TRIPS Intermediate Language (TIL) Manual

Aaron Smith Jon Gibson Jim Burrill Katherine Coons
Robert McDonald Doug Burger Stephen W. Keckler
Kathryn S. McKinley

October 2, 2006 - Version A.04

Tech Report TR-05-20
Department of Computer Sciences
The University of Texas at Austin

This document specifies the TRIPS Intermediate Language (TIL) for the TRIPS architec-
ture, a novel, scalable, and low power architecture for future technologies. TIL is a RISC-like

intermediate representation for use by humans and compilers that want to write low-level
TRIPS code.

TRIPS Intermediate Language (TIL) Manual

Contents
1 Introduction 1
1.1 Why an Intermediate Language? 1
1.2 Brief Overview of TIL File Structure 1
2 Syntax 2
2.1 Whitespace 2
2.2 Comments e 2
2.3 Symbols 2
2.4 Statements. e e e 3
2.0 Constants e 3
3 Program Blocks 4
3.1 General and Block Temporary Registers 5
3.2 Predication e 6
3.3 Nullification e 6
3.3.1 Store Nullification. 6
3.3.2 Write Nullification, 7
4 Sections and Relocation 7
5 Scheduler and Assembler Directives 7
5.1 .alignint 8
5.2 .app-filestring 8
5.3 .ascii “string” 8
5.4 .asciz “string” L 8
5.5 .bbegin symbol [xflags] oo 8
5.6 .bend e 9
5.7 .DSS . . e 9
5.8 .byteexpressions 9
5.9 .comm symbol, length oo 9
5.10 .data e 9
5.11 .double fp e 9
5.12 .equ symboll=symbol2o 10
5.13 .externsymbol L 10
5.14 .globalsymbol 10
5.15 .intdata e 10
5.16 .lcomm symbol, length oo 10
5.17 .line line-number 10
518 .quaddata 11
5.19 .rdata 11
5.20 .short data 11
5.21 .singlefp 11
5.22 .spacesize, fill 11

Version A.04 i October 2, 2006

TRIPS Intermediate Language (TIL) Manual

D.23 Ltext . . .
5.24 .weak symbol

6 TIL Instructions

6.1 Instruction Formats Lo
6.2 Instruction Fieldso
6.3 Instruction Preplacement
6.4 Load/Store Instructions

6.4.1 Load/Store Identifiers

6.4.2 Load/Store Data Bank Alignment
6.5 Instruction Summary

A TRIPS Hardware Prototype
B EBNF Grammar

C Example Code
C.1 CSource Code e
C.2 Resulting TIL Code
C.3 Partial TIL code from 171.swim SPEC benchmark

12
12
12
13
14
14
14
15

18

19

Version A.04 ii October 2, 2006

TRIPS Intermediate Language (TIL) Manual

1 Introduction

This manual presents a brief overview of the TRIPS Intermediate Language (TIL). We ac-
knowledge our debt to the Free Software Foundation’s GNU assembler (GAS) documentation,
both in style and content.

1.1 Why an Intermediate Language?

TRIPS presents a new dataflow architecture based around a 2D array of ALUs. TRIPS
Assembly Language (TASL) can be challenging to follow and reason about for those un-
familiar with it. Unlike more traditional ISAs, TASL is dataflow in nature—instructions
have targets instead of operands and include scheduling information. TIL presents a more
traditional, linear, three-operand RISC style where programmers need not concern them-
selves with scheduling the instructions on the grid of ALUs. It presents the familiar alege-
braic paradigm where op dest, operandl, operand2 is equivalent to dest = operandl
op operand2.

TIL is an intermediate language and any code written in it will need to be translated to
TASL before it can be run. The TRIPS toolchain—specifically the TRIPS Scheduler—will
make that translation and schedule all instructions on the TRIPS processor.

For those interested in TASL, more information can be found in the TRIPS Processor Ref-
erence Manual.

1.2 Brief Overview of TIL File Structure

TIL files can contain .text, .data, .rdata, and .bss sections which are further described
in the “Sections and Relocation” section of this document.

There are key differences between the code layout of TRIPS .text sections and those of other
architectures. These differences primarily revolve around the concept of TRIPS program
blocks.

In the TRIPS architecture, program blocks are atomic execution units. Their representation
in TIL is a sequence of linear instructions as one might find in the assembly of a more
traditional architecture. Each block has a name associated with it and only by branching
to that name can a block be entered. TRIPS blocks cannot be entered other than at the
beginning and cannot exit until all of their outputs are produced.

Although a TRIPS block contains a sequential set of instructions, there are no hidden or
implicit restrictions on execution order of the instructions in a block. Execution order is
only constrained by the following:

e Dataflow dependencies. For example, instruction A is dependent on an output of
instruction B; therefore, B will execute before A.

Version A.04 1 October 2, 2006

TRIPS Intermediate Language (TIL) Manual

e Load/store dependencies. Loads and stores follow the sequential order in which
they appear in TIL unless they are explicitely marked with load/store IDs (LSIDs), in
which case they are ordered by LSID. See “Instruction” section for more information
on LSIDs.

e Reuse. Defining a block temporary register more than once in a TRIPS block causes
the scheduler to compute dataflow dependencies for that register based on the sequen-
tial order of the affected instructions.

More specifics on how blocks are structured can be found in the “Program Blocks” section
of this document. Examples TIL files can be found in the Appendix.

2 Syntax

2.1 Whitespace

Whitespace is one or more blanks or tabs, in any order. Whitespace is used to separate
symbols, and to make programs easier for people to read. Unless used within character
constants, any whitespace means the same as exactly one space.

2.2 Comments

Comments are allowed anywhere in TIL. Anything from the line comment character to the
next newline is considered a comment and is ignored. The line comment character is a
semicolon ().

; this is a comment which takes an entire line
.bbegin blockl

ret ; this is a comment at the end of a line
.bend

2.3 Symbols

A symbol is typically the name of a memory location (for data items) or a program block
address (for code sections). A symbol may consist of one or more characters chosen from
the set of all letters (both upper and lower case), the digits, the dollar sign ($), and the
underscore (_).

No symbol may begin with a digit. Case is significant. There is no length limit: all characters
are significant. Symbols are delimited by characters not in that set.

Version A.04 2 October 2, 2006

TRIPS Intermediate Language (TIL) Manual

A label is used to define a data symbol for inclusion in the program’s symbol table. Syntac-
tically, a label is a symbol followed immediately by a colon (:). No whitespace is allowed
between a label and the colon.

Examples:
bro phil$s ; branch to the code block named phil$s

_Vv288:
.ascii "malloc failed for K[’%d] [%d]\n\000"; create a data symbol _V288

2.4 Statements

A statement ends at a newline character (\n) or at a semicolon (;). Newlines and semicolons
within character constants do not end statements. Empty statements are allowed, and may
include whitespace. They are ignored.

A statement may contain either a directive (a symbol whose first character is a dot *.”) or a
TIL instruction (see the sections on “TIL and Assembler Directives” and “TIL Instructions”
for the supported directives and instructions). Whitespace may precede or follow a directive
or instruction.

A statement may optionally begin with a label. Whitespace may precede or follow a label.

Examples:

__LabelO: ; an empty statement that contains a label
.int 45 ; an assembler directive

subi $t12, $t8, 17 ; a TIL instruction

2.5 Constants

A constant is a number or character, written so that its value is known by inspection, without
knowing any context.

Examples:

.data

my_bytes:

.byte 74, 0112, Ox4A, ’J’ ; a variety of data formats
my_string:

.asciz "Ring the bell\7" ; string constant

my_float:

.single 3.14159265 ; 4-byte floating point.

Version A.04 3 October 2, 2006

TRIPS Intermediate Language (TIL) Manual

3 Program Blocks

Program blocks (or blocks) represent the atomic execution unit in TIL. Blocks are sequences
of instructions that begin with a block begin (.bbegin) directive and end with a block end
(.bend) directive. All TRIPS instructions are contained within TIL blocks. It is illegal to
place an instruction outside of a block.

Entry into a block is made by branching to the block’s specified name (see the “TIL and
Assembler Directives” section on the .bbegin directive). Branching to a label within a
block is not supported. Execution of a block will terminate when both a branch instruction
is reached and all specified outputs have been satisfied (i.e., values have been produced for
all general register writes and all stores to memory have completed).

A TRIPS block should be constructed in the following order:

1. .global <blockname> (Optional; used to make the block visible to other TIL mod-
ules.)

2. .bbegin <blockname> (The <blockname> follows the syntactical rules for symbols as
described above.)

3. read instructions (Names all general registers used in the block.)

4. Block instructions (Includes non-read/write instructions which reference only block
temporaries and memory addresses.)

5. write instructions (Names all general registers defined in the block.)

6. .bend
Example:

.global calc2_$1
.bbegin calc2_$1
read $t1, $g3
addi $t2, $t1, 1
bro calc2_$2
write $g90, $t2
.bend

There are limitations placed on the legal formation of a block that are architecture dependent.
These limitations restrict the total number of instructions allowed in a block (the block size),
the number of load/store identifiers per block and how many general registers can be read
from and written to per block. Specific limitations of the TRIPS prototype can be found in
the Appendix.

The TRIPS scheduler and assembler perform extensive checks to verify that blocks are
correctly formed and adhere to processor constraints.

Version A.04 4 October 2, 2006

TRIPS Intermediate Language (TIL) Manual

3.1 General and Block Temporary Registers

TIL supports two classes of registers: global registers, or general registers, and block tem-
porary registers, or simply block temporaries.

Class Range Syntax
General Register 0...127 $g<n>
Block Temporary Register | 0...unlimited | $t<n>

The two classes of registers are defined as follows:

e General registers retain their values between blocks and can only be read using a read
instruction and written using a write instruction.

e With the exception of read and write instructions, all instructions within a block
reference block temporaries.

e It isillegal for an instruction to reference a block temporary before the block temporary
is defined.

e Register names are case insensitive. The names $T1 and $t1 map to the same block
temporary register, just as $G1 and $g1 map to the same general register.

e Defined block temporaries must be used within a block. That is, dead code is not
permitted in TIL blocks—the scheduler will issue an error message if it detects dead
code.

Example: General registers $g5 and $g7 refer to the same general registers in blockl and
in block2. Block temporaries $t1, $t2, and $t3 refer to different temporary registers in
each block.

.bbegin blockl
read $t1, $gb
movi $t2, O
add $t3, $t1, $t2
bro block2
write $g7, $t3
.bend

.bbegin block2
read $t1, $gb
movi $t2, 1
add $t3, $t1, $t2
bro block3
write $g7, $t3
.bend

Version A.04 5 October 2, 2006

TRIPS Intermediate Language (TIL) Manual

3.2 Predication

The TRIPS ISA provides extensive support for predicated execution. Most instructions
can be predicated (see the section on “TIL Instructions” for exceptions). Each predicated
instruction has a condition, either true or false, and a predicate register that is compared
against the condition at runtime.

A low order bit of “0” in the predicate register signifies false; otherwise, the predicate register
signifies true. If at runtime the value in the predicate register matches the instruction’s
condition, the instruction will execute; otherwise, the instruction will be treated as a nop.

To predicate an instruction, specify the condition by appending _t or _f to the instruction’s
opcode followed by a predicate register enclosed in angle brackets (< and >).

Examples:

mul_t<$t120> $t87, $t84, $t80
; if $t120 > 0, then $t87 = $t84 * $t80 else nop

addi_£f<$t120> $t87, $t79, 8
; if $t120 == 0, then $t87 = $t79 + 8 else nop

3.3 Nullification

The TRIPS architecture requires that all block outputs (i.e., stores and general register
writes) be produced along all possible predicate paths through a block. If a path does not
produce a given output, then that path must produce a corresponding nullified output. Since
block termination is dependent on all outputs being satisfied, a path that fails to produce a
result for any output will prevent the block from terminating.

There are two types of nullification: store nullification and write nullification.

3.3.1 Store Nullification

Every predicate path through a block must produce the same set of store identifiers. A
path with a missing store identifier must produce a null for the identifier to signal to the
architecture that no value will be received for that identifier. This process is referred to as
store nullification.

Example:

movi_f<$t120> $t134, 0
null_t<$t120> $t134
sd 8($t135), $t134 S[0] ;store identifier O is nullified when $t120 is true

There is no difference between nullifying a store’s data or address operand or both—as soon
as a store receives a null, it is nullified.

Version A.04 6 October 2, 2006

TRIPS Intermediate Language (TIL) Manual

3.3.2 Write Nullification

Every predicate path through a block must write to the same set of general registers. If a
general register will not be written on a path, it must be nullified to signal to the architecture
that no input will be received by the write.

Example:

movi_£f<$t120> $t137, O
null_t<$t120> $t137
write $g3, $t137 ;write nullified when $t120 is true

4 Sections and Relocation

The assembler creates one section per TIL source file for each of the following types of code
and data: text, read-write data, read-only data, and uninitialized data (referred to as bss,
containing data items that have a name but no value).

During the final link phase, the TRIPS linker merges the various sections of multiple binary
modules created by the the TRIPS assembler, into a single program segment, with merged
.text sections, and a single data segment, with merged .data, .rdata, and .bss sections.

The executable image is created beginning at virtual address 0x00000000. At load time,
the TRIPS runtime system loads or relocates this virtual image into physical memory and
updates the TRIPS memory mapping hardware to translate the virtual addresses contained
in the binary into physical memory addresses of the TRIPS system.

5 Scheduler and Assembler Directives

The following keywords are used by the TRIPS compiler to communicate additional infor-
mation to the TRIPS scheduler and assembler in order to generate a TRIPS binary:

.align .bss .extern .short
.app—file .byte .global .single
.ascii .comm .int .space
.asciz .data .1lcomm .text
.bbegin® .double .quad .weak
.bend* .equ .rdata

An asterisk (*) indicates that the scheduler itself operates on the directive. The other
directives are simply passed from the compiler through the scheduler to the assembler. Refer
to the TRIPS Assembly Language Manual for more information.

Version A.04 7 October 2, 2006

TRIPS Intermediate Language (TIL) Manual

5.1 .align int

Pad the location counter (in the current section) to a particular storage boundary; int is the
alignment required in bytes. For example, ".align 8 advances the location counter until it
is a multiple of 8. If the location counter is already a multiple of 8, no change is needed.
".align 1’ has no affect.

5.2 .app-file string

.app-file specifies that we are about to start a new logical file; string is the new file name.
In general, the filename is recognized whether or not it is surrounded by quotes ’’; but if
you wish to specify an empty file name, you must give the quotes-“”. This statement may
go away in future: it is only recognized to be compatible with old programs.

5.3 .ascii “string”
.ascii expects zero or more string literals separated by commas. Each string will be put into
consecutive addresses with no automatic trailing zero byte.

Example:

_V440.:
.ascii "usage: channel <n> [title]\n\000"

The above causes the assembler to create a symbol table entry that is named _V440 and is
associated with a memory chunk that stores the quoted character string.

5.4 .asciz “string”

.asciz is just like .ascii, but each string is followed by a zero byte. The ‘z’ in ‘.asciz’ stands
for ‘zero’.

5.5 .bbegin symbol [xflags]

Begins a new TRIPS block named symbol. Within a source file, the symbol must be unique
from all other symbols. The name will be governed by the scoping rules used by the compiler
for C-style variables.

The optional zflags parameter may be used to set and clear certain execution flags which
control the behavior of the prototype processor, based on an 8-bit mask.

Example:

Version A.04 8 October 2, 2006

TRIPS Intermediate Language (TIL) Manual

.global _mutex_trylock ; make this symbol visible to other modules
.bbegin _mutex_trylock 0x4 ; require that this block be synchronized

The bitmask 0x6 causes the processor to inhibit the load predictor and require block syn-
chronization for that block.

Refer also to Chapter 2, “Processing Model,” and Chapter 3, “Programs,” of the TRIPS
Processor Reference Manual for more information on execution flags.

5.6 .bend

Ends the previous TRIPS block defined with .bbegin.

5.7 .bss

The bss section is not referenced explicitly in TIL. Any undefined symbol is assumed to be
in the bss.

5.8 .byte expressions

.byte expects zero or more expressions, separated by commas. Each expression is assembled
into the next byte

5.9 .comm symbol, length

.comm declares a common denoted by symbol. When linking, a common symbol in one object
file may be merged with a defined or common symbol of the same name in another object file.
If the linker does not see a definition for the symbol-just one or more common symbols-then
it will allocate length bytes of uninitialized memory. Length must be an absolute expression.

If the linker sees multiple common symbols with the same name, and they do not all have
the same size, it will allocate space using the largest size.

5.10 .data

.data specifies that the following statements should be added onto the end of the data section.
The beginning of the data section is 8-byte aligned. Data subsections are unsupported.

5.11 .double fp

.double expects one double-precision floating point number, occupying 8 bytes.

Version A.04 9 October 2, 2006

TRIPS Intermediate Language (TIL) Manual

5.12 .equ symboll=symbol2

.equ sets the value of symboll equal to symbol2. The compiler uses the .equ directive
to supply duplicate names to the same entry point, as required by the Fortran77 runtime
environment.

Example:

.global mg3xdemo_
.global main
.equ main=mg3xdemo_

5.13 .extern symbol

.extern is ignored if found in TIL. The linker will try to resolve all undefined symbols as if
they were declared as C-style external variables.

5.14 .global symbol
.global makes the symbol visible to the linker. If you define a symbol in your partial program,
its value is made available to other partial programs that are linked with it. Otherwise,

symbol takes its attributes from a symbol of the same name from another file linked into the
same program.

5.15 .int data

Reserves 4-bytes in the data section with the value "data”.

5.16 .lcomm symbol, length

Reserve length (an absolute expression) bytes for a local common denoted by symbol. The
section and value of symbol are those of the new local common. The addresses are allocated
in the bss section, so that at run-time the bytes start off zeroed. Symbol is not declared
global (see section .global symbol), so is normally not visible to the linker.

5.17 .line line-number
Change the logical line number. line-number must be an absolute expression. The next line

has that logical line number. Therefore, any other statements on the current line (after a
statement separator character) are reported as on logical line number line-number - 1

Version A.04 10 October 2, 2006

TRIPS Intermediate Language (TIL) Manual

5.18 .quad data

Reserves 8-bytes in the data section with the value "data”.

5.19 .rdata

Adds the following statements onto the end of the read-only data section. Currently only
one read-only data section is supported.

5.20 .short data

Reserves 2-bytes in the data section with the value "data”.

5.21 .single fp

This directive reserves 4-bytes in the data section for a single-precision floating point number
with the value ”fp”.

5.22 .space size, fill

This directive emits size bytes, each of value fill. Both size and fill are absolute expressions.
If the comma and fill are omitted, fill is assumed to be zero.

5.23 .text

Adds the following statements onto the end of the text section. The beginning of the text
section is 8-byte aligned. Text subsections are not supported.

5.24 .weak symbol

.weak declares the symbol as weak. When a weak symbol is linked with a normal defined
symbol, the normal defined symbol is used. If a symbol that is declared weak remains
unresolved by the linker during linking, the linker will set the value of the weak symbol to
Zero.

Version A.04 11 October 2, 2006

TRIPS Intermediate Language (TIL) Manual

6 TIL Instructions

6.1 Instruction Formats

The TRIPS ISA includes simple and consistent formats for machine-level instructions. The
following table summarizes the corresponding TIL instruction formats and syntax.

Format | Description Syntax
G2 General Instruction opcode|_cond<Tp>| Td, Ta, Tb [N]
G1 General Instruction opcode[_cond<Tp>] Td, Ta [N]

C1 Constant Instruction opcode Td, Ta, Imm16 [N]
co Constant Instruction opcode Td, Imm16 [N]
I1 Immediate Instructions | opcode|_cond<Tp>| Td, Ta, Imm9 [N]

L1 Load Instructions opcode[_cond<Tp>] Td, Imm9(Ta) [LS] [D] [N]
S2 Store Instructions opcode[_cond<Tp>] Imm9(Ta), Tb [LS] [D] [N]
R1 Read Instructions opcode Td, Ga

Wi Write Instructions opcode Gd, Ta

B1 Branch opcode|_cond<Tp>]| Ta [N]

Bo Branch with Offset opcode[_cond<Tp>] Imm20 [N]

- Enter opcode Td, Imm [N]

- Enter opcode Td, Symbol [N]

The format names are designated “0”, “1”, or “2” based on the number of source operands
included in the instruction, not including an immediate value. For example, the ADD in-
struction is classified as a G2 General Instruction, as it consumes two operands to produce
its result. No format is given for ENTER instructions as they are pseduo-instructions that
only exist in the TIL. For a complete description of instruction formats see, Chapter 8,
“Instructions,” in the T'RIPS Processor Reference Manual.

6.2 Instruction Fields

The following lists the fields used in the “Instruction Formats” table above and the “Instruc-
tion Summary” table below.

Version A.04 12 October 2, 2006

TRIPS Intermediate Language (TIL) Manual

Field Description

Imm Any immediate value. Used as the source operand in an enter
instruction.

Imm9 A 9-bit immediate value.

Imm16 A 16-bit immediate value.

Imm?20 A 20-bit immediate value.

Td A block temporary register used as the destination operand.

Ta A block temporary register used as the first source operand.

Tb A block temporary register used as the second source operand.

Tp An optional block temporary register used as the predicate
operand.

Imm9(Ta) | Load or store with offset. Effective address = Ta + Imm9.

Ga A general register used as the source operand in a read in-
struction.

Gd A general register used as the destination operand in a write
instruction.

opcode An opcode.

_cond _t or _f appended to an opcode to specify whether the instruc-
tion is predicated on true or false.

Symbol Any legal symbol.

LS An optional 3-bit load/store identifier specified as L[n] for
loads and S[n| for stores.

D An optional 2-bit data bank alignment specified as D|n].

N An optional node preplacement specified as N[row, column)]
or N[row, column, frame].

6.3 Instruction Preplacement

Instructions can be preplaced on a specific execution node by specifying the row, column,
and optionally the frame on which to place the instruction. If the frame is not specified, the
scheduler will assign a frame number according to normal placement ordering.

Example:

add $t7, $t0, $t1 N[0,1] ; Place this instruction on the execution node
; located at row 0, column 1

If a preplacement specifier is found on a TIL instruction that expands to multiple TASL
instructions, then the first TASL instruction in the sequence will be preplaced.

Version A.04 13 October 2, 2006

TRIPS Intermediate Language (TIL) Manual

6.4 Load/Store Instructions
6.4.1 Load/Store Identifiers

Load/Store identifiers (LSIDs) can be appended to load and store instructions in a TRIPS
block. If LSIDs are provided for any load or store instructions in a block, they must be
provided for all load and store instructions in the block. However, an LSID should not be
provided for a load prefetch instruction. The toolchain may issue a warning or error message
if a prefetch instruction contains a LSIDs.

LSIDs provide the hardware with a strict ordering of loads and stores within a block. If they
are not provided, the scheduler will assign them based on the sequential order in which loads
and stores occur within a TRIPS block, from top to bottom. LSIDs are numbered beginning
at zero.

There is a limit to the number of LSIDs which can be assigned per block. For the TRIPS
hardware prototype, a block can use no more than 32 LSIDs. LSIDs can be used more than
once in a block so long as they are predicated on disjoint values and will never both execute.
Also a load and store can never share the same LSID.

For loads, identifiers are specified in the TIL with L[n] where n is the 3-bit identifier. Simi-
larly, identifiers are specified for stores using S|n].

Example:

1d $t7, 64($t12) L[0] ; a load with LSID O
sd_t<$t5> $t9, $t10 S[1] ; both stores use LSID 1
sd_f<$t5> $t8, $t10 S[1]

In the above example, both stores are allowed to use LSID 1 because they are mutually
exclusive—it is guaranteed that only one will actually execute. Also in this example, if the
load and store refer to the same address, the hardware will strictly order the load before the
store based on the provided LSIDs.

6.4.2 Load/Store Data Bank Alignment

TIL programmers can specify data bank alignment hints, which the scheduler will consider
when mapping load/store instructions onto the TRIPS grid. Data bank alignment hints are
supplied through the D specifier in load and store instructions. Data bank alignment hints
on load prefetch instructions will be ignored.

Example:
1d $t7, 120($t0) L[4] D[2] ; align this load with data bank 2

The D specifier accepts values (-3, corresponding to the four data banks of the prototype L1
cache. This capability is particularly useful for fast array accesses in inner loops when the
loop bodies have been unrolled multiple times within individual instruction blocks.

Version A.04 14 October 2, 2006

TRIPS Intermediate Language (TIL) Manual

Note that the scheduler will attempt to honor data alignment hints but may override them
due to other instruction scheduling priorities.

6.5 Instruction Summary

All of the following instructions, except for the ENTER pseudo-instructions, have a matching
counterpart in the TRIPS Assembly Language (TASL) and will be converted to the appro-
priate TASL instruction by the scheduler. Refer also to the TRIPS Assembly Language
(TASL) Manual and the TRIPS Processor Reference Manual.

Each instruction, except for READ and WRITE instructions, may take an optional node
preplacement directive that is not show as part of the syntax.

ENTER instructions are pseudo-instructions and may expand into more than one instruction
to generate their specified immediate or symbolic value. This expansion should be taken into
account when determining the number of instructions in a TRIPS block.

Opcode | Description Syntax

ADD Add <Tp> Td, Ta, Tb
ADDI Add Immediate <Tp> Ta, Th, Imm9
AND Bitwise And <Tp> Td, Ta, Tb
ANDI Bitwise And Immediate <Tp> Td, Ta, Imm9
APP Append Constant Td, Ta, Imm16

BR Branch <Tp> Ta

BRO Branch with Offset <Tp> Imm20

CALL Call <Tp> Ta

CALLO Call with Offset <Tp> Imm20

DIVS Divide Signed <Tp> Td, Ta, Th
DIVSI Divide Signed Immediate <Tp> Td, Ta, Imm9
DIVU Divide Unsigned <Tp> Td, Ta, Tb
DIVUI Divide Unsigned Immediate <Tp> Td, Ta, Imm9
ENTER Generate Immediate Value Td, Imm

ENTERA | Generate Data Address Td, Symbol
ENTERB | Generate Block Address Td, Symbol

EXTSB Extend Signed Byte <Tp> Td, Ta
EXTSH Extend Signed Halfword <Tp> Td, Ta
EXTSW | Extend Signed Word <Tp> Td, Ta
EXTUB | Extend Unsigned Byte <Tp> Td, Ta
EXTUH | Extend Unsigned Halfword <Tp> Td, Ta
EXTUW | Extend Unsigned Word <Tp> Td, Ta
FADD FP Add <Tp> Td, Ta, Tb
FDIV FP Divide <Tp> Td, Ta, Tb
FDTOI Convert Double FP to Integer <Tp> Td, Ta
FDTOS Convert Double FP to Single FP | <Tp> Td, Ta

Version A.04

15

October 2, 2006

TRIPS Intermediate Language (TIL) Manual

FEQ
FITOD
FGE
FGT
FLE
FLT
FMUL
FNE
FSTOD
FSUB
GENS
GENU
LB
LBS
LD
LH
LHS
LOCK
LPF
LW
LWS
MFPC
MOV
MOVI
MOV3
MOV4
MUL
MULI
NOP
NULL
OR
ORI
READ
RET
SB
SCALL
SD
SH
SLL
SLLI
SRA
SRAI
SRL
SRLI

Version A.04

FP Test EQ

Convert Integer to Double FP
FP Test GE

FP Test GT

FP Test LE

FP Test LT

FP Multiply

FP Test NE

Convert Single FP to Double FP
FP Subtract

Generate Signed Constant
Generate Unsigned Constant
Load Byte

Load Byte Signed

Load Doubleword

Load Halfword

Load Halfword Signed

Load and Lock

Load Prefetch

Load Word

Load Word Signed

Move from PC

Move

Move Immediate

Move to 3 Targets

Move to 4 Targets

Multiply

Multiply Immediate

No Operation

Nullify Output

Bitwise OR

Bitwise OR Immediate

Read General Register
Return

Store Byte

System Call

Store Doubleword

Store Halfword

Shift Left Logical

Shift Left Logical Immediate
Shift Right Arithmetic

Shift Right Arithmetic Immediate
Shift Right Logical

Shift Right Logical Immediate

16

<Tp> Td, Ta, Tb
<Tp> Td, Ta

<Tp> Td, Ta, Tb
<Tp> Td, Ta, Tb
<Tp> Td, Ta, Tb
<Tp> Td, Ta, Tb
<Tp> Td, Ta, Tb
<Tp> Td, Ta, Tb

<Tp> Td, (Ta)lmm9 [LS] [D]
<Tp> Td, (Ta)lmm9 [LS] [D]
<Tp> Td

<Tp> Td, Ta

<Tp> Td, Imm9

<Tp> Td, Ta

<Tp> Td, Ta

<Tp> Td, Ta, Tb

<Tp> Td, Ta, Imm9

<Tp> Td, Ta
<Tp> Td, Ta, Th
Td, Imm16
Td, Imm16
<Tp> Td, (Ta)Imm9 [LS] [D]
<Tp> Td, (Ta)lmm9 [LS] [D]
<Tp> Td, (Ta)lmm9 [LS] [D]
<Tp> Td, (Ta)lmm9 [LS] [D]
<Tp> Td, (Ta)Imm9 [LS] [D]
<Tp> Td, (Ta)Imm9
<Tp> Td, (Ta)Imm9

(Ta)

(Ta)

<Tp> Td

<Tp> Td, Ta, Tb

<Tp> Td, Ta, Imm9

Td, Ga

<Tp> Ta

<Tp> (Ta)lmm9, Tb [LS] [D]
<Tp>

<Tp> (Ta)lmm9, Tb [LS] [D]
<Tp> (Ta)lmm9, Tb [LS] [D]
<Tp> Td, Ta, Tb

<Tp> Td, Ta, Imm9

<Tp> Td, Ta, Tb

<Tp> Td, Ta, Imm9

<Tp> Td, Ta, Tb

<Tp> Td, Ta, Imm9

October 2, 2006

TRIPS Intermediate Language (TIL) Manual

SUB
SUBI
SW
TEQ
TEQI
TLE
TLEI
TLEU
TLEUI
TLT
TLTI
TLTU
TLTUI
WRITE
XOR
XORI

Subtract

Subtract Immediate

Store Word

Test EQ

Test EQ Immediate

Test LE

Test LE Immediate

Test LE Unsigned

Test LE Unsigned Immediate
Test LT

Test LT Immediate

Test LT Unsigned

Test LT Unsigned Immediate
Write General Register
Bitwise XOR

Bitwise XOR Immediate

<Tp> Td, Ta, Tb
<Tp> Td, Ta, Imm9
<Tp> (Ta)lmm9, Tb [LS| [D]
<Tp> Td, Ta, Tb
<Tp> Td, Ta, Imm9
<Tp> Td, Ta, Tb
<Tp> Td, Ta, Imm9
<Tp> Td, Ta, Tb
<Tp> Td, Ta, Imm9
<Tp> Td, Ta, Tb
<Tp> Td, Ta, Imm9
<Tp> Td, Ta, Tb
<Tp> Td, Ta, Imm9
Gd, Ta

<Tp> Td, Ta, Tb
<Tp> Td, Ta, Imm9

Version A.04

17

October 2, 2006

TRIPS Intermediate Language (TIL) Manual

APPENDIX

A TRIPS Hardware Prototype

The TRIPS hardware prototype has the following restrictions on the legal formation of
TRIPS program blocks:

e The TRIPS prototype has 128 general purpose registers (numbered from 0-127) that
are divided into four banks of 32 registers.

e Each TRIPS block can perform 32 reads and 32 writes of general purpose registers
per block. These reads and writes are further restricted to 8 per bank per block.
Calculating which bank a register is in involves a simple formula: bank = register
number % 4.

e The prototype allows 128 instructions per block. This number is in addition to the
read and write instructions.

e A maximum of 32 load/store identifiers (LSIDs) can be used per block.

This table further summarizes these restrictions.

Processor Resource Limit
Number of general (global) registers 128
Number of register banks 4
Number of general register reads per block 32
Number of general register writes per block 32
Number of reads per bank per block 8
Number of writes per bank per block 8
Number of load/store identifiers (LSIDs) per block 32
Number of non-read/write instructions per block 128

When estimating the number of TASL instructions that the scheduler will generate for a
given TRIPS block, it is important to account for two sources of code expansion:

e ENTER instructions are pseudo-instructions that will be expanded to the required
number of instructions needed to generate their immediate or symbolic value. For
example, the scheduler will expand an “Generate Block Address” instruction, such as
enterb $t6, Perl_scalarvoid$5, into two TASL instructions, in order to generate a
32-bit address for the specified program block.

e Each instruction has a fixed number of targets. Therefore, the use of a temporary
register by more than the number of available targets will cause fanout in a TRIPS
block. The scheduler will insert MOV instructions to forward the register value to
additional instructions.

Version A.04 18 October 2, 2006

TRIPS Intermediate Language (TIL) Manual

B EBNF Grammar

Note: This section should not be considered fully accurate or complete.

The TRIPS Intermediate Language is specified in this section in a relaxed EBNF notation.
Everything in bold is to be taken literally. Whitespace between names or literals that are

not bolded are included for readability. Extra whitespace is allowed between non-terminals
or terminals EXCEPT the following:

e variable names and ’’
e '0x’ at the beginning of a hexadecimal number
e -’ before a negative number

’

e ' in decimal numbers

e ’byte-’ and integer in variable declaration

At least one whitespace is required after opcodes and after directives if the directive takes
any arguments. An exception to this is that no space is required between a predicated opcode
and its predicate register.

comment — sstring-character™

module — .app-file [source-namel{info}*

info — data-section | text-section | global-directive

data-section — bss-section| idata-section | rdata-section

text-section — .text{ block|text-directive }*

text-directive — global-directive| equ-directive

global-directive — .global name

equ-directive — .equ name=name

align-directive — .align pos-integer

space-directive — .space pos-integer

bss-section — .comm variable-name length| .lcomm variable-
name,length| align-directive

idata-section — .data { variables| global-directive| align-directive|
space-directive }*

rdata-section — .rdata { variables| global-directive| align-directive|
space-directive }*

variables — [variable-name:] numerical-variable | [variable-name:|
string-variable | [variable-name:] floatingpoint-variable
| variable-name:

block — .bbegin block-name{instruction*} .bend

instruction — operation | operation predicate register{ register}*

register — real-register | virtual-register

Version A.04 19 October 2, 2006

TRIPS Intermediate Language (TIL) Manual

C Example Code

You can easily generate TIL code by means of command line switches to tcc, the TRIPS

real-register
virtual-register
predicate

value

source-name
block-name
variable-name
numerical-variable
numerical-type
immediate
floatingpoint-variable
floatingpoint-type
floatingpoint-number
fraction

exponent
string-variable
string-type

string

integer

pos-integer
hex-integer
int-digit

hex-digit

first-letter-character
name-character
string-character
symbol-character
escape-character
whitespace

compiler script.

Examples:

N N AN

U A

$gpos-integer

$tpos-integer

_t< register >| _f < register >

immediate | symbol

first-letter-character { name-character }*
first-letter-character { name-character }*
first-letter-character { name-character }*
numerical-typeimmediate

.quad | .int | .short | .byte | .byte-pos-integer
integer | hex-integer

floatingpoint-type floatingpoint-number

.single | .double

integer | fraction | [exponent |

.pos-integer

E integer

string-type string

.ascii | .asciz
“string-character
[-]pos-integer
int-digit+
Oxhex-digit+
01123
int-digit | a |
D|E| F
lc-letter| uc-letter| _

symbol-character | $

symbol-character | punct-character | escape-character
lc-letter | uc-letter | int-digit | -

N

space | tab

%99

Compile ’example.c’ to ’example.til’ and then stop

#

Version A.04

20 October 2, 2006

TRIPS Intermediate Language (TIL) Manual

% tcc -til example.c

Compile, schedule, assemble, and link, leaving the intermediate
files as ’example.til’, ’example.s’, and ’example.o’.
#

% tcc -save-temps example.c -o example

Refer to the TRIPS Application Binary Interface (ABI) Manual for information on register
usage, function calling conventions, and runtime services provided by the TRIPS compiler
and runtime system.

C.1 C Source Code

Note the following:

e The compiler will define answer as an uninitialized global variable.

e The compiler allocates 8 bytes for both long and long long integers. We use long long in
this example for portability.

e The exit code of this example program will depend on the number of arguments passed to it
through the command line.

/*
* example.c
*/

unsigned long long answer;

unsigned long long ftn(unsigned long long x)
{
return (x + 64) + (x + 128) + (x + 16000) +
(x + OxffffffffL) + (x + OxffffffffffffLL);

int iftest(float x, float y)
{
if (x > y)
return 1;
else
return -1;

int main(int argc, char *argv[], char * envpl[])

{
answer = ftn((unsigned long long)42);
printf ("Hello, Galaxy! Answer = Ox%Lx.\n", answer);

Version A.04 21 October 2, 2006

TRIPS Intermediate Language (TIL) Manual

return argc + 1;

¥

C.2 Resulting TIL Code

Note the following:

e Variable answer will be placed in the bss by the linker due to the .comm directive.

e The compiler expresses immediate values in enter pseudo-instructions using decimal nota-
tion.

e The compiler uses predicated mov instructions in the iftest block to evaluate the if condi-
tion.

e The compiler uses general register g2 to maintain return addresses. The “callee” is responsible
for saving this register value passed to it by the caller. This convention and others are
described in the TRIPS Application Binary Interface (ABI) Manual.

.app-file "example.c"
; BSS

.global answer

.comm answer, 8, 8

.data

.align 8

_Vé6:

.ascii "Hello, Galaxy! Answer = Ox%Lx.\n\000"

.text

.global ftn

.bbegin ftn
read $t0, $g2
read $t1, $g3
enter $t2, 16000

add $t3, $t1, $t2

enter $t4, 4294967295

add $t5, $t1, $t4

add $t6, $t3, $tb

enter $t7, 281474976710655
add $t8, $t1, $t7

addi $t9, $t1, 64
addi $t10, $t1, 128

add $t11, $t9, $ti10
add $t12, $t8, $t11
add $t13, $t6, $t12
ret $t0

Version A.04 22 October 2, 2006

TRIPS Intermediate Language (TIL) Manual

write
.bend

.global main

$g3, $t13

; VARIABLE "argc" size:4 $gl2

.bbegin main
read
read
read
read
addi
sd
sd
extsw
movi
enterb
callo
write
write
write
write

.bend

.bbegin main$1
read
entera
sd
entera
enterb
callo
write
write
write

.bend

.bbegin main$2
read
read
addi
extsw
1d
addi
1d
ret
write
write
write
write

.bend

Version A.04

$t0, $gi

$t1, $g2

$t2, $g3

$t3, $gi12

$t4, $t0, -96
-88($t0), $t1 S[O]
-8($t0), $t3 S[1]
$t5, $t2

$t6, 42

$t7, main$1l

ftn

$g1, $t4

$g2, $t7

$g3, $t6

$g12, $t5

$to, $g3

$t1, answer
(3t1), $t0 s[o]
$t2, _Vé6

$t3, main$2
printf

$g2, $t3

$g3, $t2

$g4, $tO

$t0, $gi

$t1, $gi2

$t2, $t1, 1

$t3, $t2

$t4, 8($t0) L[O]
$t5, $t0, 96
$t6, 88($t0) L[1]
$t4

$g1, $t5

$g2, $t4

$g3, $t3

$g12, $t6

23

October 2, 2006

TRIPS Intermediate Language (TIL) Manual

.global iftest

.bbegin iftest
read $t0, $g2
read $t1, $g3
read $t2, $g4
fgt $t3, $t1, $t2
movi_t<$t3> $t4, 1
mov_t<$t3> $t5, $t4
movi_f<$t3> $t6, -1
mov_f<$t3> $t5, $t6
extsw $t7, $t5
ret $to
write $g3, $t7

.bend

C.3 Partial TIL code from 171.swim SPEC benchmark

.app-file "swim.f"

; BSS - all declarations with no specified section

; are placed in the BSS section.
.global _BLNK__
.comm _BLNK__,
.global cons_
.comm cons_, 120, 8

199609200, 8

.data
.align 8
_s143$$3913:
.ascii " SPEC benchmark 171.swim"
.align 8
_5149$$3914:
.ascii "SWIM7"
.align 8
_s150$$3915:
.ascii "UNKNOWN"

.rdata
.align 8
FMT390$$3909:

.ascii " (\’ NUMBER OF POINTS IN THE X DIRECTION\’,I8/\’ NUMBER OF POINT"
.ascii "S IN THE Y DIRECTION\’,I8/\’ GRID SPACING IN THE X DIRECTION "

.ascii " \’,F8.0/\’ GRID SPACING IN THE Y DIRECTION \’,F8.0/\’ TIME "
.ascii "STEP \’,F8.0/\’ TIME FILTER PARAMETER"
.ascii " \’,F8.3/\’ NUMBER OF ITERATIONS

.ascii "I8)\000"

Version A.04 24 October 2, 2006

TRIPS Intermediate Language (TIL) Manual

.align 8
FMT350$$3910:

.ascii "(/\’ CYCLE NUMBER\’,I5,\’ MODEL TIME IN HOURS\’,F6.2)\000"

.align 8
FMT360$$3911:

.ascii "(/\’> DIAGONAL ELEMENTS OF U \’,//(8E15.7))\000"

.align 8
_FMT366_8$$3912:

.ascii "(/,\’ Pcheck = \’,E12.4,/,\’ Ucheck = \’,E12.4,/,\’ Vcheck =\’,E1"

.ascii "2.4

.text

.global calc2_

.bbegin calc2_
read
mov
addi
sd
movi
sd
entera
1d
enter
fdiv
1d
fdiv
1d
fdiv
lws
extsw
tgei
bro_t<$t
bro_f<$t
write
write
write
write
write

.bend

.bbegin calc2_$1
movi
extsw
bro
write

.bend

Version A.04

,/)\000"

$t0, $g1

$t1, $t0

$t2, $t0, -32
-32($t0), $t1
$t3, 0

-16($t0), $t3
$t4, cons_

$t5, 8($t4)

$t6, 4620693217682128896
$t7, $t5, $t6
$t8, 16($t4)
$t9, $t5, $t8
$t10, 24($t4)
$t11, $t5, $t10
$t12, 60($t4)
$t13, $t12

$t14, $t13, 1
14> calc2_%$1
14> calc2_$8
$g74, $t11

$g75, $t9

$g1, $t2

$g76, $t7

$g92, $t13

$t0, 1

$t1, $t0
calc2_$2
$g90, $t1

25

October 2, 2006

