
{TRIPS Assembly Language (TASL) Manual

B. Yoder J. Gibson J. Burrill
R. McDonald D. Burger S.W. Keckler

K. Sankaralingam R. Nagarajan

Technical Report TR-05-21
Department of Computer Sciences
The University of Texas at Austin

This document specifies the TRIPS Assembly Language (TASL)
format and the Assembler conventions for the TRIPS architecture.

TRIPS Assembler and Assembly Language
Specification
TRIPS Internal Memo – 03
September 24, 2003 - Version 2.1D

1 Introduction..2
1.1 Links in the Chain ... 3
1.2 Accessory Components.. 3
1.3 Related Documentation.. 4
1.4 Bug Reporting... 4
1.5 Overview... 4
1.5.1 Source Elements .. 5
1.5.2 Sequence Numbers.. 5
1.5.3 Assembly Time ... 6
2 Tool Invocation and Command Line Options.........................6
2.1 GNU Options .. 6
2.2 TRIPS-Specific Command Line Options 7
2.3 The TRIPS Toolchain Configuration File................................ 8
2.4 Using the Assembler .. 9
3 Assembly Language Syntax..9
3.1 Comments .. 9
3.2 Placement Within a Source Line .. 9
3.3 Symbols and Labels ... 10
3.4 Expressions .. 10
3.4.1 Arguments .. 10
3.4.2 Operators.. 11
3.4.3 Prefix Operator ... 11
3.4.4 Infix Operators .. 11
3.5 Assembler Directives.. 11
3.5.1 Useful GNU Assembler Directives 11
3.5.2 Other GNU Assembler Directives... 13
4 TRIPS-Dependent Features ...14
4.1 Program and Block Structure ... 14
4.2 TRIPS-Specific Assembler Directives 15

TRIPS Assembler and Assembly Language Specification

4.3 Data Types ... 16
4.4 Byte Ordering ... 17
4.5 TRIPS Assembler Syntax... 17
4.5.1 Grid Instruction Formats... 17
4.5.1.1 Field Descriptions ... 18
4.5.1.2 Expressing Predication... 20
4.5.1.3 Other Grid Instruction Notes... 20
4.5.1.4 Immediate Values... 21
4.5.1.5 Bit Extraction Field Operators .. 21
4.5.1.6 Address Offsets .. 22
4.5.2 General Register Instruction Formats 22
4.5.2.1 General Register Access.. 23
4.5.2.2 General Register Alignment ... 24
4.6 Reserved Symbols ... 25
4.7 Assembly Language Sample.. 25
5 Assembler Operation..25
5.1 Assembly Phases ... 25
5.2 Assembler Error Handling .. 25
5.2.1 Minor Messages ... 25
5.2.2 Warning Messages... 26
5.2.3 Error Messages .. 26
5.2.4 Fatal Messages .. 26
5.2.5 Command Line Switches.. 26
6 Other Tools ..27
7 Glossary ...28
8 Appendix: Deltas From the January, 2003 Assembler Specification 29

1 Introduction

The TRIPS Assembler (tas) is a standalone C application whose job is to consume TRIPS
Assembly Language or TASL files and to produce TRIPS Object Format or TOFF files. The
TRIPS assembler is derived from the GNU family of software tools.

This document is intended for TRIPS compiler writers and others who wish to understand the
translation of source assembly language to TRIPS binary format.

When the TRIPS compiler finishes generating hyperblocks and writes out the TRIPS
Intermediate Language (TIL), it will in turn invoke the TRIPS instruction scheduler (tsch),
which will embed all necessary scheduling information in the TASL file. Consequently, the
role of the assembler is simply to translate the assembly language statements and assembler
directives in the TASL file directly into TOFF binary format.

Page 2 of 29

TRIPS Assembler and Assembly Language Specification

This document is intended for compiler writers, hardware designers, and others needing to
write and test assembly language programs for TRIPS simulators and execution
environments.

1.1 Links in the Chain
The TRIPS toolchain comprises several components, all available on i86 Linux platforms:

Tool Description Input Files Related Documentation

tcc
The Scale java-
based C compiler
and wrapper

C/FORTRAN
(*.c, *.f77). Support for
C++ and Java is deferred.

TRIPS Processor
Architecture Manual

Scale Website

TRIPS Application Binary
Interface Manual

tsch TRIPS Scheduler
and wrapper

TRIPS Intermediate
Language Files (*.til)

TRIPS Intermediate
Language Version Two
(TILT) Specification

TRIPS Scheduler Manual

tas TRIPS Assembler TRIPS Assembly
Language Files (*.s)

TRIPS Assembly Language
and Assembler Specification
(this document)

TRIPS Processor
Architecture Manual

tld TRIPS Linker TRIPS Object Files and
Static Libraries (*.o, *.a)

TOFF Object File Format
Specification

 Table 1: TRIPS Toolchain Components

1.2 Accessory Components
A variety of other components and utilities are available to test and supplement the toolchain.
Here is a summary:

• The TRIPS timing simulator (tsim) provides cycle-accurate execution of TRIPS
binaries.

• The TRIPS functional emulator (tem) provides simple instruction-level emulation of
TRIPS binaries. Refer to the TRIPS Functional Emulator User Guide and The
Binary File Descriptor Library (libbfd) documentation for more information.

• The TIL emulator (tile) loads and interprets TRIPS Intermediate Language code to
ensure compiler output correctness.

• GNU utilities, such as nm and readelf, provide additional support for code
development and debugging.

• The software code metrics tool (dynamic.pl) helps to validate the quality and
performance of the code produced by the TRIPS toolchain. Refer to

Page 3 of 29

TRIPS Assembler and Assembly Language Specification

http://www.cs.utexas.edu/users/cart/trips/internal/testing/metrics/index.html for more
information.

1.3 Related Documentation
In addition to the documentation listed in Table 1 above, the following are useful for
understanding the operation of the TRIPS assembler:

• Version 2.10 of the online manual, Using as (http://sources.redhat.com/binutils/docs-
2.10/as.html). This Red Hat version supersedes the 2.9 version maintained at the
Free Software Foundation (http://www.gnu.org/manual/gas-2.9.1).

• Version 2.12.90 of the as man page, from Version 2.12.90 of the GNU binutils
source package, under gas/doc/as.1.

• Other binutils man pages, such as readelf(1), nm(1), and objdump(1),
available on most Linux and GNU installations.

• The GNU assembler internals document, under gas/doc/internals.texi,
accessible on the TRIPS internal Web site at:

http://www.cs.utexas.edu/users/cart/trips/internal/infra_tools/TASM/internals.pdf

• A Design Space Exploration of Grid Processor Architectures, available at
http://www.cs.utexas.edu/users/cart/trips/internal/arch/Micro34/micro01-public.pdf .

• The Scale Compiler Group user documentation, available at:
http://www-ali.cs.umass.edu/Scale.

• TRIPS Project Definition of Terms, available at
http://www.cs.utexas.edu/users/cart/trips/internal/program_UT/definitions.pdf.

Using as, listed above, will be frequently cited in this specification.

1.4 Bug Reporting
Please note that the TRIPS toolchain in general and the TRIPS assembler in particular are
works in progress. If you find a discrepancy between this specification and the operation of
the assembler, a defect in assembler operation, or incomplete or incorrect documentation,
please file a bug against the “Assembler (tas)” toolchain component in the TRIPS Bugzilla
bug tracking system:

http://lockhart.csres.utexas.edu/bugs/

1.5 Overview
The TRIPS assembler produces code for a VLIW-like machine with data flow characteristics.
As opposed to parsing traditional operand syntax of the form:

opcode <target> <operand1> <operand2>

—the TRIPS assembler expects target syntax of the form:

<source_element> <opcode> <target1> <target2>

—in which the <source_element> represents an architecture register or execution node
that operates upon one or two implicit input operands using the specified <opcode> to

Page 4 of 29

http://www.cs.utexas.edu/users/cart/trips/internal/testing/metrics/index.html
http://sources.redhat.com/binutils/docs-2.10/as.html
http://sources.redhat.com/binutils/docs-2.10/as.html
http://www.gnu.org/manual/gas-2.9.1
http://www.cs.utexas.edu/users/cart/trips/internal/infra_tools/TASM/internals.pdf
http://www.cs.utexas.edu/users/cart/trips/internal/arch/Micro34/micro01-public.pdf
http://www-ali.cs.umass.edu/Scale
http://www.cs.utexas.edu/users/cart/trips/internal/program_UT/definitions.pdf
http://lockhart.csres.utexas.edu/bugs/

TRIPS Assembler and Assembly Language Specification

produce a single output value to forward to one or more target execution nodes, to an
architecture register, or to the memory system.

Example:

N[5] add N[10,1] N[63,0]

This example causes execution node 5 to add its two (unspecified) input operands and to
forward the resulting value to two target execution nodes, numbers 10 and 63. The second
operand slot parameter (1 or 0) causes the result to be placed in the right slot or left slot of
the targets, respectively.

1.5.1 Source Elements
Whether it's a general register or an execution node, each instruction requires a source
element. Otherwise, there is no agent to execute the opcode and produce an output value,
whether it's an add, load, or other type of instruction. Syntactically, a source element appears
as the first item in a TRIPS instruction.

Note that general registers can appear as the source for two special types of instructions
only—the read and write instructions—by which the contents of that general register are
inserted into one or more target nodes within the grid or output to a general register,
respectively.

Refer to section 4, "TRIPS-Dependent Features" for more information on node specification
and TASL syntax.

Because a grid processor by definition is a multi-dimensional piece of hardware, the TRIPS
toolchain knows how to map the logical names of general registers (e.g., R[28]) and of
execution nodes (e.g., N[67]) onto physical 2D and 3D locations. In terms of the software
interface, however, both general register and execution node names are flat, ranging by
default from 0..127 for both.

1.5.2 Sequence Numbers
Although the TRIPS hardware can execute its instructions in parallel and out-of-order, the
need arises on occasion to execute those same instructions serially and in order. Hence,
TASL syntax supports sequence numbers associated with instructions. Sequence numbers
can range from 1 to the total available of instruction slots per block; that is, the upper limit is
grid_width * grid_height * number_of_physical_frames per processor "slot".

Sequence numbers are enclosed by angle-brackets (<>) immediately after the source node
name.

Examples:

N[12]-<003> genu %low(target_block) N[19]; sequence number is 3
N[15]-<006> or N[23,0]; sequence number is 6

Notes on sequence numbers:

• Sequence numbers occur on a per-block basis. They can appear in any order within
the block but must specify the total number of instructions from 1 to
num_instructions without duplicates or gaps within a block. The assembler will flag
duplicates and missing numbers.

• All instruction blocks include sequence numbers, whether they are supplied

Page 5 of 29

TRIPS Assembler and Assembly Language Specification

explicitly in the code or implicitly by the assembler. If supplied implicitly,
numbering begins with 1 at the first instruction in the block and increments from first
to last (top to bottom) in program order.

• By default, the assembler generates a sequence number “chunk” for each block in a
module. To generate code without sequence number chunks, choose either or both:

o Invoke the assembler with the –s command line switch. Example:
tas –o file.o –s file.s

o Include the .sequence_numbers off assembler pseudo-op at the
beginning of a source file.

• Leading zeros are optional in the sequence number. E.g., both <3> and <003>
specify the same sequence number.

• Read and write instructions do not require sequence instruction numbers. In
serializing the execution of read instructions, the hardware will process the
instructions in the order found on the disk, which is the same order as that within a
block of assembly source code. The assembler will note but ignore any sequence
number associated with a read or write instruction.

1.5.3 Assembly Time

In assembling instructions, tas builds a machine word from an individual instruction in the
assembly language file, one machine word per line of instruction, using the binary encodings
specified in the ISA Manual. This machine word may be a 32- or a 64-bit quantity, depending
on whether the assembler is set to produce prototype or extended format object code. After
verifying that the source node is a legitimate specifier and after performing a variety of range-
and error-checking, tas inserts this binary encoded word into a virtual block structure
according to its row, column, and frame coordinates. When a block of source code ends due
to the .bend directive, tas writes the entire block to disk with the words arranged by column
within a given frame and then by row.

It may be obvious by now that by the time tas receives its assembly source file, things are
pretty tightly bound to a particular machine configuration—the number of rows and columns
in a grid, the frame depth, etc. Although a number of configuration parameters are available
through the command line and configuration file, tas won't produce meaningful object code
for a given processor unless the scheduler hands the assembler meaningful source code for
that same processor.

2 Tool Invocation and Command Line Options

The TRIPS assembler is invoked as a Linux-based command line tool. Its command line
syntax is derived from gas, the GNU assembler:

tas [option…] [asmfile…], where the various options are described below.

Multiple source file names can be included on the command line and the assembler will
process them one at a time. If no source file is specified, then the assembler reads from
standard input. By default, the assembler names the output file t.out, even though at that
point, the file hasn't been linked nor its references fully resolved.

2.1 GNU Options
Command line options derived from the GNU assembler include the following:

-a[lmns=file] Turn on print listings, in any of a variety of ways. Examples:

Page 6 of 29

TRIPS Assembler and Assembly Language Specification

-al include assembly
-am include macro expansions
-as include symbols
=file set the name of the listing file

You may combine these options; for example, use –as=symbolf for assembly
listing of symbols directed to file symbolf. The =file option, if used, must
be the last one. By itself, -a defaults to -als.

Note that the assembly listing will print out the assembled instructions (that is,
the hexadecimal codes) in somewhat random fashion, because the assembly
listing occurs on an instruction by instruction basis, whereas the assembly
process itself occurs on a row by row basis, with multiple instructions per row.

--defsym sym=value

Define the symbol sym to be value before assembling the input file. value must
be an integer constant. As usual, a leading 0x indicates a hexadecimal value,
and a leading 0 indicates an octal value.

Example:

./tas --defsym SP=0xFFFF0 set.s ; sets the value of

 ; SP to hexadecimal 0xFFFF0

-I dir

Add directory dir to the search list for .include directives.

-o filename

Name the output file filename.

There is always one object file output when you run . By default, it has the name
t.out. Whatever the object file is called, tas first overwrites any existing file of the
same name.

-L or --keep-locals

Preserve the local symbols from a module in the symbol table of the final executable.

--statistics

The --statistics switch causes tas to output information about the
number and type of sections and relocations created and assembly time.

--strip-local-absolute

Remove local absolute symbols from the outgoing symbol table.

-v

Print the as version at the beginning of the assembly process.

--version

Print the as version and exit.

-W Suppress warning messages. Usually, not a good idea.

-Z Generate an object file even after errors. Usually, not a good idea.

Refer also to the online manual, Using as, for other options.

2.2 TRIPS-Specific Command Line Options

Page 7 of 29

TRIPS Assembler and Assembly Language Specification

The following options generate binary code that is targeted for a particular TRIPS processor
configuration:

-D Turn debugging information so that the assembler will output for each block (a) the
header information, (b) the grid instruction format, and (c) the sequence number chunk, if
one is output.

-E Turn on extended debugging, so that block names and miscellaneous other
information are output during assembly.

-m <RowxColumn> Assemble for a given TRIPS grid configuration, where the Row
and Column parameters must be a power of two, ranging from 2 to 32.

Examples:

-m2x2 Assemble for a 2x2 grid

-m4x4 Assemble for a 4x4 grid

-m4x16 Assemble for an 8x8 grid.

Default is 4x4.

Note that the grid configuration doesn't necessarily have to be square.

-p <num> Assemble for a given number of P-frames per A-frame in the target
processor, where <num>, or the number of P-frames/A-frame, can range from 1 to 256.
The default is 8.

-s Do not include sequence number information. By default, tas includes sequence
number chunks for a given source file in the output file.

The assembler will do the math to ensure consistent hardware parameters and flag
mismatches and out-of-range conditions.

Note: The TRIPS linker (tld) will expect all .o files that are input for a given link job to
be assembled for the same hardware configuration. For example, it is not possible to link
an object module assembled for an 8x8x2 row/column/frame configuration with an object
module assembled for a 4x4x8 hardware configuration.

2.3 The TRIPS Toolchain Configuration File
The TRIPS toolchain configuration file is an ASCII text file that specifies individual TRIPS
hardware configuration parameters. Each tool in the toolchain consults this file for hardware
descriptions. Its location is determined by the TC_CONFIGPATH environment variable,
which is set by default to these locations which are searched in order:

- The current working directory (.)
- The user’s $HOME directory
- /projects/trips/toolchain/current/etc/trips
- /projects/trips/toolchain/stable/etc/trips

The assembler consults the file for the value of certain key variables, whose defaults are
expressed in C syntax:

#define GRID_HEIGHT 4
#define GRID_WIDTH 4
#define PFRAMES_PER_AFRAME 8
#define ISA_VERSION 20
#define TSCH_VERSION 2
#define INSN_SEQUENCE_NUMBERS 1

Note that command line options take precedence over the values in this file. For example, if

Page 8 of 29

TRIPS Assembler and Assembly Language Specification

tcconfig.txt specifies the value of INSN_SEQUENCE_NUMBERS is 1 (or “true”) but the user
specifies tas –s on the command line, the assembler will be configured not to output
sequence numbers.

2.4 Using the Assembler
The TRIPS assembler is built nightly on weekdays and can be found in the
/projects/trips/toolchain/builds/trelease/latest_isa_proto disk directory at UTCS.
In particular, when the build is successful, the following executables are copied to this release
directory:

ar nm objcopy objdump ranlib readelf size strings strip tas tld

GNU systems typically include man pages for these commands, including as(1) and
ld(1) for the tas and tld commands, respectively.

Also under the trelease directory, there is a small sample of TASL files:
/projects/trips/toolchain/builds/trelease/latest_isa_proto/testsuite/*.s

When running the assembler, you may find the –D debug option helpful in observing
assembler code output. Otherwise, if all goes well, tas performs its work silently.

Another useful option is -a to create an assembly listing on standard output at the end of the
run.

Example:

% ./tas –a test1.s

Use the tas -help command line option to view TRIPS-specific extensions to the standard
GNU assembler options.

3 Assembly Language Syntax

This section describes the syntax of the TRIPS Assembly Language. Much of this material is
lifted directly from the GNU documentation.

3.1 Comments
The tas line comment character is a semi-colon (;). Note that you can use a semi-colon on a
line by itself or in-line, following an instruction. C-Style comments are also allowed.

Example:

/*
 Include arbitrarily long
 multi-line
 comments in this fashion.
*/

3.2 Placement Within a Source Line
A comment, instruction, or label can begin anywhere on a new line—whether in column 0 or
column <N>, preceded by tabs and spaces. For example, the parser treats these source
statements identically:

string1:
 string1:
 string1:

Page 9 of 29

TRIPS Assembler and Assembly Language Specification

A source line ends with a newline character. Line wrapping is disallowed.

3.3 Symbols and Labels
A symbol is one or more characters chosen from the set of all letters (both upper and lower
case), digits, and the three characters underscore, dot, and dollar sign (_.$). No symbol may
begin with a digit. Case is significant. There is no length limit: all characters are significant.

A symbol can be given an arbitrary value by writing the symbol name, followed by an equals
sign (=), followed by an expression (see section Expressions).

Examples:

all_ones=0xFFFFFFFF

.set all_ones= 0xFFFFFFFF

Note the difference between a symbol and a label. A symbol is the name of a numeric value,
such as a memory address, whether in a text, data, bss, or absolute section of a binary file. A
symbol can be used to reference either code or data. A label is more specific and always
represents a memory address, such as the address of the first character in a string.

For text, data, and bss sections, the value of a symbol changes as the linker changes section
base addresses during linking. By definition, absolute symbols' values do not change during
linking.

Example:

p3 = 0xbbbb ; the value of p3 will stay fixed regardless
 ; any relocation that may occur

Use the objdump –t <obj_file> command to examine the symbol table of an object
module or executable.

Note that within a text segment (.text) code addresses are available only at block
beginnings. That is, .bbegin assembler directive sets the address of the whole block to the
first code word following the directive. This is the address that the hardware uses to fetch and
execute instruction blocks.

3.4 Expressions
An expression specifies an address or a numeric value. White space may precede and follow
an expression. The result of an expression must be an absolute number or else an offset into a
particular section.

3.4.1 Arguments
Arguments can be symbols, numbers, or subexpressions that are built up out of the first two
items. A subexpression consists of a left parenthesis (() followed by an integer expression,
followed by a right parenthesis ()); or else a prefix operator followed by an argument.

Example:

 .set soffset= (_start + 0x1000)

The statement causes symbol soffset to be set to the absolute value of the subexpression
consisting of _start plus hexadecimal 1000.

Page 10 of 29

http://www.gnu.org/manual/gas-2.9.1/html_mono/as.html

TRIPS Assembler and Assembly Language Specification

3.4.2 Operators
Operators are arithmetic functions, like + or %. Prefix operators are followed by an argument.
Infix operators appear between their arguments. Operators may be preceded and followed by
white space.

3.4.3 Prefix Operator
tas offers the following prefix operators. They each take just one argument:.

- Negation. Two's complement negation.
~ Complementation. Bitwise not.

Example:

p5 = ~0xFF

3.4.4 Infix Operators
Infix operators take two arguments, one on either side. Operators have precedence, but
operations with equal precedence are performed left to right. Apart from + or -, both
arguments must be absolute, and the result is absolute.

Highest Precedence

* Multiplication.
/ Division. Integer division with truncation: same as the C operator /
% Remainder or modulus operator.
< << Shift Left. Same as the C operator <<.
> >> Shift Right. Same as the C operator >>.

Intermediate precedence

| Bitwise Inclusive Or.
& Bitwise And.
^ Bitwise Exclusive Or.
! Bitwise Or Not.

Lowest Precedence

+ Addition.
- Subtraction.

3.5 Assembler Directives
GNU offers dozens of assembler pseudo-operators or directives to control the processing of
source files, everything from .eject, which forces a page break during an assembly listing,
to .byte, which sets the current location in the data section to a given 8-bit value.

3.5.1 Useful GNU Assembler Directives
Following is a sampling of the more useful TRIPS assembler directives:

Page 11 of 29

TRIPS Assembler and Assembly Language Specification

Directive Description Example

.align
num_bytes

Align the next data item to the
alignment specified by num_bytes.

.align 8
_tstring:
.ascii “hello”

.ascii
(.asciz)

Define an ASCII null-terminated
string. .asciz “Hello world!”

.data Begin a program’s writable data
section.

.data

.equ
symbol=
expression

Set the value of symbol to
expression, same as .set below.

.equ fibon=main

.fill
repeat,
size, value

Fill up data section with repeat
copies of size bytes with value
contents. (Be careful of unexpected
behavior. Refer to the as man page
for more information.)

.fill 20, 8, 0

.global Make a symbol visible to the linker. .global A
.bbegin A

.lcomm
symbol,
length,
align

Reserve the length number of
bytes for a given symbol in the
program’s BSS space and align it on
align bytes.

.lcomm a_b, 400000, 4

.rdata

Begin a program’s read-only data
section.

.rdata

.align 8
my_array:
.int 0x1
.int 0x2

.set
symbol=
expression

Set the value of a memory location to
an absolute value.

.set EXIT_ID=32

.text
Begin a program’s text (or code)
section.

.text

.global main

.bbegin main

Table 2: Useful Assembler Directives

Refer also to the “Data Types” subsection following for the key assembler directives that are
used to allocate space for basic TRIPS data types.

Here are additional notes for the above directives:

.global – By default, tas creates symbols local to the source module and hidden from other
modules. This scoping includes block names. To make a symbol visible to other modules,
include the .global directive before or after the label for that symbol.

.lcomm – The name “local common” doesn’t mean much, but the directive provides an
important mechanism for allocating space for a symbol without having to declare what goes

Page 12 of 29

TRIPS Assembler and Assembly Language Specification

in that space. Such variables are collected in the program’s BSS section for uninitialized data.
With no align parameter specified, symbols are aligned on 8-byte boundaries.

.rdata – Use an .rdata directive when you want to initialize memory values at program
load time and don’t want them to change for the duration of the program.

.set – Unlike off-the-shelf GNU assemblers, tas uses an equals sign (=) in the .set
directive. The symbol will acquire the value of the expression as an absolute value that
is fixed for program duration. You can use .set (or equivalently, an .equ directive) to
ensure that two distinct labels have the same value. In FORTRAN, for example, a program
needs both the program’s entry point and the application label to reference the same memory
location (the start of the beginning program block), and the .set directive allows you to
equate the two symbol names.

You can use the .text, .data, .rdata, and .lcomm directives in any order within a
given source module and include them multiple times. The assembler will coalesce the output
code into single, unified sections.

Note that the .extern keyword appears in the “Other Directives” table below for
compatibility, but it is ignored: tas treats all undefined symbols as external. The linker will
automatically attempt to resolve undefined symbols at link time.

3.5.2 Other GNU Assembler Directives
Following is a listing of numerous GNU directives, some simple, some complex, and most
not needed by the TRIPS toolchain.

GNU Directive GNU Directive

.balign[wl] abs-expr,
abs-expr, abs-expr .org new-lc , fill

.comm symbol , length
.p2align[wl] abs-expr, abs-
expr, abs-expr

.desc symbol, abs-
expression .print “string”

.eject .psize lines, columns

.end .purgem name

.equiv symbol,
expression .rept count

.extern .sbttl "subheading"

.err .section name [, subsection]

.fail expression .skip size, fill

.file string .sleb128 expressions

.fill repeat, size, value .space size, fill

.func name[,label],

.endfunc .stabd, .stabn, .stabs

Page 13 of 29

TRIPS Assembler and Assembly Language Specification

GNU Directive GNU Directive

.if
absolute_expression,
.else, .elseif, .endif .string "str"

.include "file" .struct expression

.irp symbol,values.
.symver name,
name2@nodename

.irpc symbol,values .text subsection

.list, .nolist .title "heading"

.macro name args... ,

.exitm .uleb128 expressions

.octa bignums

Table 3: Other Assembler Directives

Refer to the “Related Documentation” section for a pointer to more information.

4 TRIPS-Dependent Features

Most of the syntactical features in the preceding section, “Assembly Language Syntax,”
pertain to the whole family of GNU-based assemblers. Following are TRIPS-dependent
features.

4.1 Program and Block Structure
As described in the TRIPS Object File Format (TOFF) Reference, the TRIPS assembler and
linker produce ELF object files that consist of header, text, and data sections. The “Assembler
Directives” subsection above indicates how tas supports the .text, .data, .rdata, and
.lcomm directives to create and organize TRIPS program sections. Within a .text
section, a TRIPS program consists of zero or more grid instruction blocks, delimited by
.bbegin/.bend pairs.

Grid instruction blocks are themselves organized into the following instruction groupings.

• General register read preamble: The preamble consists of specialized read
instructions that inject values from the architecture registers into the grid of
execution nodes.

• Grid instructions: This group makes up the main body of the block and consists of
conventional operators for ALU and memory operations that execute in out-of-order
fashion.

• General register write epilogue: The epilogue consists of specialized write
instructions that commit values from the execution nodes onto the architecture
registers.

Page 14 of 29

TRIPS Assembler and Assembly Language Specification

4.2 TRIPS-Specific Assembler Directives
To support the TRIPS execution model, the following TRIPS-specific pseudo-ops supplement
the standard GNU assembler directives:

Directive Description Usage

.bbegin
<block_name>

Block begin Following this directive, assembly statements
are translated into machine words within a
TRIPS instruction block.

.sequence_numbers
[on | off]

Turn
sequence
numbers on
or off.

If used, this directive must appear at the
beginning of the source file. It instructs tas to
emit (on) or not to emit (off) a sequence
number chunk after each grid instruction block.
Default is on.

.bend
[<block_name>]

Block end Paired with a predecessor .bbegin directive,
.bend marks the end of one complete
instruction block.

Table 4: TRIPS-Specific Assembler Directives

The .bbegin directive causes the assembler to allocate memory space for a block header
chunk, a grid instruction block, and a sequence number table. From then, read and write
instructions are parsed and collected in 32-bit word quantities to form the complete 2D header
chunk in memory. Other grid instructions are parsed and collected into 32-bit word quantities
to form the 3D grid instruction block. When it encounters a .bend directive, the assembler
flushes the current header chunk, the 3D instruction block, and the (optional) sequence
number table in translated binary form to the output file.

If you don't specify a <block_name>, the assembler will issue a warning and default the
name to "unspecified". If you don't include a .bend directive before starting a new
block, the assembler will issue a warning, but close the block off and flush the instructions
before beginning a new block.

You don't have to include a <block_name> in the .bend directive, but if you do, it should
match the <block_name> given in the preceding .bbegin statement. Otherwise, a
warning message is issued and the assembler uses the original <block_name>.

The .sequence_numbers directive is provided as a convenience only. You can instead
use the command line –s option or the INSN_SEQUENCE_NUMBERS field in the toolchain
configuration file to control the generation of sequence number chunks. A
.sequence_numbers directive must appear before any .bbegin directive in a file. If
present, it will override the setting of the INSN_SEQUENCE_NUMBERS field in the toolchain
configuration file and will itself be overridden by a –s command option switch.

Note: The TRIPS linker (tld) will expect all object files that are input for a given link job to
be assembled for the same sequence number configuration. It is not possible to link an object
module assembled with sequence numbers with another module that doesn’t include sequence
numbers.

Page 15 of 29

TRIPS Assembler and Assembly Language Specification

4.3 Data Types
The TRIPS assembler supports six primary scalar data types as listed below:

Bit size TAS Directive ISA Usage

8 .byte byte

16 .short halfword

32 .int word

64 .quad doubleword

32 .single single-precision
floating-point

64 .double double precision
floating-point

Table 5: Basic Data Types

Note that four other GNU data directives .long, .hword, .word, and .float are
specifically omitted to avoid confusion with their application in other processor families.
Their use is not supported in TASL source code.

Examples:

.data

.align 8 ; move to an 8-byte boundary in the data section,
july: .int 0x601d ; reserve 4 bytes to hold 0x601d, and name that
 ; location "july"

august: .int 0xf01d ; reserve 4 bytes for the "august" symbol, and
 ; initialize it to 0xf01d. A second align is
 ; unnecessary here, as the two ints will fit
 ; into one 8-byte TRIPS word.

.lcomm summer, 8, 4 ; move to a 4-byte boundary in the BSS section
 ; and reserve 8 bytes for storage location "summer".
 ; The third parameter *must* be included in the .lcomm

When aligning and initializing a global variable, the Compiler backend should first output the
alignment information and then the global information.

Example:

.align 4

.global coffee
coffee: .int 0x600d

Page 16 of 29

TRIPS Assembler and Assembly Language Specification

Refer to the TRIPS Application Binary Interface Manual for toolchain conventions used in
supporting aggregate data types, such as structs and unions, and for packing and aligning
data types.

4.4 Byte Ordering
Like other popular microprocessors, TRIPS uses a Big-Endian organization for arranging
bytes within a machine word so that the address of a variable is the address of its most
significant byte. For example, when aligned on 8-byte boundaries, TRIPS integer data types
will be located in memory as follows:

a: .byte 0x1
0x0100000000000000

b: .short 0x3
0x0003000000000000

c: .int 0x7
0x0000000700000000

d: .quad 0xf
0x000000000000000f

Note that the TRIPS ISA provides a number of instructions (LB, SB, LH, SH, etc.) to make
loading and storing partial words fast and convenient.

4.5 TRIPS Assembler Syntax
As specified in the TRIPS Processor Architecture Manual, the TRIPS architecture supports
both grid instruction formats and general register formats. The following subsections
describe, first, the grid instruction formats that make up the basic execution “chunks” and,
second, the general register instruction formats that make up the preamble and epilogue
portions of the complete instruction blocks.

4.5.1 Grid Instruction Formats
Use the following syntax to specify an instruction that executes on one of the grid execution
nodes:

ISA
Insn
Class

TASL Syntax

G N[source_node] opcode N[target, slot]

G N[source_node] opcode N[target, slot] N[target, slot]

I N[source_node] opcode immediate_value N[target, slot]

L N[source_node] load_opcode I[LSID] immediate_value N[target,
slot]

L N[source_node] load_opcode I[LSID] N[target, slot]

Page 17 of 29

TRIPS Assembler and Assembly Language Specification

ISA
Insn
Class

TASL Syntax

S N[source_node] store_opcode I[LSID] immediate_value

S N[source_node] store_opcode I[LSID]

B N[source_node] branch_opcode I[EXIT_ID] branch_offset

B N[source_node] branch_opcode I[EXIT_ID]

C N[source_node] constant_opcode big_immediate_value N[target,
slot]

Table 6: Grid Instruction Formats

An execution node specifier N and instruction identifier I can be entered in uppercase or
lowercase letters. The spacing between fields can include an arbitrary number of blanks and
tabs. Within fields (e.g., target and immediate_value), whitespace is not allowed.

Within a grid instruction, a register write queue target may instead be specified instead of an
execution node target. The syntax for a write queue target is simply
W[general_register] with no slot included.

Example:

N[23] fmul W[30] N[30,1]

This syntax instructs source node 23 to multiply its two implicit floating point operands and
write the floating point result to general register 30 in the write queue and also forward the
result to the right operand slot of execution node 30. Refer also to the “General Register
Instruction Formats” subsection following.

Note that all of these instructions may include an optional <sequence_number>, enclosed
in angle brackets (<>) after the N[source_node] and before the opcode.

Example:

N[23] <003> fmul W[30] N[30,1]; indicates that this is the third
 ; instruction in program order

See also the “Sequence Numbers” subsection in the “Overview” section above.

4.5.1.1 Field Descriptions

In the following descriptions, we assume a 4x4x8 hardware configuration and characteristics
of the hardware prototype.

Name Description

big_immediate_value An expression that evaluates to a signed or unsigned value
known at link time. See the “Expressions” and “Bit Extraction
Field Operators” subsections for more information. On the

Page 18 of 29

TRIPS Assembler and Assembly Language Specification

Name Description

prototype, immediate values must be contained within 16 bits.

branch_offset An expression that specifies an offset from the start of the
currently executing block, in the positive or negative direction,
to the start of a block header “chunk”. As specified in the
prototype ISA manual, this field encodes a 20-bit signed value,
that “is always treated as a chunk offset, rather than a byte
offset.”

branch_opcode An instruction that changes the flow of control from the
currently executing block to the beginning of the same or
another block. On the prototype, can be BR, BRO, CALL,
CALLO, RET, or SCALL.

constant_opcode An instruction that contains an embedded constant value. On
the prototype, can be GENS, GENU, APP, or NOP.

I[EXIT_ID] The EXIT_ID is an expression that evaluates to a small
positive expression unique to all the branch (type B)
instructions within the same block. On the prototype, values
may range from 0..7.

I[LSID] The LSID is an expression that evaluates to a small positive
expression unique to all the loads and stores within the same
block. On the prototype, values may range from 0..31.

immediate_value An expression that evaluates to a signed or unsigned value
known at link time. See the “Expressions” and “Bit Extraction
Field Operators” subsections for more information. On the
prototype, immediate values must be contained within 9 bits.

load_opcode An instruction that loads a value from a given memory address
to a given operand slot on an execution node. On the
prototype, opcodes can be LB, LH, LW, or LD.

N[source_node] One of the execution nodes on the grid. For the prototype, the
source_node name may range from 0..127.

N[target, slot] The target for the result of the operation, ranging on the
prototype from 0..127. The slot can be 0 or 1 to specify the
left and right operand slot, respectively, or p to specify the
predicate slot of the target execution node.

opcode One of the opcodes belonging to the General instruction class
(e.g., add) or Immediate instruction class (e.g., addi).

store_opcode An instruction that stores a value generated by an execution
node to a given memory address. On the prototype, can be
SB, SH, SW, or SD.

Table 7: Fields Within Grid Instructions

Page 19 of 29

TRIPS Assembler and Assembly Language Specification

4.5.1.2 Expressing Predication

All TRIPS instructions except those in the Constant class (type C) can be predicated upon a
true or false1 condition.

Use a _t or _f suffix to indicate that an instruction requires a predicate value. Example:

 sb_t

This instruction behaves as follows: if the incoming predicate value is true, store the low-
order byte from input operand 2 in the memory address specified by input operand 1.

All TRIPS grid instructions that generate a target (class G, I, L, and C) can output a value to
the predicate slot of another execution node. Common usage occurs in integer and floating
point test instructions (class G), in which the firing node sends the comparison result to the
predicate slot of a target execution node.

Use the N[target, p] syntax, with an uppercase or lowercase p, to specify a predicate
output target.

Example:

teq N[18,p]

This instruction behaves as follows: if input operand 1 equals input operand 2, send a “1” to
the predicate slot of execution node 18; else, send a “0”.

Note that there’s no implied relationship between a predicated instruction (one that requires a
true or false predicate value) and a predicating instruction (one that produces a predicate
operand for another execution node).

4.5.1.3 Other Grid Instruction Notes

• The N[source_node] specifier must appear first on the instruction line.

• The second component of a target execution node—for example, the 1 in
N[20,1]specifies the operand slot for the result of the operation. Use a zero (0) to
specify the left-hand slot, a one (1) to specify the right-hand operand slot, and an
uppercase or lowercase p to specify the predicate slot. The , slot parameter is
optional; it defaults to 0 (left-hand operand slot).

• The maximum number of instructions that can be scheduled in a given block is
determined by the presumed hardware configuration. No more than N grid
instructions can be scheduled in a block, where N is number_of_rows *
number_of_columns * number_of_frames. On the prototype, the maximum number
of grid instructions is 4x4x8 or 128 instructions.

• The LSID load/store identifier is optional. If no I[LSID] field appears in a
load/store instruction, the assembler will generate an identifier based on the location
of the instruction within the assembly code. Default identifiers are numbered

1 A true predicate value has its least significant bit set to 1. A false predicate value has its least
significant bit cleared.

Page 20 of 29

TRIPS Assembler and Assembly Language Specification

starting at 0, from top to bottom of the grid instruction block. It’s not a good idea to
provide load/store identifiers for some load/store instructions within a block and not
for others.

• Similarly, the EXIT_ID branch identifier is optional. If no I[EXIT_ID] field
appears in a B-type instruction, the assembler will generate an identifier based on the
location of the instruction within the assembly code. Default identifiers are
numbered starting at 0, from top to bottom of the grid instruction block.

• The scheduler can but doesn't have to output nop instructions. The assembler will
fill them in automatically for unused execution nodes.

• A number of architecture registers are reserved for stack pointer, etc. Refer to the
TRIPS Application Binary Interface Manual for information on which registers are
used for what purpose.

• If the assembler notices a discrepancy between the grid configuration and the
schedule--for example, if the instruction would be mapped to an already scheduled
execution node--then the assembler will note the error and not generate an object
file.

4.5.1.4 Immediate Values

On the prototype, you can specify either a 9-bit, 16-bit, or a 20-bit value for encoding in an
immediate (I), constant (C), and branching (B) instruction, respectively. You can use decimal
notation (e.g., 42) or hexadecimal notation (e.g., 0x601d) for these immediate values or any
legal GNU assembler expression. Refer to the “Expressions” subsection above for more
information about GNU expression syntax.

The bit extraction field operators described below also allow you to capture “pieces” of data
values and addresses in the bit fields of constant instructions.

4.5.1.5 Bit Extraction Field Operators

The TRIPS assembler offers the following bit extraction operators (sometimes called "percent
operators") as follows:

Operator Syntax Extracted Bit Fields

%hi(name) 63-48

%mid(name) 47-32

%lo(name) 31-16

%bottom(name) 15-0

Table 8 Assembler Percent Operators for Bit Extration
Used with the GENU, GENS, and APP instruction, these field operators enable your assembly
code to extract values from their symbolic names. For the prototype, these operators extract
16-bits at a time, either as unsigned values (GENU) or signed values (GENS).

Example:

N[3] gens %hi(big_symbolic_value) N[4,1]

Page 21 of 29

TRIPS Assembler and Assembly Language Specification

This instruction extracts the 16 most significant bits from a 64-bit big_symbolic_value,
sign-extends them as necessary, and outputs the sign-extended value to the right operand slot
of execution node 4.

Example:

N[3] app %lo(moderate_symbolic_value) N[4,1]

This APPEND CONSTANT instruction captures bits 31-16 of the value specified by
moderate_symbolic_value, with no sign-extension, ORs them with the left-shifted
value of its left input operand and outputs them to the right operand slot of execution node 4.

Refer to the "Assembly Language Sample" following to see how the percent operators can be
used in combination with C-type instructions to generate memory addresses efficiently.

4.5.1.6 Address Offsets

To support the CALL WITH OFFSET and CALL WITH BRANCH instructions, the
assembler offers the following syntax:

bro target_block_name

callo target_block_name

--in which target_block_name denotes the name of a grid instruction block, either
internal or external to the current source module.

The assembler will mark such instructions as “fix-ups” and send their relocatable information
to the linker, which will perform the following tasks during its final pass:

• Determine the ultimate resolved address of the target_block_name.

• Compute that address in terms of TRIPS “chunks” such that the least significant 6
bits are zeroed and right-shifted to fit the constant field width field of the bro or
callo instruction.

• Re-insert the fixed instruction into the block of grid instructions.

If the computed address exceeds the reach of the constant width field (a signed 20 bits in the
prototype), the linker will issue an error message and exit. Hence, the compiler must use
relative offsets conservatively, to ensure that they are within the span of the current
instruction block.

4.5.2 General Register Instruction Formats
Each instruction block can begin with a general register read preamble and end with a general
register write preamble. General register instructions use register specifiers as follows:

TASL Syntax Description
R[read_queue_id] One of the registers in read queue whose value

will be injected into the instruction grid.
W[write_queue_id] One of the registers in the write queue whose

value will be output from an execution node.
G[architectural_register_id] One of the general registers whose value will

persist across instruction blocks

Page 22 of 29

TRIPS Assembler and Assembly Language Specification

Table 9: Syntax for Accessing TRIPS General Registers

The prototype supports a maximum of 32 reads per block through read queue registers
R[0]..R[31]. The prototype supports a maximum of 32 writes per block onto write queue
registers W[0]..W[31]. Overall, there are 128 architecture registers whose values persist
across blocks, named G[0]..G[127].

4.5.2.1 General Register Access

Programs access the TRIPS architecture registers, also referred to as general registers,
through one level of indirection:

• There is one read queue and one write queue associated with each block of
instructions, enabling the instructions in that block to read from and write to the
general register banks. Read queues and write queues are disjoint structures. For the
prototype, both queue types support 32 values.

• It is through the read preamble that general register values are injected into the grid.
It is through the write epilogue that grid outputs are committed to the general
registers.

• The general registers are partitioned into register banks. Each entry in a read queue
or a write queue is aligned with one of the partitioned register banks.

• Reads and writes are interleaved across the general registers banks. On the prototype
there are eight (8) entries for each of the four (4) general register banks.

• A read from a general register moves through the register read queue which is
vertically aligned with the corresponding column in the grid.

• A write from an execution node to a general register moves through the register write
queue in the column that is vertically aligned with the corresponding column in the
grid.

• From a read queue, a register value can reach any execution node on the grid.
• From an execution node, a value can be output to any of the write queues.

General Register Read Example:

R[0] read G[124] N[15,1] N[25,0]

Appearing in the general register read preamble, this instruction means, “Read the value of
general register 124 through register read queue entry 0 into operand 1 of execution node 15
and operand 0 of execution node 0.”

General Register Write Examples:

N[12] add W[3]

This instruction, appearing in the body of grid instructions, means, “Output the result of the
add to register write queue entry 3.”

W[3] write G[127]

Appearing in the general register write epilogue, this instruction means, “Write the value in
register write queue entry 3 to general register 127.”

Preamble and Epilogue Example:

In this simple example, the code for the Example block is divided into three parts:

;;;;;;;;;;;;; Example instruction block
.bbegin Example
;;;;;;;;;; read preamble
R[0] read G[124] N[15,0] ; read from read queue
R[13] read G[33] N[15,1]

Page 23 of 29

TRIPS Assembler and Assembly Language Specification

;;;;;;;;;; main instruction body
N[15] teq N[3,p]
N[3] mov_t W[2] ; output a value to the write queue
;;;;;;;;;; write epilogue
W[2] write G[12] ; commit the value to general register
.bend

Refer also to the “Program and Block Structure” subsection above.

4.5.2.2 General Register Alignment

To support the register access model in the TRIPS ISA, the assembler requires that reads from
the general registers and writes to the general register align with the register banks as follows:

Read/Write Queue Entries General Register Allowed Identifiers

0..7 G[0], G[4], G[8]…G[124]

8..15 G[1], G[5], G[9]…G[125]

16..23 G[2], G[6], G[10]…G[126]

24..31 G[3], G[7], G[11]…G[127]

Table 10: Aligning Read/Write Queues With General Registers

The assembler for the prototype checks read/write alignment according to the following
formula:

read_or_write_queue_entry / 8

must equal

general_register_identifier mod 4

If this condition doesn’t hold for all instructions in the read preamble and write epilogue, one
or more alignment error messages is printed.

Page 24 of 29

TRIPS Assembler and Assembly Language Specification

4.6 Reserved Symbols
Currently, there are no TRIPS-specific reserved symbols. To access such entities as the
contents of the Processor Control Register, the programmer will access the corresponding
memory-mapped address. For C system programmers, there will be a sysparams.h file
that defines such information in this fashion:

#define PCR 0x1eadfee1

4.7 Assembly Language Sample
Following is a short sample of TRIPS assembly language, part of the crt0.s start-up code
to initialize the application context.

.set SP=0x7fffc000

.text

.bbegin _start
; set up the stack pointer SP so that its address is in
; R[1]

N[8] genu %bottom(SP) N[13,0]
N[7] app %lo(SP) N[14,0]
N[6] app %mid(SP) N[15,0] ; takes care of 48 bits
N[1] nop ; just for the heck of it

.bend

Note: This sample will be enlarged as we gain more experience in programming the
instruction set.

5 Assembler Operation

As may be expected, the TRIPS assembler derives much of its behavior from the GNU
specification.

It may be helpful to run comparisons between the TRIPS assembler and other assemblers in
the GNU family. Doing so is easy:

1. Use the gcc –S switch to compile a C source file but leave the assembly output in a
*.s file.

2. Run the as command with a variety of switches to note its behavior and output.

5.1 Assembly Phases
The assembler operates in two phases:

1. Parse the input file, build the symbol table, and check program semantics.

2. Generate the TOFF file as input to the linker.

5.2 Assembler Error Handling
If this were a perfect world, the TRIPS assembler would never need to issue warning or error
message when assembling compiler output. The error handling used by tas follows the
guidelines from GNU.

5.2.1 Minor Messages

Page 25 of 29

TRIPS Assembler and Assembly Language Specification

A minor message is used for which the error recovery action is almost certainly correct. In
this case, tas prints a message and then assembly continues as though no error occurred.

Example:

Warning: You never officially ended the block named `Example'.
We will do it for you.

5.2.2 Warning Messages
A warning message is used when we have an error from which we have a plausible error
recovery, e.g., masking the top bits of a constant that is longer than will fit in the destination.
In this case we will continue to assemble the source, although we may have made a bad
assumption, and we will produce an object file and return normal exit status (i.e., no error).

5.2.3 Error Messages
An error message is used to mark errors that result in what we presume to be a useless object
file. Say, we ignored something that might have been vital. If we see any of these, assembly
will continue to the end of the source, no object file will be produced, and we will terminate
with error status. The option, -Z, forces tas to produce an object file anyway, but it still
exits with error status. The assumption here is that you don't want this object file.

Example:

Error: Your source register R[19] and general register G[5]
don't align.

5.2.4 Fatal Messages

A fatal message appears when tas is quite confused and continuing the assembly is pointless.
In this case tas exits immediately with error status.

You shouldn’t see fatal messages. If you do, please use Bugzilla to file a report against.

5.2.5 Command Line Switches

All tas warnings and error messages are directed to standard error output. There are two
command switches to change the default behavior.

Suppress Warnings: -W

If you use this option, no warnings are issued. This option only affects the warning messages:
it does not change any particular of how as assembles your file. Errors, which stop the
assembly, are still reported.

Generate Object File in Spite of Errors: -Z

After an error message, the assembler normally produces no output. If for some reason you
are interested in object file output even after tas gives an error message on your program,
use the -Z option. If there are any errors, tas continues anyways, and writes an object file
after a final warning message of the form `n errors, m warnings, generating bad
object file.'

Page 26 of 29

TRIPS Assembler and Assembly Language Specification

6 Other Tools

The objdump utility provides a useful disassembly capability for TRIPS binaries. Some
useful options include:

objdump –t <file> # show the symbol table. Also, readelf –s <file>

objdump –d <file> # disassemble the file

The readelf utility enables you to examine a module's header:
readelf –h <file>

The nm utility provides a list of symbols from a given object file.
Examples:

nm –size-sort <file> # sort by symbol size

nm –n <file> # sort numerically

Page 27 of 29

TRIPS Assembler and Assembly Language Specification

7 Glossary

This glossary is intended to supplement the definitions in the TRIPS Project Definition of
Terms.

Term Description

execution node A functional unit in the grid that performs ALU-type operations on its
input operands and produces a single output value to forward to other
execution nodes, to the register write queue, or to the memory system.

extended ISA The instruction set supporting the research TRIPS architecture; as such it
supports a variety of grid and general register configurations and bit
encodings.

general register One of the architectural registers in a partitioned register file that is visible
to the software whose values persist across blocks. There are 128 general
registers in the prototype ISA, 32 of whom may be output by any one
execution block.

node register One of the temporary registers that servers as an input to one of the
execution nodes and whose value is lost when a new block is mapped onto
the grid.

operand slot A reservation station or predicate queue maintained on an execution node
that accepts input operand values (left operand slot, right operand slot) or
predicate value (predicate slot).

prototype ISA The instruction set specific to the TRIPS hardware prototype, limited to a
4x4x8 grid configuration, 4x8 general register read and write queues, and a
4 x 32 general register set.

read preamble A group of general register read instructions that (optionally) appears at
the beginning of a grid instruction block.

target syntax Used to express data flow execution, in which the output targets are
written explicitly but the input operands are implied.

write epilogue A group of general register write instructions that (optionally) appears at
the end of a grid instruction block.

Table 11: Commonly Used Terms

Page 28 of 29

TRIPS Assembler and Assembly Language Specification

8 Appendix: Deltas From the January, 2003 Assembler Specification

The updates to this specification are motivated by the requirement to support the Revised
TRIPS ISA. Major changes occasioned by the Revised ISA are listed below.

Original ISA Revised ISA Differences

R[0]..R[127] G[0],G[4],…G[124]
G[1],G[5],…G[125]
G[2],G[6],…G[126]
G[3],G[7],…G[127]

Partitioned nature of the register
banks now visible in the ISA.

N[15]-<006> or
N[23,0]

N[15] or N[23,0]

N[15]<006> or
N[23,0]

Sequence numbers are no longer
required in a block; however, they
can be supplied.

add add_t All instructions except for C-type
instructions can be predicated.

rpt mov, movi, write There are syntactical and semantic
differences between instructions that
move execution node values, read
general registers, and copy
immediate values.

add N[0] N[1]
N[2]

add 0x64 N[1]
N[2]

add N[0] N[1]

addi 0x64 N[1]

General and immediate instructions
are limited to a maximum of 2 and 1
targets, respectively.

T2,T3,I1,I2,B1,B2, X0 G, I, L, S, C. The revised instruction formats no
longer include an explicit format
field, but the general and immediate
instructions include an extended
opcode field.

R[0]- move N[3] N[2] MFPC N[3] Reading the program counter
(formerly maintained in general
register 0) now requires an explicit
“Move From PC” grid instruction.

R[3]- move R[3] read

General register syntax uses the
read instruction instead of the
move instruction and no longer
includes a hyphen (-) after the
register specifier.

Table 12: Revised Assembler Deltas

Page 29 of 29

	tr-05-21.pdf
	TR-05-21.pdf
	Introduction
	Links in the Chain
	Accessory Components
	Related Documentation
	Bug Reporting
	Overview
	Source Elements
	Sequence Numbers
	Assembly Time

	Tool Invocation and Command Line Options
	GNU Options
	TRIPS-Specific Command Line Options
	The TRIPS Toolchain Configuration File
	Using the Assembler

	Assembly Language Syntax
	Comments
	Placement Within a Source Line
	Symbols and Labels
	Expressions
	Arguments
	Operators
	Prefix Operator
	Infix Operators

	Assembler Directives
	Useful GNU Assembler Directives
	Other GNU Assembler Directives

	TRIPS-Dependent Features
	Program and Block Structure
	TRIPS-Specific Assembler Directives
	Data Types
	Byte Ordering
	TRIPS Assembler Syntax
	Grid Instruction Formats
	Field Descriptions
	Expressing Predication
	Other Grid Instruction Notes
	Immediate Values
	Bit Extraction Field Operators
	Address Offsets

	General Register Instruction Formats
	General Register Access
	General Register Alignment

	Reserved Symbols
	Assembly Language Sample

	Assembler Operation
	Assembly Phases
	Assembler Error Handling
	Minor Messages
	Warning Messages
	Error Messages
	Fatal Messages
	Command Line Switches

	Other Tools
	Glossary
	Appendix: Deltas From the January, 2003 Assembler Specification

