constant Instruction Format

OPCODE CONST T0

31 25 24 0 8 9

M4

C

PR

23 22

M3TX M3T1 M3T0

13 14 20 21

M4T2 M4T1 M4T0 M4TX 0

9 10 14 15 19 20 23

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 76 March 10, 2005

Two special formats (R and W) are used for General Register read and
write instructions.

Some instructions use identical formats and fields, but require a different
number of input operands. The number of operands is not explicitly
encoded in the instructions. This information must be determined from the
operation codes.

An extended format specifier is defined and used throughout the rest of
this chapter to describe both the instruction encoding and the number of
input operands. The extended format specifiers are defined below.

Format Description

B : 0 Uses the B encoding and no operands

B : 1 Uses the B encoding and one operand

C : 0 Uses the C encoding and no operands

C : 1 Uses the C encoding and one operand

G : 0 Uses the G encoding and no operands

G : 1 Uses the G encoding and one operand

G : 2 Uses the G encoding and two operands

I : 0 Uses the I encoding and no operands

I : 1 Uses the I encoding and one operand

L : 1 Uses the L encoding and one operand

M3 : 1 Uses the M3 encoding and one operand

M4 : 1 Uses the M4 encoding and one operand

Read Instruction Format

V GR R RT0

21 16 20 0 7 8

RT1

15

V GR W
5 0 4

Write Instruction Format

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 77 March 10, 2005

Format Description

R : 0 Uses the R encoding and no operands

S : 2 Uses the S encoding and two operands

W : 1 Uses the W encoding and one operand

8.2 Instruction Fields

The fields used in the various instruction formats are defined here.

Field Description

0 Zero – This field must include just zero bits.

CONST
Constant Value – This 16-bit field is used to encode a constant value.
Depending upon the individual instruction, this value may be treated
as signed or unsigned.

EXIT

Exit Number – A 3-bit number is assigned to each unique block exit
and encoded with each branch instruction. Although the exit number
has no functional meaning, it is included to facilitate hardware branch
prediction.

GR

General Register Number – Each read and write instruction includes
a 5-bit number identifying the General Register to be read or written.
This General Register must always be located in the same bank as
the read or write instruction.

IMM
Immediate Value – This 9-bit field is used to encode a signed
immediate value (ranging from -256 to 255).

LSID

Load & Store Identifier – This 5-bit field identifies the Load & Store
Queue entry to be used by each load or store instruction. In addition,
this identifier defines a relative order for loads and stores within a
block.

M3T0
M3 Target 0 – This 7-bit field provides the lower bits of the first target
of a MOV3 instruction.

M3T1
M3 Target 1 – This 7-bit field provides the lower bits of the second
target of a MOV3 instruction.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 78 March 10, 2005

Field Description

M3T2
M3 Target 2 – This 7-bit field provides the lower bits of the third target
of a MOV3 instruction.

M3TX
M3 Target X – This 2-bit field provides the upper bits for all three
targets of a MOV3 instruction.

M4T0
M4 Target 0 – This 5-bit field provides the lower bits of the first target
of a MOV4 instruction.

M4T1
M4 Target 1 – This 5-bit field provides the lower bits of the second
target of a MOV4 instruction.

M4T2
M4 Target 2 – This 5-bit field provides the lower bits of the third target
of a MOV4 instruction.

M4T3
M4 Target 3 – This 5-bit field provides the lower bits of the fourth
target of a MOV4 instruction.

M4TX
M4 Target X – This 4-bit field provides the upper bits for all four
targets of a MOV4 instruction.

OFFSET
Offset Value – This 20-bit field is used to encode a signed branch
offset value. This value is always treated as a chunk offset, rather
than a byte offset.

OPCODE

Primary Operation Code – This 7-bit field is used to encode a unique
operation code for each instruction or group of instructions.
Instructions that share the same primary operation code must include
an extended operation code. The primary operation code is also
used to determine the instruction format.

PR

Predicate Field – This 2-bit field describes whether an instruction is
predicated and, if so, upon what condition. This field is encoded as
follows:

00 – Not predicated

01 – (Reserved)

10 – Predicated upon False

11 – Predicated upon True

RT0
Read Target 0 – This field describes the first target associated with a
read instruction.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 79 March 10, 2005

Field Description

RT1
Read Target 1 – This field describes the second target associated
with a read instruction. The RT1 field is ignored if its value is
identical to the RT0 field.

T0
General Target 0 – This field describes the first target associated with
a regular instruction.

T1
General Target 1 – This field describes the second target associated
with a regular instruction.

V
Valid Bit – This single-bit field describes whether each read or write
instruction is treated as valid or ignored.

XOP
Extended Operation Code – This 5-bit field is used to encode a
unique operation code for each instruction within a primary operation
code group.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 80 March 10, 2005

8.3 Target Specifiers

Most instructions are encoded with one or more target fields that
determine where the instruction’s result should be sent. A general 9-bit
target specifier is defined, as described in the following diagram.

This 9-bit target specifier allows any regular instruction to send its result to
the predicate slot, OP0 slot, or OP1 slot of any other regular instruction (in
the Instruction Queue). Alternatively, it may send its result to a write
instruction (in the Write Queue). The all-zero encoding is used to indicate
the absence of a target. When producing a predicate, only the least
significant bit of the result is used. All other values are 64 bits wide.

Read instructions encode their targets using 8-bit fields, but this is just a
subset of the general 9-bit target specifier. The upper, ninth bit is implicit
and always set to one. This allows a read instruction to send a value to
either operand slot of any regular instruction (in the Instruction Queue),
but not to predicate slots or write slots. Additionally, if the RT1 field is
equal to the RT0, this indicates the absence of a second target. The read
value is 64 bits wide.

Extended move instructions (MOV3 and MOV4) encode their targets in a
special way. Each 9-bit target specifier is formed by concatenating a set
of common upper bits with a set of unique lower bits.

00 No Target

8 7 6 5 4 3 2 1 0

00000

01 Predicate Slot (IQ)

10 OP0 Slot (IQ)

11 OP1 Slot (IQ)

Inst ID

Inst ID

Inst ID

00

00 Write Slot (WQ) Write ID 01

9-Bit Target Specifier

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 81 March 10, 2005

8.4 Instruction Set Summary

The TRIPS processor instruction set is divided into several classes of
instructions. These classes, as well as the instructions in each class, are
described below.

8.4.1 Read Instructions

Read instructions are used to retrieve a General Register value and
deliver it to one or more targets within the execution grid. These
instructions use a special R instruction format and may only be executed
from the Read Queue. There is only one type of read instruction.

Name Full Name Format

READ Read General Register R : 0

8.4.2 Write Instructions

Write instructions are used to conditionally write a new value to a General
Register. These instructions use a special W instruction format and may
only be executed from the Write Queue. There is only one type of write
instruction.

Name Full Name Format

WRITE Write General Register W : 1

8.4.3 Load Instructions

Load instructions are used to retrieve a byte, halfword, word, or
doubleword value from memory. A simple set of load instructions are
used to load integers, floating-point numbers, or any other arbitrary data
type. Special load instructions are defined for loading and sign-extending
signed integers. The following load instructions are defined. Each
instruction accepts one operand (an address).

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 82 March 10, 2005

Name Full Name Format

LB Load Byte L : 1

LBS Load Byte Signed L : 1

LH Load Halfword L : 1

LHS Load Halfword Signed L : 1

LW Load Word L : 1

LWS Load Word Signed L : 1

LD Load Doubleword L : 1

8.4.4 Store Instructions

Store instructions are used to modify a byte, halfword, word, or
doubleword value in memory. A single set of store instructions are used
to store integers, floating-point numbers, or any arbitrary data type. The
following store instructions are defined. Each instruction accepts two
operands (one address and one data value).

Name Full Name Format

SB Store Byte S : 2

SH Store Halfword S : 2

SW Store Word S : 2

SD Store Doubleword S : 2

8.4.5 Integer Arithmetic Instructions

The following instructions are defined for performing arithmetic operations
with signed and unsigned integers. Each instruction accepts two
operands. Supported operations include addition, subtraction,
multiplication, and division.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 83 March 10, 2005

Name Full Name Format

ADD Add G : 2

SUB Subtract G : 2

MUL Multiply G : 2

DIVS Divide Signed G : 2

DIVU Divide Unsigned G : 2

The following immediate variations allow a small constant to be encoded
directly in the instruction. Each instruction accepts one operand.

Name Full Name Format

ADDI Add Immediate I : 1

SUBI Subtract Immediate I : 1

MULI Multiply Immediate I : 1

DIVSI Divide Signed Immediate I : 1

DIVUI Divide Unsigned Immediate I : 1

8.4.6 Integer Logical Instructions

The following instructions are defined for performing bitwise logical
operations. Each instruction accepts two operands. Supported
operations include AND, OR, and XOR.

Name Full Name Format

AND Bitwise AND G : 2

OR Bitwise OR G : 2

XOR Bitwise XOR G : 2

The following immediate variations allow a small constant to be encoded
directly in the instruction. Each instruction accepts one operand.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 84 March 10, 2005

Name Full Name Format

ANDI Bitwise AND Immediate I : 1

ORI Bitwise OR Immediate I : 1

XORI Bitwise XOR Immediate I : 1

8.4.7 Integer Shift Instructions

The following instructions are defined for performing shift operations with
signed and unsigned integers. Each instruction accepts two operands
(one data value and one shift amount).

Name Full Name Format

SLL Shift Left Logical G : 2

SRL Shift Right Logical G : 2

SRA Shift Right Arithmetic G : 2

The following immediate variations allow the shift amount to be encoded
directly in the instruction. Each instruction accepts one operand.

Name Full Name Format

SLLI Shift Left Logical Immediate I : 1

SRLI Shift Right Logical Immediate I : 1

SRAI Shift Right Arithmetic Immediate I : 1

8.4.8 Integer Extend Instructions

The following instructions are defined for extending signed integers to a
full 64-bit representation. Each instruction accepts one operand.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 85 March 10, 2005

Name Full Name Format

EXTSB Extend Signed Byte G : 1

EXTSH Extend Signed Halfword G : 1

EXTSW Extend Signed Word G : 1

EXTUB Extend Unsigned Byte G : 1

EXTUH Extend Unsigned Halfword G : 1

EXTUW Extend Unsigned Word G : 1

8.4.9 Integer Relational Instructions

The following instructions are defined for performing relational and
equivalence tests with signed and unsigned integers. Each instruction
accepts two operands.

Name Full Name Format

TEQ Test EQ G : 2

TNE Test NE G : 2

TLE Test LE G : 2

TLEU Test LE Unsigned G : 2

TLT Test LT G : 2

TLTU Test LT Unsigned G : 2

TGE Test GE G : 2

TGEU Test GE Unsigned G : 2

TGT Test GT G : 2

TGTU Test GT Unsigned G : 2

The following immediate variations allow a small constant to be encoded
directly in the instruction. Each instruction accepts one operand.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 86 March 10, 2005

Name Full Name Format

TEQI Test EQ Immediate I : 1

TNEI Test NE Immediate I : 1

TLEI Test LE Immediate I : 1

TLEUI Test LE Unsigned Immediate I : 1

TLTI Test LT Immediate I : 1

TLTUI Test LT Unsigned Immediate I : 1

TGEI Test GE Immediate I : 1

TGEUI Test GE Unsigned Immediate I : 1

TGTI Test GT Immediate I : 1

TGTUI Test GT Unsigned Immediate I : 1

8.4.10 Floating-Point Arithmetic Instructions

The following instructions are defined for performing arithmetic with
double-precision floating-point numbers. Each instruction accepts two
operands.

Name Full Name Format

FADD FP Add G : 2

FSUB FP Subtract G : 2

FMUL FP Multiply G : 2

FDIV FP Divide G : 2

8.4.11 Floating-Point Conversion Instructions

The following instructions are defined for performing conversions to or
from a single-precision or double-precision floating-point representation.
Each instruction accepts one operand.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 87 March 10, 2005

Name Full Name Format

FITOD Convert Integer to Double FP G : 1

FDTOI Convert Double FP to Integer G : 1

FDTOS Convert Double FP to Single FP G : 1

FSTOD Convert Single FP to Double FP G : 1

8.4.12 Floating-Point Relational Instructions

The following instructions are defined for performing relational and
equivalence tests with floating-point numbers. Each instruction accepts
two operands.

Name Full Name Format

FEQ FP Test EQ G : 2

FNE FP Test NE G : 2

FLE FP Test LE G : 2

FLT FP Test LT G : 2

FGE FP Test GE G : 2

FGT FP Test GT G : 2

8.4.13 Branch Instructions

The following instructions are defined for controlling program execution.
Every block must include at least one branch class instruction. Most
instructions accept one operand (an address). The SCALL instruction
does not require an operand, since its target is special and implicit.

Name Full Name Format

BR Branch B : 1

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 88 March 10, 2005

Name Full Name Format

CALL Call B : 1

RET Return B : 1

SCALL System Call B : 0

The following offset variations allow a PC-relative offset to be encoded
directly in the instruction. No additional operands are needed.

Name Full Name Format

BRO Branch with Offset B : 0

CALLO Call with Offset B : 0

8.4.14 Other Instructions

Several additional instructions are defined for moving data values,
formulating large constants, and representing empty instruction slots.

Name Full Name Format

NULL Nullify Output G : 0

MOV Move G : 1

MOVI Move Immediate I : 0

MFPC Move From PC I : 0

GENS Generate Signed Constant C : 0

GENU Generate Unsigned Constant C : 0

APP Append Constant C : 1

NOP No Operation C : 0

MOV3 Move To 3 Targets M3 : 1

MOV4 Move To 4 Targets M4 : 1

LOCK Load and Lock L : 1

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 89 March 10, 2005

8.5 Instruction Codes

8.5.1 Primary Opcode Map

The primary operation codes are assigned such that the instruction format
may be easily decoded. The general partitioning is summarized below.
Asterisks indicate primary operation codes assigned to multiple
instructions (an extended operation code is also assigned).

6:3,2:0 000 001 010 011 100 101 110 111

0000
C:0

NOP
C:0

GENS
C:0

GENU
 C:1

APP
 M3 : 1

MOV3
M4 : 1
MOV4

0001
B:0

BRO
B:0

CALLO
B:0

SCALL
 B:1

BR
B:1

CALL
B:1
RET

0010
G:0

*
 G:1

*
G:1

*
 G:2

*
G:2

*

0011
I:0
*

 I:1
*

0100
L:1
LB

L:1
LH

L:1
LW

L:1
LD

L:1
LBS

L:1
LHS

L:1
LWS

L:1
LOCK

0101
S:2
SB

S:2
SH

S:2
SW

S:2
SD

0110

0111

1XXX

8.5.2 Opcode Table

The following table lists all of the assigned primary and extended
operation codes, along with each corresponding instruction.

Primary
Opcode

Extended
Opcode Format Instruction

0 (0x00) - C : 0 NOP

1 (0x01) - C : 0 GENS

2 (0x02) - C : 0 GENU

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 90 March 10, 2005

Primary
Opcode

Extended
Opcode Format Instruction

4 (0x04) - C : 1 APP

6 (0x06) - M3 : 1 MOV3

7 (0x07) - M4 : 1 MOV4

8 (0x08) - B : 0 BRO

9 (0x09) - B : 0 CALLO

10 (0x0A) - B : 0 SCALL

12 (0x0C) - B : 1 BR

13 (0x0D) - B : 1 CALL

14 (0x0E) - B : 1 RET

16 (0x10) 0 (0x00) G : 0 NULL

18 (0x12) 0 (0x00) G : 1 FITOD

18 (0x12) 1 (0x01) G : 1 FDTOI

18 (0x12) 2 (0x02) G : 1 FSTOD

18 (0x12) 3 (0x03) G : 1 FDTOS

19 (0x13) 0 (0x00) G : 1 MOV

19 (0x13) 1 (0x01) G : 1 EXTSB

19 (0x13) 2 (0x02) G : 1 EXTSH

19 (0x13) 3 (0x03) G : 1 EXTSW

19 (0x13) 4 (0x04) G : 1 EXTUB

19 (0x13) 5 (0x05) G : 1 EXTUH

19 (0x13) 6 (0x06) G : 1 EXTUW

22 (0x16) 0 (0x00) G : 2 FADD

22 (0x16) 1 (0x01) G : 2 FSUB

22 (0x16) 2 (0x02) G : 2 FMUL

22 (0x16) 3 (0x03) G : 2 FDIV

22 (0x16) 4 (0x04) G : 2 FEQ

22 (0x16) 5 (0x05) G : 2 FLE

22 (0x16) 6 (0x06) G : 2 FLT

22 (0x16) 7 (0x7) G : 2 FNE

22 (0x16) 8 (0x8) G : 2 FGT

22 (0x16) 9 (0x9) G : 2 FGE

23 (0x17) 0 (0x00) G : 2 ADD

23 (0x17) 1 (0x01) G : 2 SUB

23 (0x17) 2 (0x02) G : 2 MUL

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 91 March 10, 2005

Primary
Opcode

Extended
Opcode Format Instruction

23 (0x17) 3 (0x03) G : 2 DIVS

23 (0x17) 4 (0x04) G : 2 DIVU

23 (0x17) 8 (0x08) G : 2 AND

23 (0x17) 9 (0x09) G : 2 OR

23 (0x17) 10 (0x0A) G : 2 XOR

23 (0x17) 12 (0x0C) G : 2 SLL

23 (0x17) 13 (0x0D) G : 2 SRL

23 (0x17) 14 (0x0E) G : 2 SRA

23 (0x17) 16 (0x10) G : 2 TEQ

23 (0x17) 17 (0x11) G : 2 TLE

23 (0x17) 18 (0x12) G : 2 TLT

23 (0x17) 19 (0x13) G : 2 TLEU

23 (0x17) 20 (0x14) G : 2 TLTU

23 (0x17) 21 (0x15) G : 2 TNE

23 (0x17) 22 (0x16) G : 2 TGT

23 (0x17) 23 (0x17) G : 2 TGE

23 (0x17) 24 (0x18) G : 2 TGTU

23 (0x17) 25 (0x19) G : 2 TGEU

24 (0x18) 0 (0x00) I : 0 MOVI

24 (0x18) 1 (0x01) I : 0 MFPC

31 (0x1F) 0 (0x00) I : 1 ADDI

31 (0x1F) 1 (0x01) I : 1 SUBI

31 (0x1F) 2 (0x02) I : 1 MULI

31 (0x1F) 3 (0x03) I : 1 DIVSI

31 (0x1F) 4 (0x04) I : 1 DIVUI

31 (0x1F) 8 (0x08) I : 1 ANDI

31 (0x1F) 9 (0x09) I : 1 ORI

31 (0x1F) 10 (0x0A) I : 1 XORI

31 (0x1F) 12 (0x0C) I : 1 SLLI

31 (0x1F) 13 (0x0D) I : 1 SRLI

31 (0x1F) 14 (0x0E) I : 1 SRAI

31 (0x1F) 16 (0x10) I : 1 TEQI

31 (0x1F) 17 (0x11) I : 1 TLEI

31 (0x1F) 18 (0x12) I : 1 TLTI

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 92 March 10, 2005

S FRACTION EXP

Double-Precision Floating-Point Format
63 62 52 51 0

S FRACTION EXP

31 30 23 22 0

Single-Precision Floating-Point Format

Primary
Opcode

Extended
Opcode Format Instruction

31 (0x1F) 19 (0x13) I : 1 TLEUI

31 (0x1F) 20 (0x14) I : 1 TLTUI

31 (0x1F) 21 (0x15) I : 1 TNEI

31 (0x1F) 22 (0x16) I : 1 TGTI

31 (0x1F) 23 (0x17) I : 1 TGEI

31 (0x1F) 24 (0x18) I : 1 TGTUI

31 (0x1F) 25 (0x19) I : 1 TGEUI

32 (0x20) - L : 1 LB

33 (0x21) - L : 1 LH

34 (0x22) - L : 1 LW

35 (0x23) - L : 1 LD

36 (0x24) - L : 1 LBS

37 (0x25) - L : 1 LHS

38 (0x26) - L : 1 LWS

39 (0x27) - L : 1 LOCK

40 (0x28) - S : 2 SB

41 (0x29) - S : 2 SH

42 (0x2A) - S : 2 SW

43 (0x2B) - S : 2 SD

8.6 Floating-Point Support

The TRIPS processor’s floating-point support is compatible but not fully
compliant with the IEEE-754 floating-point standard. Standard double-
precision (64-bit) and single-precision (32-bit) representations are used.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 93 March 10, 2005

The S field holds a sign bit that determines whether the number is positive
(S == 0) or negative (S == 1). The EXP field holds a biased binary
exponent. The FRACTION field holds a binary fraction. Depending upon
the EXP field, all numbers will be interpreted as either a zero, a
normalized value (with an implied leading one), or an infinity. (NaNs and
denormalized numbers are not supported and will be interpreted as
infinities and zeroes, respectively.)

S EXP FRACTION VALUE

0 Max x +Infinity

0 0 < EXP < Max x +Normalized

0 0 x +Zero

1 0 x -Zero

1 0 < EXP < Max x -Normalized

1 Max x -Infinity

A full description of the floating-point model is beyond the scope of this
document, but some important behaviors and limitations of the TRIPS
implementation are summarized below.

• Single-Precision – Single-precision floating-point values may be
loaded from or stored to memory, but single-precision arithmetic is
not supported. All single-precision values must first be converted to
double-precisions values before performing arithmetic,
comparisons, or integer conversions.

• Rounding – For most floating-point operations, TRIPS uses a round
to nearest even policy. When performing conversion to an integer,
TRIPS uses a round to zero policy.

• Overflows – If overflows occur during floating-point arithmetic or
conversion, the resulting value is undefined.

• Infinities – For infinity representations, the FRACTION field is
undefined and may actually hold a non-zero value.

• Exceptions – Floating-point exceptions are not supported.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 94 March 10, 2005

8.7 Instruction Descriptions

8.7.1 Notation and Conventions

The following symbols are used for referencing or assigning special
values.

Symbol Description

OP0 Instruction’s First Operand

OP1 Instruction’s Second Operand

PC Program Counter

READ_ID Read Queue Position or Identifier

WRITE_ID Write Queue Position or Identifier

The following pseudo-code operators are used for describing the
operations performed by individual instructions. Most of these resemble
and behave like the equivalent operators from the C language.

Operator Description

 Assignment

+ Integer Addition

- Integer Subtraction

* Integer Multiplication

/ Integer Division

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

? : Conditional Selection

The following pseudo-code functions are used for describing the behavior
of various instructions.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 95 March 10, 2005

Function Description

EQ(v1, v2) Equivalence Test

FP_ADD(v1, v2) Floating-Point Add

FP_DIV(v1, v2) Floating-Point Divide

FP_DTOI(value) Convert Double FP to Integer

FP_DTOS(value) Convert Double FP to Single FP

FP_EQ(v1, v2) Floating-Point Equivalence Test

FP_ITOD(value) Convert Integer to Double FP

FP_GE(v1, v2) Floating-Point Greater Than or Equal Test

FP_GT(v1, v2) Floating-Point Greater Than Test

FP_LE(v1, v2) Floating-Point Less Than or Equal Test

FP_LT(v1, v2) Floating-Point Less Than Test

FP_MUL(v1, v2) Floating-Point Multiply

FP_NE(v1, v2) Floating-Point Non-Equivalence Test

FP_STOD(value) Convert Single FP to Double FP

FP_SUB(v1, v2) Floating-Point Subtract

GE(v1, v2) Signed Greater Than or Equal Test

GEU(v1, v2) Unsigned Greater Than or Equal Test

GT(v1, v2) Signed Greater Than Test

GTU(v1, v2) Unsigned Greater Than Test

LE(v1, v2) Signed Less Than or Equal Test

LEU(v1, v2) Unsigned Less Than or Equal Test

LT(v1, v2) Signed Less Than Test

LTU(v1, v2) Unsigned Less Than Test

MEM(addr, bits, LSID) Memory Accessor

NE(v1, v2) Non-Equivalence Test

REG(number) Register Accessor

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 96 March 10, 2005

Function Description

SEXT(value, bits) Sign-Extend

SLL(value, amount) Shift Left Logical

SRA(value, amount) Shift Right Arithmetic (Signed)

SRL(value, amount) Shift Right Logical (Unsigned)

TARGET(upper, lower) Target Specifier Bit Concatenation

ZEXT(value, bits) Zero-Extend

8.7.2 Alphabetical Instruction List

The rest of this chapter includes individual instruction descriptions, listed
in alphabetical order.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 97 March 10, 2005

23 T1 T0 0 PR G : 2
31 25 24 23 22 8 18 17 9 0

ADD
Add

Format:

Description:

The OP0 value is added to the OP1 value to produce a 64-bit sum.
Addition is performed using 64-bit 2’s complement arithmetic. Arithmetic
overflows are ignored and only the lowest 64 bits of the result are saved.

Operation:

T0, T1 OP0 + OP1

Exceptions:

None

Notes:

The ADD instruction may be used to perform both signed and unsigned
addition.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 98 March 10, 2005

31 IMM T0 0 PR I : 1
31 25 24 23 22 8 18 17 9 0

ADDI
Add Immediate

Format:

Description:

The OP0 value is added to a sign-extended immediate value to produce a
64-bit sum. Addition is performed using 64-bit 2’s complement arithmetic.
Arithmetic overflows are ignored and only the lowest 64 bits of the result
are saved.

Operation:

T0 OP0 + SEXT(IMM, 9)

Exceptions:

None

Notes:

The ADDI instruction may be used to perform both signed and unsigned
addition.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 99 March 10, 2005

23 T1 T0 8 PR G : 2
31 25 24 23 22 8 18 17 9 0

AND
Bitwise AND

Format:

Description:

A bitwise logical AND operation is performed using the OP0 and OP1
values.

Operation:

T0, T1 OP0 & OP1

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 100 March 10, 2005

31 IMM T0 8 PR I : 1
31 25 24 23 22 8 18 17 9 0

ANDI
Bitwise AND Immediate

Format:

Description:

A bitwise logical AND operation is performed using the OP0 value and a
sign-extended immediate value.

Operation:

T0 OP0 & SEXT(IMM, 9)

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 101 March 10, 2005

4 CONST T0 C : 1
31 25 8 9 0 24

APP
Append Constant

Format:

Description:

A 16-bit constant value is appended to the OP0 value. The OP0 value is
shifted left by 16 bits and then OR'd with the zero-extended constant
value.

Operation:

T0 (OP0 << 16) | ZEXT(CONST, 16)

Exceptions:

None

Notes:

This instruction may be used in conjunction with the GENS or GENU
instruction to generate signed and unsigned 32-bit, 48-bit, and 64-bit
constants.

Because this instruction uses the C format, it may not be predicated.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 102 March 10, 2005

12 0 PR B : 1
31 25 24 23 22 20 19 0

EXIT

BR
Branch

Format:

Description:

The OP0 value is treated as a program address and used to direct the
processor to the next program block. The processor will first finish
executing the current program block. The Program Counter is an implicit
target.

Operation:

address OP0

PC address

Exceptions:

Execute Exception – Misaligned Branch Error

Notes:

The address must be aligned to a 128-byte (chunk) boundary. If any of
the seven least-significant bits of the address are non-zero, an Execute
Exception occurs.

Any block that executes a BR instruction must not execute any other
branch instruction.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 103 March 10, 2005

8 OFFSET PR B : 0
31 25 24 23 22 20 19 0

EXIT

BRO
Branch with Offset

Format:

Description:

A sign-extended program offset is used to direct the processor to the next
program block. The processor will first finish executing the current
program block. The Program Counter is an implicit source and target.

Operation:

byte_offset SLL(SEXT(OFFSET, 20), 7)

address PC + byte_offset

PC address

Exceptions:

None

Notes:

Since the offset is specified in chunks, the computed address will always
be properly aligned.

Any block that executes a BRO instruction must not execute any other
branch instruction.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 104 March 10, 2005

13 0 PR B : 1
31 25 24 23 22 20 19 0

EXIT

CALL
Call

Format:

Description:

The OP0 value is treated as a program address and used to direct the
processor to the next program block. The processor will first finish
executing the current program block. The Program Counter is an implicit
target.

Operation:

address OP0

PC address

Exceptions:

Execute Exception – Misaligned Branch Error

Notes:

The address must be aligned to a 128-byte (chunk) boundary. If any of
the seven least-significant bits of the address are non-zero, an Alignment
Exception occurs.

Any block that executes a CALL instruction must not execute any other
branch instruction.

This instruction behaves just like the BR instruction, but informs the
processor that a subroutine is being called. This may allow the hardware
to accurately predict return addresses when needed.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 105 March 10, 2005

9 OFFSET PR B : 0
31 25 24 23 22 20 19 0

EXIT

CALLO
Call with Offset

Format:

Description:

A sign-extended program offset is used to direct the processor to the next
program block. The processor will first finish executing the current
program block. The Program Counter is an implicit source and target.

Operation:

byte_offset SLL(SEXT(OFFSET, 20), 7)

address PC + byte_offset

PC address

Exceptions:

None

Notes:

Since the offset is specified in chunks, the computed address will always
be properly aligned.

Any block that executes a CALLO instruction must not execute any other
branch instruction.

This instruction behaves just like the BRO instruction, but informs the
processor that a subroutine is being called. This may allow the hardware
to accurately predict return addresses when needed.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 106 March 10, 2005

23 T1 T0 3 PR G : 2
31 25 24 23 22 8 18 17 9 0

DIVS
Divide Signed

Format:

Description:

The OP0 value is divided by the OP1 value to form a 64-bit quotient. Both
operands are treated as 64-bit signed integers.

Operation:

T0, T1 OP0 / OP1

Exceptions:

Execute Exception – Divide-By-Zero Error

Notes:

An attempt to divide by zero will result in an Execute Exception.

An attempt to divide the maximum negative value by -1 will produce an
undefined result.

The resulting quotient is a signed integer that satisfies the equation
dividend = (quotient * divisor) + remainder, where the remainder has the
same sign as the dividend. In other words, the quotient is rounded toward
zero.

The remainder may be computed using a sequence of divide, multiply,
and subtract instructions.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 107 March 10, 2005

31 IMM T0 3 PR I : 1
31 25 24 23 22 8 18 17 9 0

DIVSI
Divide Signed Immediate

Format:

Description:

The OP0 value is divided by a sign-extended immediate value to form a
64-bit quotient. Both operands are treated as 64-bit signed integers.

Operation:

T0 OP0 / SEXT(IMM, 9)

Exceptions:

Execute Exception – Divide-By-Zero Error

Notes:

An attempt to divide by zero will result in an Execute Exception.

An attempt to divide the maximum negative value by -1 will produce an
undefined result.

The resulting quotient is a signed integer that satisfies the equation
dividend = (quotient * divisor) + remainder, where the remainder has the
same sign as the dividend. In other words, the quotient is rounded toward
zero.

The remainder may be computed using a sequence of divide, multiply,
and subtract instructions.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 108 March 10, 2005

23 T1 T0 4 PR G : 2
31 25 24 23 22 8 18 17 9 0

DIVU
Divide Unsigned

Format:

Description:

The OP0 value is divided by the OP1 value to form a 64-bit quotient. Both
operands are treated as 64-bit unsigned integers.

Operation:

T0, T1 OP0 / OP1

Exceptions:

Execute Exception – Divide-By-Zero Error

Notes:

An attempt to divide by zero will result in an Execute Exception.

The resulting quotient is an unsigned integer that satisfies the equation
dividend = (quotient * divisor) + remainder, where the remainder is also
unsigned. In other words, the quotient is rounded toward zero.

The remainder may be computed using a sequence of divide, multiply,
and subtract instructions.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 109 March 10, 2005

31 IMM T0 4 PR I : 1
31 25 24 23 22 8 18 17 9 0

DIVUI
Divide Unsigned Immediate

Format:

Description:

The OP0 value is divided by a zero-extended immediate value to form a
64-bit quotient. Both operands are treated as 64-bit unsigned integers.

Operation:

T0 OP0 / SEXT(IMM, 9)

Exceptions:

Execute Exception – Divide-By-Zero Error

Notes:

An attempt to divide by zero will result in an Execute Exception.

The resulting quotient is an unsigned integer that satisfies the equation
dividend = (quotient * divisor) + remainder, where the remainder is also
unsigned. In other words, the quotient is rounded toward zero.

The remainder may be computed using a sequence of divide, multiply,
and subtract instructions.

Even though the divide is unsigned, the IMM field will still be sign-
extended. For this instruction, the IMM field may encode an unsigned
value between 0 and 255.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 110 March 10, 2005

19 T1 T0 1 PR G : 1
31 25 24 23 22 8 18 17 9 0

EXTSB
Extend Signed Byte

Format:

Description:

The low-order byte of the OP0 value is sign-extended and written to one
or more targets.

Operation:

T0, T1 SEXT(OP0, 8)

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 111 March 10, 2005

19 T1 T0 2 PR G : 1
31 25 24 23 22 8 18 17 9 0

EXTSH
Extend Signed Halfword

Format:

Description:

The low-order halfword of the OP0 value is sign-extended and written to
one or more targets.

Operation:

T0, T1 SEXT(OP0, 16)

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 112 March 10, 2005

19 T1 T0 3 PR G : 1
31 25 24 23 22 8 18 17 9 0

EXTSW
Extend Signed Word

Format:

Description:

The low-order word of the OP0 value is sign-extended and written to one
or more targets.

Operation:

T0, T1 SEXT(OP0, 32)

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 113 March 10, 2005

19 T1 T0 4 PR G : 1
31 25 24 23 22 8 18 17 9 0

EXTUB
Extend Unsigned Byte

Format:

Description:

The low-order byte of the OP0 value is zero-extended and written to one
or more targets.

Operation:

T0, T1 ZEXT(OP0, 8)

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 114 March 10, 2005

19 T1 T0 5 PR G : 1
31 25 24 23 22 8 18 17 9 0

EXTUH
Extend Unsigned Halfword

Format:

Description:

The low-order halfword of the OP0 value is zero-extended and written to
one or more targets.

Operation:

T0, T1 ZEXT(OP0, 16)

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 115 March 10, 2005

19 T1 T0 6 PR G : 1
31 25 24 23 22 8 18 17 9 0

EXTUW
Extend Unsigned Word

Format:

Description:

The low-order word of the OP0 value is zero-extended and written to one
or more targets.

Operation:

T0, T1 ZEXT(OP0, 32)

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 116 March 10, 2005

22 T1 T0 0 PR G : 2
31 25 24 23 22 8 18 17 9 0

FADD
FP Add

Format:

Description:

The OP0 value is added to the OP1 value to produce a sum. Both
operands are treated as double-precision floating-point values. The result
is also a double-precision floating-point value.

Operation:

T0, T1 FP_ADD(OP0, OP1)

Exceptions:

None

Notes:

The TRIPS processor’s floating-point support is compatible but not fully
compliant with the IEEE-754 floating-point standard. NaNs and
denormalized numbers are unsupported. Exceptional conditions are not
reported. See section 8.6 for more information.

When necessary, a round to nearest even policy is used to produce the
double-precision floating-point result.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 117 March 10, 2005

22 T1 T0 3 PR G : 2
31 25 24 23 22 8 18 17 9 0

FDIV
FP Divide

Format:

Description:

The OP0 value is divided by the OP1 value to produce a quotient. Both
operands are treated as double-precision floating-point values. The result
is also a double-precision floating-point value.

Operation:

T0, T1 FP_DIV(OP0, OP1)

Exceptions:

None

Notes:

The TRIPS processor’s floating-point support is compatible but not fully
compliant with the IEEE-754 floating-point standard. NaNs and
denormalized numbers are unsupported. Exceptional conditions are not
reported. See section 8.6 for more information.

When necessary, a round to nearest even policy is used to produce the
double-precision floating-point result.

This instruction is supported in the TRIPS simulators but NOT supported
by the TRIPS prototype hardware! The floating-point divide computation
must be performed by software.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 118 March 10, 2005

18 T1 T0 1 PR G : 1
31 25 24 23 22 8 18 17 9 0

FDTOI
Convert Double FP to Integer

Format:

Description:

The OP0 value is treated as a double-precision floating-point value and
converted to an equivalent 65-bit signed integer value. The lower 64 bits
of the result are delivered to the target(s).

Operation:

T0, T1 FP_DTOI(OP0)

Exceptions:

None

Notes:

The TRIPS processor’s floating-point support is compatible but not fully
compliant with the IEEE-754 floating-point standard. NaNs and
denormalized numbers are unsupported. Exceptional conditions are not
reported. See section 8.6 for more information.

When necessary, a round to zero policy is used to produce the integer
result.

The FDTOI instruction may be used for converting to both signed and
unsigned integers. When an overflow occurs, the result may differ from
the IEEE standard. When converting from infinities or NaNs, the result is
undefined.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 119 March 10, 2005

18 T1 T0 3 PR G : 1
31 25 24 23 22 8 18 17 9 0

FDTOS
Convert Double FP to Single FP

Format:

Description:

The OP0 value is treated as a double-precision floating-point value and
converted to an equivalent single-precision floating-point value.

Operation:

T0, T1 FP_DTOS(OP0)

Exceptions:

None

Notes:

The TRIPS processor’s floating-point support is compatible but not fully
compliant with the IEEE-754 floating-point standard. NaNs and
denormalized numbers are unsupported. Exceptional conditions are not
reported. See section 8.6 for more information.

When necessary, a round to nearest even policy is used to produce the
single-precision floating-point result.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 120 March 10, 2005

22 T1 T0 4 PR G : 2
31 25 24 23 22 8 18 17 9 0

FEQ
FP Test EQ

Format:

Description:

The OP0 value is compared with the OP1 value. Both operands are
treated as double-precision floating-point values. If the OP0 value is equal
to the OP1 value, then a true value (1) is produced. Otherwise, a false
value (0) is produced.

Operation:

T0, T1 FP_EQ(OP0, OP1) ? 1 : 0

Exceptions:

None

Notes:

The TRIPS processor’s floating-point support is compatible but not fully
compliant with the IEEE-754 floating-point standard. NaNs and
denormalized numbers are unsupported. Exceptional conditions are not
reported. See section 8.6 for more information.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 121 March 10, 2005

22 T1 T0 9 PR G : 2
31 25 24 23 22 8 18 17 9 0

FGE
FP Test GE

Format:

Description:

The OP0 value is compared with the OP1 value. Both operands are
treated as double-precision floating-point values. If the OP0 value is
greater than or equal to the OP1 value, then a true value (1) is produced.
Otherwise, a false value (0) is produced.

Operation:

T0, T1 FP_GE(OP0, OP1) ? 1 : 0

Exceptions:

None

Notes:

The TRIPS processor’s floating-point support is compatible but not fully
compliant with the IEEE-754 floating-point standard. NaNs and
denormalized numbers are unsupported. Exceptional conditions are not
reported. See section 8.6 for more information.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 122 March 10, 2005

22 T1 T0 8 PR G : 2
31 25 24 23 22 8 18 17 9 0

FGT
FP Test GT

Format:

Description:

The OP0 value is compared with the OP1 value. Both operands are
treated as double-precision floating-point values. If the OP0 value is
greater than the OP1 value, then a true value (1) is produced. Otherwise,
a false value (0) is produced.

Operation:

T0, T1 FP_GT(OP0, OP1) ? 1 : 0

Exceptions:

None

Notes:

The TRIPS processor’s floating-point support is compatible but not fully
compliant with the IEEE-754 floating-point standard. NaNs and
denormalized numbers are unsupported. Exceptional conditions are not
reported. See section 8.6 for more information.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 123 March 10, 2005

18 T1 T0 0 PR G : 1
31 25 24 23 22 8 18 17 9 0

FITOD
Convert Integer to Double FP

Format:

Description:

The OP0 value is treated as a 64-bit signed integer value and converted to
an equivalent double-precision floating-point value.

Operation:

T0, T1 FP_ITOD(OP0)

Exceptions:

None

Notes:

The TRIPS processor’s floating-point support is compatible but not fully
compliant with the IEEE-754 floating-point standard. NaNs and
denormalized numbers are unsupported. Exceptional conditions are not
reported. See section 8.6 for more information.

When necessary, a round to nearest even policy is used to produce the
double-precision floating-point result.

Since the operand is interpreted as a 64-bit signed integer, this instruction
will NOT properly convert very large unsigned numbers (greater than or
equal to 263). This limitation may be worked around by the compiler.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 124 March 10, 2005

22 T1 T0 5 PR G : 2
31 25 24 23 22 8 18 17 9 0

FLE
FP Test LE

Format:

Description:

The OP0 value is compared with the OP1 value. Both operands are
treated as double-precision floating-point values. If the OP0 value is less
than or equal to the OP1 value, then a true value (1) is produced.
Otherwise, a false value (0) is produced.

Operation:

T0, T1 FP_LE(OP0, OP1) ? 1 : 0

Exceptions:

None

Notes:

The TRIPS processor’s floating-point support is compatible but not fully
compliant with the IEEE-754 floating-point standard. NaNs and
denormalized numbers are unsupported. Exceptional conditions are not
reported. See section 8.6 for more information.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 125 March 10, 2005

22 T1 T0 6 PR G : 2
31 25 24 23 22 8 18 17 9 0

FLT
FP Test LT

Format:

Description:

The OP0 value is compared with the OP1 value. Both operands are
treated as double-precision floating-point values. If the OP0 value is less
than the OP1 value, then a true value (1) is produced. Otherwise, a false
value (0) is produced.

Operation:

T0, T1 FP_LT(OP0, OP1) ? 1 : 0

Exceptions:

None

Notes:

The TRIPS processor’s floating-point support is compatible but not fully
compliant with the IEEE-754 floating-point standard. NaNs and
denormalized numbers are unsupported. Exceptional conditions are not
reported. See section 8.6 for more information.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 126 March 10, 2005

22 T1 T0 2 PR G : 2
31 25 24 23 22 8 18 17 9 0

FMUL
FP Multiply

Format:

Description:

The OP0 value is multiplied by the OP1 value to produce a product. Both
operands are treated as double-precision floating-point values. The result
is also a double-precision floating-point value.

Operation:

T2, T1 FP_MUL(OP0, OP1)

Exceptions:

None

Notes:

The TRIPS processor’s floating-point support is compatible but not fully
compliant with the IEEE-754 floating-point standard. NaNs and
denormalized numbers are unsupported. Exceptional conditions are not
reported. See section 8.6 for more information.

When necessary, a round to nearest even policy is used to produce the
double-precision floating-point result.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 127 March 10, 2005

22 T1 T0 7 PR G : 2
31 25 24 23 22 8 18 17 9 0

FNE
FP Test NE

Format:

Description:

The OP0 value is compared with the OP1 value. Both operands are
treated as double-precision floating-point values. If the OP1 value is NOT
equal to the OP1 value, then a true value (1) is produced. Otherwise, a
false value (0) is produced.

Operation:

T0, T1 FP_NE(OP0, OP1) ? 1 : 0

Exceptions:

None

Notes:

The TRIPS processor’s floating-point support is compatible but not fully
compliant with the IEEE-754 floating-point standard. NaNs and
denormalized numbers are unsupported. Exceptional conditions are not
reported. See section 8.6 for more information.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 128 March 10, 2005

18 T1 T0 2 PR G : 1
31 25 24 23 22 8 18 17 9 0

FSTOD
Convert Single FP to Double FP

Format:

Description:

The OP0 value is treated as a single-precision floating-point value and
converted to an equivalent double-precision floating-point value.

Operation:

T0, T1 FP_STOD(OP0)

Exceptions:

None

Notes:

The TRIPS processor’s floating-point support is compatible but not fully
compliant with the IEEE-754 floating-point standard. NaNs and
denormalized numbers are unsupported. Exceptional conditions are not
reported. See section 8.6 for more information.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 129 March 10, 2005

22 T1 T0 1 PR G : 2
31 25 24 23 22 8 18 17 9 0

FSUB
FP Subtract

Format:

Description:

The OP1 value is subtracted from the OP0 value to produce a difference.
Both operands are treated as double-precision floating-point values. The
result is also a double-precision floating-point value.

Operation:

T0, T1 FP_SUB(OP0, OP1)

Exceptions:

None

Notes:

The TRIPS processor’s floating-point support is compatible but not fully
compliant with the IEEE-754 floating-point standard. NaNs and
denormalized numbers are unsupported. Exceptional conditions are not
reported. See section 8.6 for more information.

When necessary, a round to nearest even policy is used to produce the
double-precision floating-point result.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 130 March 10, 2005

1 CONST T0 C : 0
31 25 8 9 0 24

GENS
Generate Signed Constant

Format:

Description:

A 16-bit constant value is sign-extended and written to a target.

Operation:

T0 SEXT(CONST, 16)

Exceptions:

None

Notes:

This instruction may be used in conjunction with the APP instruction to
generate signed 32-bit, 48-bit, and 64-bit constants.

Because this instruction uses the C format, it may not be predicated.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 131 March 10, 2005

2 CONST T0 C : 0
31 25 8 9 0 24

GENU
Generate Unsigned Constant

Format:

Description:

A 16-bit constant value is zero-extended and written to a target.

Operation:

T0 ZEXT(CONST, 16)

Exceptions:

None

Notes:

This instruction may be used in conjunction with the APP instruction to
generate unsigned 32-bit, 48-bit, and 64-bit constants.

Because this instruction uses the C format, it may not be predicated.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 132 March 10, 2005

32 IMM T0 LSID PR L : 1
31 25 24 23 22 8 18 17 9 0

LB
Load Byte

Format:

Description:

An address is computed and used to load a byte from memory. The byte
is zero-extended and written to a target.

Operation:

address OP0 + SEXT(IMM, 9)

value MEM(address, 8, LSID)

T0 ZEXT(value, 8)

Exceptions:

Execute Exception – Misaligned Load Error

Execute Exception – DTLB Translation Error

Execute Exception – DTLB Protection Error

Execute Exception – External Load Error

Notes:

Although a 64-bit address is computed, the upper 24 bits should always
be zero and will be ignored by the processor.

The LSID is used to check for potential dependences on prior stores within
the same block.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 133 March 10, 2005

36 IMM T0 LSID PR L : 1
31 25 24 23 22 8 18 17 9 0

LBS
Load Byte Signed

Format:

Description:

An address is computed and used to load a byte from memory. The byte
is sign-extended and written to a target.

Operation:

address OP0 + SEXT(IMM, 9)

value MEM(address, 8, LSID)

T0 SEXT(value, 8)

Exceptions:

Execute Exception – Misaligned Load Error

Execute Exception – DTLB Translation Error

Execute Exception – DTLB Protection Error

Execute Exception – External Load Error

Notes:

Although a 64-bit address is computed, the upper 24 bits should always
be zero and will be ignored by the processor.

The LSID is used to check for potential dependences on prior stores within
the same block.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 134 March 10, 2005

35 IMM T0 LSID PR L : 1
31 25 24 23 22 8 18 17 9 0

LD
Load Doubleword

Format:

Description:

An address is computed and used to load a doubleword from memory.

Operation:

address OP0 + SEXT(IMM, 9)

T0 MEM(address, 64, LSID)

Exceptions:

Execute Exception – Misaligned Load Error

Execute Exception – DTLB Translation Error

Execute Exception – DTLB Protection Error

Execute Exception – External Load Error

Notes:

The address must be naturally aligned. If any of the three least-significant
bits of the address are non-zero, an Execute Exception occurs.

Although a 64-bit address is computed, the upper 24 bits should always
be zero and will be ignored by the processor.

The LSID is used to check for potential dependences on prior stores within
the same block.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 135 March 10, 2005

33 IMM T0 LSID PR L : 1
31 25 24 23 22 8 18 17 9 0

LH
Load Halfword

Format:

Description:

An address is computed and used to load a halfword from memory. The
halfword is zero-extended and written to a target.

Operation:

address OP0 + SEXT(IMM, 9)

value MEM(address, 16, LSID)

T0 ZEXT(value, 16)

Exceptions:

Execute Exception – Misaligned Load Error

Execute Exception – DTLB Translation Error

Execute Exception – DTLB Protection Error

Execute Exception – External Load Error

Notes:

The address must be naturally aligned. If the least-significant bit of the
address is non-zero, an Execute Exception occurs.

Although a 64-bit address is computed, the upper 24 bits should always
be zero and will be ignored by the processor.

The LSID is used to check for potential dependences on prior stores within
the same block.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 136 March 10, 2005

37 IMM T0 LSID PR L : 1
31 25 24 23 22 8 18 17 9 0

LHS
Load Halfword Signed

Format:

Description:

An address is computed and used to load a halfword from memory. The
halfword is sign-extended and written to a target.

Operation:

address OP0 + SEXT(IMM, 9)

value MEM(address, 16, LSID)

T0 SEXT(value, 16)

Exceptions:

Execute Exception – Misaligned Load Error

Execute Exception – DTLB Translation Error

Execute Exception – DTLB Protection Error

Execute Exception – External Load Error

Notes:

The address must be naturally aligned. If the least-significant bit of the
address is non-zero, an Execute Exception occurs.

Although a 64-bit address is computed, the upper 24 bits should always
be zero and will be ignored by the processor.

The LSID is used to check for potential dependences on prior stores within
the same block.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 137 March 10, 2005

39 IMM T0 LSID PR L : 1
31 25 24 23 22 8 18 17 9 0

LOCK
Load and Lock

Format:

Description:

An address is computed and used to load a byte from memory. The byte
is zero-extended and written to a target. Just after the value is loaded
from memory (and prior to any other loads or stores to that location), a
one is written into that same memory location.

Operation:

address OP0 + SEXT(IMM, 9)

value MEM(address, 8, LSID)

L2_MEM(address, 8) 1

T0 ZEXT(value, 8)

Exceptions:

Execute Exception – Misaligned Load Error

Execute Exception – DTLB Translation Error

Execute Exception – DTLB Protection Error

Execute Exception – Lock Error

Execute Exception – External Load Error

Notes:

Although a 64-bit address is computed, the upper 24 bits should always
be zero and will be ignored by the processor.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 138 March 10, 2005

The LSID is used to check for potential dependences on prior stores within
the same block (but matching stores are prohibited).

The LOCK instruction is intended to support mutexes in the prototype
TRIPS system. The instruction may be used to perform an atomic swap,
but its use is subject to several restrictions.

• The processor does not support atomic access to locks in its Data
Cache. The LOCK instruction must address a non-cacheable
memory segment. Otherwise, an exception will occur.

• A program block should include at most one LOCK instruction.

• The Block Synchronization Required flag should be set for the
block that holds the LOCK instruction. This guarantees that the
block will not be speculatively executed.

• The block should be formulated such that no exceptions are
possible after the LOCK instruction has been executed. Otherwise,
the lock may be left in an undefined state.

• The lock variable stored in memory must be one byte wide and
must represent the locked state with a one.

Improper use of the LOCK instruction can result in undefined behavior for
both the software and the system.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 139 March 10, 2005

34 IMM T0 LSID PR L : 1
31 25 24 23 22 8 18 17 9 0

LW
Load Word

Format:

Description:

An address is computed and used to load a word from memory. The word
is zero-extended and written to a target.

Operation:

address OP0 + SEXT(IMM, 9)

value MEM(address, 32, LSID)

T0 ZEXT(value, 32)

Exceptions:

Execute Exception – Misaligned Load Error

Execute Exception – DTLB Translation Error

Execute Exception – DTLB Protection Error

Execute Exception – External Load Error

Notes:

The address must be naturally aligned. If any of the two least-significant
bits of the address are non-zero, an Execute Exception occurs.

Although a 64-bit address is computed, the upper 24 bits should always
be zero and will be ignored by the processor.

The LSID is used to check for potential dependences on prior stores within
the same block.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 140 March 10, 2005

38 IMM T0 LSID PR L : 1
31 25 24 23 22 8 18 17 9 0

LWS
Load Word Signed

Format:

Description:

An address is computed and used to load a word from memory. The word
is sign-extended and written to a target.

Operation:

address OP0 + SEXT(IMM, 9)

value MEM(address, 32, LSID)

T0 SEXT(value, 32)

Exceptions:

Execute Exception – Misaligned Load Error

Execute Exception – DTLB Translation Error

Execute Exception – DTLB Protection Error

Execute Exception – External Load Error

Notes:

The address must be naturally aligned. If any of the two least-significant
bits of the address are non-zero, an Execute Exception occurs.

Although a 64-bit address is computed, the upper 24 bits should always
be zero and will be ignored by the processor.

The LSID is used to check for potential dependences on prior stores within
the same block.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 141 March 10, 2005

24 0 T0 1 PR I : 0
31 25 24 23 22 8 18 17 9 0

MFPC
Move From PC

Format:

Description:

The address stored in the Program Counter is copied (or moved) to a
target. The Program Counter holds the virtual address of the current
program block.

Operation:

T0 PC

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 142 March 10, 2005

19 T1 T0 0 PR G : 1
31 25 24 23 22 8 18 17 9 0

MOV
Move

Format:

Description:

The OP0 value is copied (or moved) to one or more targets.

Operation:

T0, T1 OP0

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 143 March 10, 2005

6 M3T2 M3TX PR M3 : 1
31 25 24 23 22 6 14 13 7 0

M3T1 M3T0

21 20

MOV3
Move To 3 Targets

Format:

Description:

The OP0 value is copied (or moved) to three targets. Target specifiers are
formed by concatenating 2 common upper bits (M3TX) with 7 unique
lower bits for each target (M3T0, M3T1, M3T2).

Operation:

TARGET(M3TX, M3T0) OP0

TARGET(M3TX, M3T1) OP0

TARGET(M3TX, M3T2) OP0

Exceptions:

None

Notes:

Since all targets share 2 common upper bits, they are constrained to
target the same type of operand slot.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 144 March 10, 2005

7 M4T0 M4TX 0 M4 : 1
31 25 24 23 4 20 19 5 0

M4T1 M4T2 M4T3

9 10 14 15

MOV4
Move To 4 Targets

Format:

Description:

The OP0 value is copied (or moved) to four targets. Target specifiers are
formed by concatenating 4 common upper bits (M4TX) with 5 unique
lower bits for each target (M4T0, M4T1, M4T2, M4T3).

Operation:

TARGET(M4TX, M4T0) OP0

TARGET(M4TX, M4T1) OP0

TARGET(M4TX, M4T2) OP0

TARGET(M4TX, M4T3) OP0

Exceptions:

None

Notes:

Since all targets share 4 common upper bits, they are constrained to
target the same type of operand slot and the same subset of instruction
identifiers.

Because this instruction uses the M4 format, it may not be predicated.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 145 March 10, 2005

24 IMM T0 0 PR I : 0
31 25 24 23 22 8 18 17 9 0

MOVI
Move Immediate

Format:

Description:

A sign-extended immediate value is copied (or moved) to a target.

Operation:

T0 SEXT(IMM, 9)

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 146 March 10, 2005

23 T1 T0 2 PR G : 2
31 25 24 23 22 8 18 17 9 0

MUL
Multiply

Format:

Description:

The OP0 value is multiplied with the OP1 value to form a 64-bit product.
Multiplication is performed using 64-bit 2’s complement arithmetic.
Arithmetic overflows are ignored and only the lowest 64 bits of the result
are saved.

Operation:

T0, T1 OP0 * OP1

Exceptions:

None

Notes:

The MUL instruction may be used to perform both signed and unsigned
multiplication.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 147 March 10, 2005

31 IMM T0 2 PR I : 1
31 25 24 23 22 8 18 17 9 0

MULI
Multiply Immediate

Format:

Description:

The OP0 value is multiplied with a sign-extended immediate value to form
a 64-bit product. Multiplication is performed using 64-bit 2’s complement
arithmetic. Arithmetic overflows are ignored and only the lowest 64 bits of
the result are saved.

Operation:

T0 OP0 * SEXT(IMM, 9)

Exceptions:

None

Notes:

The MULI instruction may be used to perform both signed and unsigned
multiplication.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 148 March 10, 2005

0 0 0 C : 0
31 25 8 9 0 24

NOP
No Operation

Format:

Description:

The opcode zero designates an empty instruction slot (or an instruction
that performs no operation).

Operation:

None

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 149 March 10, 2005

16 T1 T0 0 PR G : 0
31 25 24 23 22 8 18 17 9 0

NULL
Nullify Output

Format:

Description:

Null values are sent to each target. Write instructions that receive a null
operand are considered nullified (cancelled) writes. Store instructions that
receive a null operand are considered nullified (cancelled) stores. Other
instructions that receive null operands will propagate them (in most
cases).

Operation:

T0, T1 NULL

Exceptions:

None

Notes:

The NULL instruction should usually be predicated (as its only function is
to predicate block outputs).

Output nullification should not be confused with general instruction
predication. Instructions that receive a null operand will still execute, but
will produce a special result. Instructions must still receive all of their
expected operands and enabling predicates before they can execute.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 150 March 10, 2005

23 T1 T0 9 PR G : 2
31 25 24 23 22 8 18 17 9 0

OR
Bitwise OR

Format:

Description:

A bitwise logical OR operation is performed using the OP0 and OP1
values.

Operation:

T0, T1 OP0 | OP1

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 151 March 10, 2005

31 IMM T0 9 PR I : 1
31 25 24 23 22 8 18 17 9 0

ORI
Bitwise OR Immediate

Format:

Description:

A bitwise logical OR operation is performed using the OP0 value and a
sign-extended immediate value.

Operation:

T0 OP0 | SEXT(IMM, 9)

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 152 March 10, 2005

1 RT0 RT1 GR R : 0
21 15 16 20 8 7 0

READ
Read General Register

Format:

Description:

The specified General Register value is retrieved and written to one or
more targets.

Operation:

reg_bank READ_ID % 4

reg_number 4 * GR + reg_bank

TARGET(1, RT0) REG(reg_number)

if (RT1 != RT0) READ_TARGET(1, RT1) REG(reg_number)

Exceptions:

None

Notes:

This instruction may only be executed from the Read Queue.

The READ instruction may only retrieve a General Register from the
corresponding General Register bank.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 153 March 10, 2005

14 0 PR B : 1
31 25 24 23 22 20 19 0

EXIT

RET
Return

Format:

Description:

The OP0 value is treated as a program address and used to direct the
processor to the next program block. The processor will first finish
executing the current program block. The Program Counter is an implicit
target.

Operation:

address OP0

PC address

Exceptions:

Execute Exception – Misaligned Branch Error

Notes:

The address must be aligned to a 128-byte (chunk) boundary. If any of
the seven least-significant bits of the address are non-zero, an Alignment
Exception occurs.

Any block that executes a RET instruction must not execute any other
branch instruction.

This instruction behaves just like the BR instruction, but informs the
processor that a subroutine is being returned from. This may allow the
hardware to accurately predict return addresses when needed.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 154 March 10, 2005

40 IMM 0 LSID PR S : 2
31 25 24 23 22 8 18 17 9 0

SB
Store Byte

Format:

Description:

An address is computed and used to store a byte to memory. The low-
order byte of the OP1 value is stored.

Operation:

address OP0 + SEXT(IMM, 9)

MEM(address, 8, LSID) OP1

Exceptions:

Execute Exception – Misaligned Store Error

Execute Exception – DTLB Translation Error

Execute Exception – DTLB Protection Error

Store Exception – External Store Error

Notes:

Although a 64-bit address is computed, the upper 24 bits should always
be zero and will be ignored by the processor.

The LSID is used to check for subsequent dependent loads within the
same block.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 155 March 10, 2005

10 0 PR B : 0
31 25 24 23 22 20 19 0

EXIT

SCALL
System Call

Format:

Description:

This instruction may be used to request a special service from the
operating system. The processor will first finish executing and committing
the current program block, then initiate a System Call Exception. The
Program Counter is an implicit target.

Operation:

PC 0

Exceptions:

System Call Exception

Notes:

Software (TRIPS ABI) conventions define how to identify the type of
system call and how to save the return address.

Any block that executes an SCALL instruction must not execute other
branch instruction.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 156 March 10, 2005

43 IMM 0 LSID PR S : 2
31 25 24 23 22 8 18 17 9 0

SD
Store Doubleword

Format:

Description:

An address is computed and used to store a doubleword to memory.

Operation:

address OP0 + SEXT(IMM, 9)

MEM(address, 64, LSID) OP1

Exceptions:

Execute Exception – Misaligned Store Error

Execute Exception – DTLB Translation Error

Execute Exception – DTLB Protection Error

Store Exception – External Store Error

Notes:

The address must be naturally aligned. If any of the three least-significant
bits of the address are non-zero, an Execute Exception occurs.

Although a 64-bit address is computed, the upper 24 bits should always
be zero and will be ignored by the processor.

The LSID is used to check for subsequent dependent loads within the
same block.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 157 March 10, 2005

41 IMM 0 LSID PR S : 2
31 25 24 23 22 8 18 17 9 0

SH
Store Halfword

Format:

Description:

An address is computed and used to store a halfword to memory. The
low-order halfword of the OP1 value is stored.

Operation:

address OP0 + SEXT(IMM, 9)

MEM(address, 16, LSID) OP1

Exceptions:

Execute Exception – Misaligned Store Error

Execute Exception – DTLB Translation Error

Execute Exception – DTLB Protection Error

Store Exception – External Store Error

Notes:

The address must be naturally aligned. If the least-significant bit of the
address is non-zero, an Execute Exception occurs.

Although a 64-bit address is computed, the upper 24 bits should always
be zero and will be ignored by the processor.

The LSID is used to check for subsequent dependent loads within the
same block.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 158 March 10, 2005

23 T1 T0 12 PR G : 2
31 25 24 23 22 8 18 17 9 0

SLL
Shift Left Logical

Format:

Description:

The OP0 value is shifted left by an amount specified by the OP1 value.
Zero bits are propagated into the vacated bit positions. The six low-order
bits of the OP1 value are used to form an unsigned shift amount ranging
from 0 to 63.

Operation:

shift_amount OP1 & 0x3F

T0, T1 SLL(OP0, shift_amount)

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 159 March 10, 2005

31 IMM T0 12 PR I : 1
31 25 24 23 22 8 18 17 9 0

SLLI
Shift Left Logical Immediate

Format:

Description:

The OP0 value is shifted left by an amount specified by an immediate
value. Zero bits are propagated into the vacated bit positions. The six
low-order bits of the immediate value are used to form an unsigned shift
amount ranging from 0 to 63.

Operation:

shift_amount SEXT(IMM, 9) & 0x3F

T0 SLL(OP0, shift_amount)

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 160 March 10, 2005

23 T1 T0 14 PR G : 2
31 25 24 23 22 8 18 17 9 0

SRA
Shift Right Arithmetic

Format:

Description:

The OP0 value is shifted right by an amount specified by the OP1 value.
The OP0 value is treated as a signed integer and its most significant bit
(the sign bit) is propagated into the vacated bit positions. The six low-
order bits of the OP1 value are used to form an unsigned shift amount
ranging from 0 to 63.

Operation:

shift_amount OP1 & 0x3F

T0, T1 SRA(OP0, shift_amount)

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 161 March 10, 2005

31 IMM T0 14 PR I : 1
31 25 24 23 22 8 18 17 9 0

SRAI
Shift Right Arithmetic Immediate

Format:

Description:

The OP0 value is shifted right by an amount specified by an immediate
value. The OP0 value is treated as a signed integer and its most
significant bit (the sign bit) is propagated into the vacated bit positions.
The six low-order bits of the immediate value are used to form an
unsigned shift amount ranging from 0 to 63.

Operation:

shift_amount SEXT(IMM, 9) & 0x3F

T0 SRA(OP0, shift_amount)

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 162 March 10, 2005

23 T1 T0 13 PR G : 2
31 25 24 23 22 8 18 17 9 0

SRL
Shift Right Logical

Format:

Description:

The OP0 value is shifted right by an amount specified by the OP1 value.
The OP0 value is treated as an unsigned integer and zero bits are
propagated into the vacated bit positions. The six low-order bits of the
OP1 value are used to form an unsigned shift amount ranging from 0 to
63.

Operation:

shift_amount OP1 & 0x3F

T0, T1 SRL(OP0, shift_amount)

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 163 March 10, 2005

31 IMM T0 13 PR I : 1
31 25 24 23 22 8 18 17 9 0

SRLI
Shift Right Logical Immediate

Format:

Description:

The OP0 value is shifted right by an amount specified by an immediate
value. The OP0 value is treated as an unsigned integer and zero bits are
propagated into the vacated bit positions. The six low-order bits of the
immediate value are used to form an unsigned shift amount ranging from
0 to 63.

Operation:

shift_amount SEXT(IMM, 9) & 0x3F

T0 SRL(OP0, shift_amount)

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 164 March 10, 2005

23 T1 T0 1 PR G : 2
31 25 24 23 22 8 18 17 9 0

SUB
Subtract

Format:

Description:

The OP1 value is subtracted from the OP0 value to produce a 64-bit
difference. Subtraction is performed using 64-bit 2’s complement
arithmetic. Arithmetic overflows are ignored and only the lowest 64 bits of
the result are saved.

Operation:

T0, T1 OP0 – OP1

Exceptions:

None

Notes:

The SUB instruction may be used to perform both signed and unsigned
subtraction.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 165 March 10, 2005

31 IMM T0 1 PR I : 1
31 25 24 23 22 8 18 17 9 0

SUBI
Sub Immediate

Format:

Description:

A sign-extended immediate value is subtracted from the OP0 value to
produce a 64-bit difference. Subtraction is performed using 64-bit 2’s
complement arithmetic. Arithmetic overflows are ignored and only the
lowest 64 bits of the result are saved.

Operation:

T0 OP0 – SEXT(IMM, 9)

Exceptions:

None

Notes:

The SUBI instruction may be used to perform both signed and unsigned
addition.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 166 March 10, 2005

42 IMM 0 LSID PR S : 2
31 25 24 23 22 8 18 17 9 0

SW
Store Word

Format:

Description:

An address is computed and used to store a word to memory. The low-
order word of the OP1 value is stored.

Operation:

address OP0 + SEXT(IMM, 9)

MEM(address, 32, LSID) OP1

Exceptions:

Execute Exception – Misaligned Store Error

Execute Exception – DTLB Translation Error

Execute Exception – DTLB Protection Error

Store Exception – External Store Error

Notes:

The address must be naturally aligned. If any of the two least-significant
bits of the address are non-zero, an Execute Exception occurs.

Although a 64-bit address is computed, the upper 24 bits should always
be zero and will be ignored by the processor.

The LSID is used to check for subsequent dependent loads within the
same block.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 167 March 10, 2005

23 T1 T0 16 PR G : 2
31 25 24 23 22 8 18 17 9 0

TEQ
Test EQ

Format:

Description:

The OP0 value is compared with the OP1 value. If the OP0 value is equal
to the OP1 value, then a 1 (true) is produced. Otherwise, a 0 (false) is
produced.

Operation:

T0, T1 EQ(OP0, OP1) ? 1 : 0

Exceptions:

None

Notes:

The TEQ instruction may be used to perform both signed and unsigned
tests.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 168 March 10, 2005

31 IMM T0 16 PR I : 1
31 25 24 23 22 8 18 17 9 0

TEQI
Test EQ Immediate

Format:

Description:

The OP0 value is compared with a sign-extended immediate value. If the
OP0 value is equal to the immediate value, then a 1 (true) is produced.
Otherwise, a 0 (false) is produced.

Operation:

T0 EQ(OP0, SEXT(IMM, 9)) ? 1 : 0

Exceptions:

None

Notes:

The TEQI instruction may be used to perform both signed and unsigned
tests.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 169 March 10, 2005

23 T1 T0 23 PR G : 2
31 25 24 23 22 8 18 17 9 0

TGE
Test GE

Format:

Description:

The OP0 value is compared with the OP1 value. The two values are
compared as signed integers. If the OP0 value is greater than or equal to
the OP1 value, then a 1 (true) is produced. Otherwise, a 0 (false) is
produced.

Operation:

T0, T1 GE(OP0, OP1) ? 1 : 0

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 170 March 10, 2005

31 IMM T0 23 PR I : 1
31 25 24 23 22 8 18 17 9 0

TGEI
Test GE Immediate

Format:

Description:

The OP0 value is compared with a sign-extended immediate value. The
two values are compared as signed integers. If the OP0 value is greater
than or equal to the immediate value, then a 1 (true) is produced.
Otherwise, a 0 (false) is produced.

Operation:

T0 GE(OP0, SEXT(IMM, 9)) ? 1 : 0

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 171 March 10, 2005

23 T1 T0 25 PR G : 2
31 25 24 23 22 8 18 17 9 0

TGEU
Test GE Unsigned

Format:

Description:

The OP0 value is compared with the OP1 value. The two values are
compared as unsigned integers. If the OP0 value is greater than or equal
to the OP1 value, then a 1 (true) is produced. Otherwise, a 0 (false) is
produced.

Operation:

T0, T1 GEU(OP0, OP1) ? 1 : 0

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 172 March 10, 2005

31 IMM T0 25 PR I : 1
31 25 24 23 22 8 18 17 9 0

TGEUI
Test GE Unsigned Immediate

Format:

Description:

The OP0 value is compared with a sign-extended immediate value. The
two values are compared as unsigned integers. If the OP0 value is
greater than or equal to the immediate value, then a 1 (true) is produced.
Otherwise, a 0 (false) is produced.

Operation:

T0 GEU(OP0, SEXT(IMM, 9)) ? 1 : 0

Exceptions:

None

Notes:

Even though the test is unsigned, the IMM field will still be sign-extended.
For this instruction, the IMM field may encode an unsigned value between
0 and 255.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 173 March 10, 2005

23 T1 T0 22 PR G : 2
31 25 24 23 22 8 18 17 9 0

TGT
Test GT

Format:

Description:

The OP0 value is compared with the OP1 value. The two values are
compared as signed integers. If the OP0 value is greater than the OP1
value, then a 1 (true) is produced. Otherwise, a 0 (false) is produced.

Operation:

T0, T1 GT(OP0, OP1) ? 1 : 0

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 174 March 10, 2005

31 IMM T0 22 PR I : 1
31 25 24 23 22 8 18 17 9 0

TGTI
Test GT Immediate

Format:

Description:

The OP0 value is compared with a sign-extended immediate value. The
two values are compared as signed integers. If the OP0 value is greater
than the immediate value, then a 1 (true) is produced. Otherwise, a 0
(false) is produced.

Operation:

T0 GT(OP0, SEXT(IMM, 9)) ? 1 : 0

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 175 March 10, 2005

23 T1 T0 24 PR G : 2
31 25 24 23 22 8 18 17 9 0

TGTU
Test GT Unsigned

Format:

Description:

The OP0 value is compared with the OP1 value. The two values are
compared as unsigned integers. If the OP0 value is greater than the OP1
value, then a 1 (true) is produced. Otherwise, a 0 (false) is produced.

Operation:

T0, T1 GTU(OP0, OP1) ? 1 : 0

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 176 March 10, 2005

31 IMM T0 24 PR I : 1
31 25 24 23 22 8 18 17 9 0

TGTUI
Test GT Unsigned Immediate

Format:

Description:

The OP0 value is compared with a sign-extended immediate value. The
two values are compared as unsigned integers. If the OP0 value is
greater than the immediate value, then a 1 (true) is produced. Otherwise,
a 0 (false) is produced.

Operation:

T0 GTU(OP0, SEXT(IMM, 9)) ? 1 : 0

Exceptions:

None

Notes:

Even though the test is unsigned, the IMM field will still be sign-extended.
For this instruction, the IMM field may encode an unsigned value between
0 and 255.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 177 March 10, 2005

23 T1 T0 17 PR G : 2
31 25 24 23 22 8 18 17 9 0

TLE
Test LE

Format:

Description:

The OP0 value is compared with the OP1 value. The two values are
compared as signed integers. If the OP0 value is less than or equal to the
OP1 value, then a 1 (true) is produced. Otherwise, a 0 (false) is
produced.

Operation:

T0, T1 LE(OP0, OP1) ? 1 : 0

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 178 March 10, 2005

31 IMM T0 17 PR I : 1
31 25 24 23 22 8 18 17 9 0

TLEI
Test LE Immediate

Format:

Description:

The OP0 value is compared with a sign-extended immediate value. The
two values are compared as signed integers. If the OP0 value is less than
or equal to the immediate value, then a 1 (true) is produced. Otherwise, a
0 (false) is produced.

Operation:

T0 LE(OP0, SEXT(IMM, 9)) ? 1 : 0

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 179 March 10, 2005

23 T1 T0 19 PR G : 2
31 25 24 23 22 8 18 17 9 0

TLEU
Test LE Unsigned

Format:

Description:

The OP0 value is compared with the OP1 value. The two values are
compared as unsigned integers. If the OP0 value is less than or equal to
the OP1 value, then a 1 (true) is produced. Otherwise, a 0 (false) is
produced.

Operation:

T0, T1 LEU(OP0, OP1) ? 1 : 0

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 180 March 10, 2005

31 IMM T0 19 PR I : 1
31 25 24 23 22 8 18 17 9 0

TLEUI
Test LE Unsigned Immediate

Format:

Description:

The OP0 value is compared with a sign-extended immediate value. The
two values are compared as unsigned integers. If the OP0 value is less
than or equal to the immediate value, then a 1 (true) is produced.
Otherwise, a 0 (false) is produced.

Operation:

T0 LEU(OP0, SEXT(IMM, 9)) ? 1 : 0

Exceptions:

None

Notes:

Even though the test is unsigned, the IMM field will still be sign-extended.
For this instruction, the IMM field may encode an unsigned value between
0 and 255.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 181 March 10, 2005

23 T1 T0 18 PR G : 2
31 25 24 23 22 8 18 17 9 0

TLT
Test LT

Format:

Description:

The OP0 value is compared with the OP1 value. The two values are
compared as signed integers. If the OP0 value is less than the OP1
value, then a 1 (true) is produced. Otherwise, a 0 (false) is produced.

Operation:

T0, T1 LT(OP0, OP1) ? 1 : 0

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 182 March 10, 2005

31 IMM T0 18 PR I : 1
31 25 24 23 22 8 18 17 9 0

TLTI
Test LT Immediate

Format:

Description:

The OP0 value is compared with a sign-extended immediate value. The
two values are compared as signed integers. If the OP0 value is less than
the immediate value, then a 1 (true) is produced. Otherwise, a 0 (false) is
produced.

Operation:

T0 LT(OP0, SEXT(IMM, 9)) ? 1 : 0

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 183 March 10, 2005

23 T1 T0 20 PR G : 2
31 25 24 23 22 8 18 17 9 0

TLTU
Test LT Unsigned

Format:

Description:

The OP0 value is compared with the OP1 value. The two values are
compared as unsigned integers. If the OP0 value is less than the OP1
value, then a 1 (true) is produced. Otherwise, a 0 (false) is produced.

Operation:

T0, T1 LTU(OP0, OP1) ? 1 : 0

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 184 March 10, 2005

31 IMM T0 20 PR I : 1
31 25 24 23 22 8 18 17 9 0

TLTUI
Test LT Unsigned Immediate

Format:

Description:

The OP0 value is compared with a sign-extended immediate value. The
two values are compared as unsigned integers. If the OP0 value is less
than the immediate value, then a 1 (true) is produced. Otherwise, a 0
(false) is produced.

Operation:

T0 LTU(OP0, SEXT(IMM, 9)) ? 1 : 0

Exceptions:

None

Notes:

Even though the test is unsigned, the IMM field will still be sign-extended.
For this instruction, the IMM field may encode an unsigned value between
0 and 255.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 185 March 10, 2005

23 T1 T0 21 PR G : 2
31 25 24 23 22 8 18 17 9 0

TNE
Test NE

Format:

Description:

The OP0 value is compared with the OP1 value. If the OP0 value is NOT
equal to the OP1 value, then a 1 (true) is produced. Otherwise, a 0 (false)
is produced.

Operation:

T0, T1 NE(OP0, OP1) ? 1 : 0

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 186 March 10, 2005

31 IMM T0 21 PR I : 1
31 25 24 23 22 8 18 17 9 0

TNEI
Test NE Immediate

Format:

Description:

The OP0 value is compared with a sign-extended immediate value. If the
OP0 value is NOT equal to the immediate value, then a 1 (true) is
produced. Otherwise, a 0 (false) is produced.

Operation:

T0 NE(OP0, SEXT(IMM, 9)) ? 1 : 0

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 187 March 10, 2005

1 GR W : 1
5 0 4

WRITE
Write General Register

Format:

Description:

The specified General Register is written.

Operation:

reg_bank WRITE_ID % 4

reg_number 4 * GR + reg_bank

REG(reg_number) DATA

Exceptions:

None

Notes:

This instruction may only be executed from the Write Queue.

The WRITE instruction may only modify a General Register from the
corresponding General Register bank.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 188 March 10, 2005

23 T1 T0 10 PR G : 2
31 25 24 23 22 8 18 17 9 0

XOR
Bitwise XOR

Format:

Description:

A bitwise logical XOR operation is performed using the OP0 and OP1
values.

Operation:

T0, T1 OP0 ^ OP1

Exceptions:

None

Notes:

None

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 189 March 10, 2005

31 IMM T0 10 PR I : 1
31 25 24 23 22 8 18 17 9 0

XORI
Bitwise XOR Immediate

Format:

Description:

A bitwise logical XOR operation is performed using the OP0 value and a
sign-extended immediate value.

Operation:

T0 OP0 ^ SEXT(IMM, 9)

Exceptions:

None

Notes:

An XORI with an immediate value of -1 may be used to perform an bitwise
complement (the NOT operation).

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 190 March 10, 2005

Chapter 9 - Performance Monitor

9.1 Overview

The TRIPS processor includes a built-in Performance Monitor to help track
a small set of performance-critical events. Several count registers are
implemented, as well as a handful of special address registers. The
Performance Monitor is always enabled and does not affect normal
processing operations. It’s registers may be accessed just like the other
registers described in Chapter 4.

9.2 Register Map

The following table summarizes the Performance Monitor registers. Each
table entry shows the register’s address offset , size, name, and
associated information. The registers are grouped based upon where
they are implemented within the processor.

Offset Bytes Registers Information

0x2000 4 PMON_DT0_CTR0 Data Cache Load Accesses

0x2004 4 PMON_DT0_CTR1 Data Cache Load Misses

0x2008 4 PMON_DT0_CTR2 Data Cache Store Accesses

0x200C 4 PMON_DT0_CTR3 Data Cache Store Misses

0x2010 4 PMON_DT0_CTR4 Data Cache Line Fills

0x2014 4 PMON_DT0_CTR5 Data Cache Line Spills

0x2018 4 PMON_DT0_CTR6 Load Predictor Load Deferrals

0x2040 4 PMON_DT1_CTR0 Data Cache Load Accesses

0x2044 4 PMON_DT1_CTR1 Data Cache Load Misses

0x2048 4 PMON_DT1_CTR2 Data Cache Store Accesses

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 191 March 10, 2005

Offset Bytes Registers Information

0x204C 4 PMON_DT1_CTR3 Data Cache Store Misses

0x2050 4 PMON_DT1_CTR4 Data Cache Line Fills

0x2054 4 PMON_DT1_CTR5 Data Cache Line Spills

0x2058 4 PMON_DT1_CTR6 Load Predictor Load Deferrals

0x2080 4 PMON_DT2_CTR0 Data Cache Load Accesses

0x2084 4 PMON_DT2_CTR1 Data Cache Load Misses

0x2088 4 PMON_DT2_CTR2 Data Cache Store Accesses

0x208C 4 PMON_DT2_CTR3 Data Cache Store Misses

0x2090 4 PMON_DT2_CTR4 Data Cache Line Fills

0x2094 4 PMON_DT2_CTR5 Data Cache Line Spills

0x2098 4 PMON_DT2_CTR6 Load Predictor Load Deferrals

0x20C0 4 PMON_DT3_CTR0 Data Cache Load Accesses

0x20C4 4 PMON_DT3_CTR1 Data Cache Load Misses

0x20C8 4 PMON_DT3_CTR2 Data Cache Store Accesses

0x20CC 4 PMON_DT3_CTR3 Data Cache Store Misses

0x20D0 4 PMON_DT3_CTR4 Data Cache Line Fills

0x20D4 4 PMON_DT3_CTR5 Data Cache Line Spills

0x20D8 4 PMON_DT3_CTR6 Load Predictor Load Deferrals

0x2100 4 PMON_GT_CTR0 Active Cycles

0x2104 4 PMON_GT_CTR1 Block Fetches

0x2108 4 PMON_GT_CTR2 Block Commits

0x210C 4 PMON_GT_CTR3 Block Flushes

0x2110 4 PMON_GT_CTR4 Inst Cache Misses

0x2114 4 PMON_GT_CTR5 Branch Predictor Guesses

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 192 March 10, 2005

Offset Bytes Registers Information

0x2118 4 PMON_GT_CTR6 Branch Predictor Mispredicts

0x211C 4 PMON_GT_CTR7 Load Misordering Flushes

0x2120 8 PMON_GT_ADDR0 Inst Cache Miss Address

0x2128 8 PMON_GT_ADDR1 Branch Mispredict Address

0x2130 8 PMON_GT_ADDR2 Load Misordering Address

9.3 Register Descriptions

The Performance Monitor includes two types of registers – count registers
and address registers. These are described in separate sections below.

9.3.1 Count Registers

Each count register is 32 bits wide and its value increments by one when
the corresponding event occurs. If a count value reaches the maximum
value (0xFFFFFFFF), it will roll over to zero during the next increment.
(The system software should halt the processor and gather the counts
frequently enough to prevent this.) Count registers are read-only, but their
values are automatically reset to zero after a read (and during power-on).

Each count is described (in alphabetical order) below. Some of them
(those collected in the Data Tile) are tracked separately for each Data
Cache bank.

• Active Cycles – Incremented for every cycle that the processor
spends active (not halted).

• Block Commits – The number of program blocks that were
executed and committed.

• Block Fetches – The number of program blocks that were fetched
for execution.

• Block Flushes – The number of internal block flush events that
occurred due to a branch misprediction, load misordering, or
exception. (This may be less than the number of flushed blocks.)

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 193 March 10, 2005

• Branch Predictor Guesses – The number of committed blocks for
which a branch prediction was made. This excludes committed
blocks for which the branch predictor was inhibited due to XFLAGS.

• Branch Predictor Mispredicts – The number of branch predictor
guesses (as defined above) that were incorrect.

• Data Cache Line Fills – The number of cache lines written into the
associated Data Cache bank (result from a load).

• Data Cache Line Spills – The number of dirty cache lines written
back to memory from the associated Data Cache bank (resulting
from a cache line replacement). This excludes spills due to a
cache flush operation.

• Data Cache Load Accesses – The number of load operations that
hit or missed in the associated Data Cache bank. This excludes
loads that arrive with null or exception tokens. It includes
speculative loads.

• Data Cache Load Misses – The number of load accesses (as
defined above) that missed in the associated Data Cache bank.
This includes accesses to uncacheable memory segments. (This
may be less than the number of external load requests due to
request merging.)

• Data Cache Store Accesses – The number of store operations that
hit or missed in the associated Data Cache bank. Since store
operations are not performed speculatively, this includes only
unnullified stores from committed blocks.

• Data Cache Store Misses – The number of store accesses (as
defined above) that missed in the associated Data Cache bank.
(This may be less than the number of external store requests due
to request merging.)

• Inst Cache Misses – The number of program block fetches (as
defined above) that missed in the Instruction Cache. This includes
fetches from uncacheable memory segments. It excludes fetches
that resulted in fetch exceptions.

• Load Misordering Flushes – The number of committed blocks for
which a load misordering flush occurred.

 TRIPS Processor Reference Manual
 UT Proprietary – Not for Distribution

Version 1.2 194 March 10, 2005

• Load Predictor Load Deferrals – The number of load operations to
the associated Data Cache bank that were deferred (delayed) due
to a predicted store dependence. This excludes loads for which the
load predictor was inhibited due to XFLAGS. It also excludes loads
that are being reexecuted due to a misordering flush.

9.3.2 Address Registers

The address registers are loaded with address information whenever the
corresponding event occurs. When the processor halts, they hold
sampled information associated with the most recent event. Address
registers are read-only, but their values are automatically reset to zero
after a read (and during power-on).

Each sampled address is described (in alphabetical order) below.

• Branch Mispredict Address – The threadslot identifier plus virtual
address of the program block that caused the most recent branch
predictor mispredict event (as defined above). (This is not the
mispredicted target address.)

• Instruction Cache Miss Address – The threadslot identifier plus
virtual address of the program block that caused the most recent
Instruction Cache miss event (as defined above).

• Load Misordering Address – The threadslot identifier plus virtual
address of the program block that caused the most recent load
misordering flush (as defined above). (This is not the target
address of the misordered load.)

All address registers use the following format. Bits [39:0] hold the virtual
address. Bits [41:40] hold the threadslot identifier. The remaining bits are
reserved.

	- Introduction
	Overview
	Processor Architecture
	Processor Implementation
	Document Organization

	- Processing Model
	Processor States
	Processor Modes
	Threads Slots
	Data Formats
	Block-Atomic Execution
	Dataflow Execution
	Predicated Execution
	Output Nullification
	Dataflow Tokens
	Load Dependences
	Execution Flags

	- Programs
	Program Format
	Block Format
	Header Chunk Format
	Instruction Chunk Format
	Block Capacity Restrictions

	- Registers
	Register Set
	Register Summary
	Processor Control and Status Registers
	TLB Registers
	Thread Control and Status Registers
	Program Counters
	General Registers
	Performance Monitor Registers

	Register Map
	Register Descriptions
	Alphabetical Register List

	- Queues
	Execution Queues
	Instruction Queue
	Read Queue
	Write Queue
	Load & Store Queue
	Program Counter Writes

	- Memory
	Addressing
	Segments
	TLBs
	Caches
	Byte Ordering
	Byte Alignment

	- Exceptions
	Exception Model
	Exception Status
	Processor Exception Status
	Thread Exception Status

	Exception Types
	Processor Exception Types
	Thread Exception Types

	Exception Descriptions
	Alphabetical Exception List

	- Instructions
	Instruction Formats
	Instruction Fields
	Target Specifiers
	Instruction Set Summary
	Read Instructions
	Write Instructions
	Load Instructions
	Store Instructions
	Integer Arithmetic Instructions
	Integer Logical Instructions
	Integer Shift Instructions
	Integer Extend Instructions
	Integer Relational Instructions
	Floating-Point Arithmetic Instructions
	Floating-Point Conversion Instructions
	Floating-Point Relational Instructions
	Branch Instructions
	Other Instructions

	Instruction Codes
	Primary Opcode Map
	Opcode Table

	Floating-Point Support
	Instruction Descriptions
	Notation and Conventions
	Alphabetical Instruction List

	- Performance Monitor
	Overview
	Register Map
	Register Descriptions
	Count Registers
	Address Registers

