
TRIPS Appli
ation Binary Interfa
e (ABI) ManualAaron Smith Jim Burrill Robert M
DonaldNi
holas Nether
ote Bill Yoder Doug BurgerStephen W. Ke
kler Kathryn S. M
KinleyO
tober 10, 2006 - Version A.06Te
h Report TR-05-22Department of Computer S
ien
esThe University of Texas at AustinThis do
ument spe
i�es the TRIPS Appli
ation Binary Interfa
e (ABI) Manual for theTRIPS ar
hite
ture, a novel, s
alable, and low power ar
hite
ture for future te
hnologies.



TRIPS Appli
ation Binary Interfa
e (ABI) ManualContents1 Overview 12 Ar
hite
tural Des
ription 12.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2 Fundamental Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3 Compound Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Fun
tion Calling Conventions 33.1 Register Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33.2 Sta
k Frame Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43.2.1 Link Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63.2.2 Argument Save Area . . . . . . . . . . . . . . . . . . . . . . . . . . . 63.2.3 Lo
al Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.2.4 Register Save Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.2.5 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.3 Parameter Passing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.4 Return Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103.5 Variable Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Runtime Support Fun
tions 114.1 Appli
ation Memory Organization . . . . . . . . . . . . . . . . . . . . . . . . 114.2 Pro
ess Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124.3 System Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Standards Complian
e 135.1 C Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135.1.1 Calling Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 135.2 F77 Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145.3 Floating Point Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Version A.06 i O
tober 10, 2006



TRIPS Appli
ation Binary Interfa
e (ABI) Manual1 OverviewThis do
ument des
ribes the appli
ation binary interfa
e for the TRIPS Grid Pro
essor.The goal of this do
ument is to provide a 
onsistent standard for vendors and resear
hersto follow. No thought has been given to any other language besides C and FORTRAN. Youare en
ouraged to build upon and expand this do
ument for other languages su
h as C++and Java.For additional information relevant to the Trips Appli
ation Binary Interfa
e, please 
onsultthe following manuals:� TRIPS Pro
essor Referen
e Manual� TRIPS Intermediate Language (TIL) Manual� TRIPS Assembly Language (TASL) Manual� TRIPS Obje
t File Format (TOFF) Spe
i�
ation2 Ar
hite
tural Des
riptionFor a 
omplete ar
hite
tural des
ription, refer to the TRIPS Pro
essor Referen
e Manual.2.1 RegistersThe TRIPS ar
hite
ture provides 128 general purpose registers (GPRs). By 
onventionGPRs are named R0 - R127. The ar
hite
ture makes no distin
tion between 
oating pointand general purpose registers. The TRIPS ar
hite
ture does not de�ne any spe
ial purpose
ontrol registers whi
h are a

essible through the instru
tion set.2.2 Fundamental TypesTable 1 shows the TRIPS equivalents for ANSI C fundamental types along with their sizesand alignments. Fundamental types are always aligned on natural boundaries. The TRIPSar
hite
ture supports 64, 32, 16 and 8-bit load and store operations. All data is in big endianbyte order.For the purposes of this do
ument, we de�ne the following types:� doubleword { A doubleword is 64-bits and the least signi�
ant 3-bits of the address ofa doubleword in memory are always zero.� word { A word is 32-bits and the least signi�
ant 2-bits of the address of a word inmemory are always zero.Version A.06 1 O
tober 10, 2006



TRIPS Appli
ation Binary Interfa
e (ABI) ManualANSI C Size (in bytes) Alignment (in bytes)
har 1 1unsigned 
har 1 1signed 
har 1 1short 2 2unsigned short 2 2signed short 2 2int 4 4unsigned int 4 4signed int 4 4enum 4 4long 8 8unsigned long 8 8signed long 8 8long long 8 8unsigned long long 8 8signed long long 8 8
oat 4 4double 8 8long double 8 8Table 1: TRIPS Fundamental Types� halfword { A halfword is 16-bits and the least signi�
ant bit of the address of a halfwordin memory is always zero.� byte { A byte is 8-bits.2.3 Compound TypesThe alignment requirements for arrays, stru
tures, unions and bit �elds are summarized inTable 2.Arrays are aligned a

ording to the alignment of their individual elements. For example,
har a
[10℄; /* aligned on 1-byte */short as[10℄; /* aligned on 2-bytes */float af[10℄; /* aligned on 4-bytes */Stru
tures and unions are aligned a

ording to their most restri
tive element. Paddingshould be added to the end of the stru
ture or union to make its size a multiple of thealignment. Fields within stru
tures and unions are aligned a

ording to the �eld's type withthe ex
eption of bit �elds. Padding should be added between �elds to ensure alignment. Forexample,Version A.06 2 O
tober 10, 2006



TRIPS Appli
ation Binary Interfa
e (ABI) ManualCompound Type AlignmentArrays Same as individual elementsUnions Most restri
tive alignment of membersStru
tures Same as unionsBit �elds Same as individual elementsTable 2: Alignment of Compound Typesstru
t s1 {
har b
[9℄; /* aligned on 1-byte */short bs; /* aligned on 2-bytes */int bi; /* aligned on 4-bytes */
har b
2[9℄; /* aligned on 1-byte */};The individual elements b
 and b
2 are aligned on 1-byte boundaries. The elements bsand bi are aligned on a 2-byte and 4-byte boundaries respe
tively. A 1-byte pad will beadded between b
 and bs in order to align bs on a 2-byte boundary. Sin
e int is the mostrestri
tive element of the stru
ture, a 3-byte pad would be added to the end of the stru
tureto align it on a 4-byte boundary.The maximum size of a bit �eld is 64-bits. Bit �elds 
annot be split over a 64-bit boundary.Zero-width bit �elds pad to the next 32-bits, regardless of the type of the bit �eld. No otherrestri
tion applies to bit �eld alignment. However, bit �elds impose alignment restri
tionson their en
losing stru
ture or union a

ording to the fundamental type of the bit �eld.3 Fun
tion Calling Conventions3.1 Register ConventionsTable 3 de�nes the register 
onventions for the TRIPS ar
hite
ture. There is no distin
tionbetween 
oating point and integer values for the purpose of the 
onventions.Registers R0, R1 (sta
k pointer), R2 (return address) and R12{R69 are 
allee-save or non-volatile, whi
h means that the 
ompiler preserves their values a
ross fun
tion 
alls. Anyfun
tion whi
h uses any register in this 
lass must save the value before 
hanging it, andrestore it before the fun
tion returns.The remaining registers, R3{R11 and R70{R127, are 
aller-save or volatile, whi
h means thatthey 
an be overwritten by a 
alled fun
tion. The 
ompiler will ensure that any fun
tionwhi
h uses any register in this 
lass must save the value before 
alling another fun
tion, andrestore it after that fun
tion returns, if that value is to be reused after the 
all.Register R1 (SP) 
ontains the fun
tion's sta
k pointer. It is the responsibility of the fun
tionto de
rement the sta
k pointer by the size of its sta
k frame upon entry in the fun
tionVersion A.06 3 O
tober 10, 2006



TRIPS Appli
ation Binary Interfa
e (ABI) ManualReg. # Usage and des
ription LifetimeR0 System Call ID for SCALL Callee-saveR1 Sta
k Pointer Callee-saveR2 Return Address Register Callee-saveR3 Arguments and Return Values Caller-saveR4 Arguments and Return Values Caller-saveR5 - R10 Arguments Caller-saveR11 Reserved for Environment Pointer Caller-saveR12 Frame Pointer or Lo
al Variable Callee-saveR13 - R69 Lo
al Variables Callee-saveR70 - R127 Lo
al Variables Caller-saveTable 3: Register Conventionsprologue and in
rement the sta
k pointer by the size of its sta
k frame upon exit in thefun
tion epilogue. To support the debugger, the 
ompiler stores the 
aller's sta
k pointer inthe link area as a ba
k 
hain pointer, prior to de
rementing the sta
k pointer register (SP)in the prologue.If a fun
tion uses allo
a, whi
h allo
ates spa
e for the user on the sta
k, register R12 (FP) isused to a

ess the fun
tion's sta
k frame while allowing the sta
k pointer (R1) to be 
hangedby allo
a. Upon entry to su
h a fun
tion, the address in R1 is �rst de
remented and thenthis address is 
opied into R12. Then register R12 is 
opied ba
k into R1 just before registerR1 is in
remented on the fun
tion's return.Register R2 
ontains the fun
tion's return address upon entry. It is the responsibility of thefun
tion to preserve its return address so that it may return to its 
aller. If the fun
tion
alls no other fun
tions, it may do this by keeping its return address in R2. Otherwise, itmust save the return address in the link area.3.2 Sta
k Frame LayoutEa
h fun
tion has a sta
k frame on the runtime sta
k whi
h grows downward from highaddresses. Figure 1 shows the sta
k frame organization. Note that the �gure shows lowmemory addresses at the top and high addresses at the bottom.From low to high addresses, the sta
k frame for a fun
tion (
allee) 
ontains:� Fixed Size Link Area� Argument Save Area� Lo
al Variables� Register Save AreaVersion A.06 4 O
tober 10, 2006



TRIPS Appli
ation Binary Interfa
e (ABI) Manual

Arguments set by Caller
and used by Callee.

Caller’s Stack Pointer (SP)

before call to Callee.

Callee’s Stack Pointer (SP)
after prolog is executed.

Callee saves saves
Caller’s non−volatile registers.

Arguments set by Callee
and used by Callee’s callee.

Caller’s local variables

Caller’s Link Area

Callee’s Link Area

Low Address

High Address

Callee’s local variables

Register Save Area

Argument Save Area

Argument Save Area

Figure 1: Sta
k Frame Layout
Version A.06 5 O
tober 10, 2006



TRIPS Appli
ation Binary Interfa
e (ABI) Manual(SP ) Ba
k 
hain pointer; i.e., sta
k frame address of 
aller(SP ) + 8 Callee's return addressFigure 2: Link Area After Callee Prologue3.2.1 Link AreaThis �xed size area holds (a) the address of the 
aller's sta
k frame and (b) the 
allee'sreturn address (Figure 2):� The �rst doubleword (lowest address in the 
allee's sta
k frame) 
ontains the 
aller'ssta
k pointer value, sometimes 
alled the \ba
k 
hain". The �rst sta
k frame (that is,the sta
k frame of the start fun
tion) will have a ba
k 
hain value of 0.� The se
ond doubleword 
ontains the 
allee's return address, whi
h is set by the 
allerbefore bran
hing to the fun
tion. If debugging is not required, this doubleword maybe left unde�ned in order to avoid a store to memory.Note: If a fun
tion dynami
ally allo
ates spa
e on the sta
k (e.g., allo
a()), then theallo
ated spa
e must be between the link area and the argument save area. This meansthat the link area must be moved when the allo
ation is performed. The sta
k pointerregister must always point to the link area.Figure 3 shows the use of ba
k 
hain pointers to traverse the sta
k frames.3.2.2 Argument Save AreaThis variable size area is large enough to hold all of the arguments that a routine may passto any of the routines that it 
alls as determined by:� A minimum of MAX_ARG_REGS (8) doublewords is usually reserved for the argumentsave area be
ause the 
aller 
an not know if it is 
alling a routine that uses va_start.See se
tion 3.5.� For a \leaf routine" this area may 
ontain 0 doublewords. When a routine 
alls afun
tion it pla
es the �rst MAX_ARG_REGS doublewords of arguments in the argumentregisters (R3 . . . R10). Any additional doublewords of arguments are pla
ed startingin doubleword 8 of the argument save area. Ea
h argument is pla
ed in at least oneregister or in at least one doubleword in the argument save area. Arguments largerthan a doubleword may be split between a register and the argument save area. Theleast signi�
ant 3-bits of the address of any argument in the argument save area arezero.
Version A.06 6 O
tober 10, 2006



TRIPS Appli
ation Binary Interfa
e (ABI) Manual
All stack items are aligned on high virtual memory
8-byte boundaries. environment = 0xFFFFFFFF

and
argv strings

argument save area

return address = 0
sp of _start() back chain pointer=0

register save area

local variable area Stack grows down.

argument save area

return address Fixed size
sp of main() back chain pointer link area of main()

register save area

local variable area

argument save area

return address link area of func()
sp of func() back chain pointer

register save area

local variable area

return address link area of leaf()
sp of leaf() back chain pointer

unused stack
area

Application bss
and data area

low memory

 Loader places data beginning at 0x80000000.Figure 3: TRIPS Sta
k LinkagesVersion A.06 7 O
tober 10, 2006



TRIPS Appli
ation Binary Interfa
e (ABI) Manual3.2.3 Lo
al VariablesAny lo
al variables of a 
allee that must reside in memory are pla
ed in the lo
al variablearea. The least signi�
ant 3-bits of the address of any variable are always zero. The size ofthe area may be zero.3.2.4 Register Save AreaThis area holds the 
ontents of any of the 
allee-save registers that the 
allee modi�es.Registers are saved to in
reasing addresses. For example, if the 
allee modi�es only the
allee-save registers R60 and R62 then the register save area will be 16 bytes. Register R60will be stored at o�set 0 and register R62 will be stored at o�set 8 into the register savearea. The least signi�
ant 3-bits of the address of any register in the register save area arezero. The size of the area may be zero.3.2.5 RequirementsThe following requirements apply to the sta
k frame:� The least signi�
ant 4-bits of the value in the sta
k pointer register (SP) shall alwaysbe zero.� The sta
k pointer shall point to the last word of the 
urrent sta
k frame. Thus, (SP) isthe address of the \ba
k 
hain" word of the link area. The sta
k shall grow downward,that is, toward lower addresses.� The sta
k pointer shall be de
remented by the 
alled fun
tion in its prologue andrestored prior to return.� Before a fun
tion 
hanges the value in any 
allee-save general register, Rn, it shall savethe value in Rn in the register save area.3.3 Parameter PassingBoth s
alar and 
ompound type parameters are passed in registers R3 through R10. Pa-rameters shall be assigned 
onse
utively to registers so that R3 
ontains the �rst fun
tionparameter. Assuming that the �rst argument is requires 8 bytes or less, R4 
ontains these
ond. This 
ontinues until all argument registers are o

upied. If there are not enoughregisters for the entire parameter list then the parameters over
ow in 
onse
utive order ontothe argument save area of the sta
k.S
alars less than 64-bits are right justi�ed within the register. The 
aller must not assignmore than a single s
alar argument to a register.Version A.06 8 O
tober 10, 2006



TRIPS Appli
ation Binary Interfa
e (ABI) Manual

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

7−bytes

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

6−bytes
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

5−bytes

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

3−bytes
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

4−bytes

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

2−bytes
��
��
��
��
��

��
��
��
��
��

1−byte

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

8−bytes

��
��
��
��
��

��
��
��
��
��

data Figure 4: Passing C Stru
tsCompound types (C stru
ts) larger than 64-bits are pa
ked into 
onse
utive registers. Com-pound types less than 64-bits are pla
ed within the register in the position that allows asimple store to pla
e them in memory aligned upon a doubleword boundary (see Figure 4).The argument save area, whi
h is lo
ated at a �xed o�set of ARG_SAVE_OFFSET (24) bytesfrom the sta
k pointer, is reserved in ea
h sta
k frame for use as an argument list. Aminimum of MAX_ARG_REGS (8) doublewords is reserved if the routine 
alls another routine.The size of this area must be suÆ
ient to hold the longest argument list being passed bythe fun
tion whi
h owns the sta
k frame. Although not all arguments for a parti
ular 
allare lo
ated in storage, 
onsider them to be forming a list in this area, with ea
h argumento

upying one or more doublewords.If more arguments are passed than 
an be stored in registers, the remaining arguments arestored in the argument save area.The rules for parameter passing are as follows:� Ea
h argument is mapped to as many doublewords of the argument save area as arerequired to hold its value.1. Single pre
ision 
oating point values are mapped to a single doubleword.Version A.06 9 O
tober 10, 2006



TRIPS Appli
ation Binary Interfa
e (ABI) Manual2. Double pre
ision 
oating point values are mapped to a single doubleword.3. Simple integer types (
har, short, int, long, enum) are mapped to a single double-word. Value shorter than a doubleword are sign or zero extended as ne
essary.4. Pointers are mapped to a single doubleword.5. Aggregates and unions passed by value are mapped to as many doublewords ofthe argument save area as the value uses in memory.6. Other s
alar values, su
h as FORTRAN 
omplex numbers, are mapped to thenumber of doublewords required by their size.� If the 
allee has a known prototype, arguments are 
onverted to the type of the 
orre-sponding parameter before being mapped into the parameter save area. For example,if a long is used as an argument to a 
oat double parameter, the value is 
onverted todouble-pre
ision and mapped to a doubleword in the argument save area.� The �rst MAX_ARG_REGS (8) doublewords mapped to the argument save area are neverstored in the argument save area by the 
alling fun
tion. Instead, these doublewordsare passed in registers as des
ribed above.� Argument values beyond the �rst eight doublewords must be stored in the argumentsave area following the �rst eight doublewords. The �rst eight doublewords in theargument save area are reserved for the initial arguments, even though they are passedin registers.� General registers are used to pass some values. The �rst eight doublewords mapped tothe argument save area 
orrespond to the register R3 through R10. If the argumentsare mapped to fewer than eight doublewords of the argument save area, registers 
or-responding to those unused doublewords are not used.� If the 
allee takes the address of any of its parameters that are passed in registers, thenthose parameters must be stored by the 
allee into the argument save area.Note: if the 
ompilation unit for the 
aller 
ontains a fun
tion prototype, but the 
allee hasa mismat
hing de�nition, and if the 
allee takes the address of any of its parameters, thewrong values may be stored in the �rst eight doublewords of the argument save area.3.4 Return ValuesFun
tions shall return values of type 
oat, double, int, long, enum, short, and 
har, or apointer to any type, as unsigned or signed integers as appropriate, zero- or sign-extended to64-bits if ne
essary, in R3.Aggregates or unions of any length shall be returned in a storage bu�er allo
ated by the
aller. The 
aller will pass the address of this bu�er as a hidden �rst argument in R3,
ausing the �rst expli
it argument to be passed in R4. This hidden argument is treated asVersion A.06 10 O
tober 10, 2006



TRIPS Appli
ation Binary Interfa
e (ABI) Manuala normal formal parameter, and 
orresponds to the �rst doubleword of the parameter savearea.Fun
tions shall return 
omplex 
oating point s
alar values of size 16-bytes or less in registersR3 (real-part) and R4 (imaginary part).3.5 Variable ArgumentsIf the 
allee uses va_start it is the 
allee's responsibility to store the registers R3 throughR10 in the argument save area. The remaining arguments are stored by the 
aller.The va_start operation 
auses the address of the spe
i�ed parameter to be stored in thedoubleword allo
ated for the va_list variable. As ea
h argument is a

essed by va_arg thisaddress is in
remented by the proper multiple of 8.There is no provision in this spe
i�
ation that de�nes how a \variable argument" fun
tion
an determine the number of arguments that were passed to it.4 Runtime Support Fun
tions4.1 Appli
ation Memory OrganizationThe TRIPS prototype runtime system lays out virtual memory for appli
ations from highvirtual addresses to low virtual addresses as follows:� environment { At the \top", or highest address, of appli
ation memory is the programenvironment, whi
h is passed through to the program loader in the **envp string array,by the 
all to the program's main() routine.� sta
k { Beneath the program environment area is the sta
k, whi
h grows \downward"in 8-byte de
rements, toward lower addresses.� heap { The heap, pla
ed on top of the program's text and data segments, grows upwardby means of the brk() system 
all.� bss { The unitialized data se
tion, for variables tagged with the .
omm dire
tive, setsthe boundary between the program text and data area and the heap area.� initialized data { The program's read/write initialized data se
tion appears at loweraddresses than the .bss area.� read-only data { This area is reserved for initialized data that is marked by the 
ompilerwith the .rdata dire
tive as read-only.� program text { At the lowest program addresses are the 
ode blo
ks 
omprising theprogram's exe
utable se
tion.Version A.06 11 O
tober 10, 2006



TRIPS Appli
ation Binary Interfa
e (ABI) ManualRegister Des
riptionR1 The initial sta
k pointer, aligned to a 16-byte boundary.R3 Contains arg
, the number of program arguments.R4 Contains argv, the array of NULL-terminated argument strings.R5 Contains envp, the array of NULL-terminated environment strings.Table 4: Registers Initialized by the Loader4.2 Pro
ess InitializationAppli
ation behavior at startup on a TRIPS pro
essor is modeled on PowerPC 
onventions.1For an appli
ation whose entry point is de�ned as:int main(int arg
, 
har ** argv, 
har ** envp)Table 4 lists the 
ontents of registers when the loader returns 
ontrol to the system software.The 
ontents of other registers are unspe
i�ed. It is the responsibility of the appli
ation tosave those values that will be needed later.The loader will push the argument 
ount, argument values, and environment strings as the�rst items on the user-sta
k, starting at the top of appli
ation memory. Next, the loader willpush the addresses of those strings onto the sta
k. Hen
e, R1 will point to the sta
k addressjust below the values supplied from the environment and arguments to the program, whosevalue is a NULL pointer.4.3 System CallsSystem 
all support on the TRIPS prototype simulators is provided through the SCALL in-stru
tion. As de�ned in the TRIPS Pro
essor Referen
e Manual, when a SCALL instru
tionis exe
uted, a System Call Ex
eption will o

ur after the program blo
k with the SCALL
ommits. The TRIPS prototype simulators provide a runtime ex
eption handler that deter-mines the type of system 
all and servi
es the request.To invoke a system 
all, the identi�er for the 
all is pla
ed in R0. The return address andarguments for the 
all are passed in R2 and R3{R10 in a

ordan
e with the Fun
tion CallingConventions, and upon 
ompletion, the result 
ode is returned in R3. If the system 
all wasservi
ed su

essfully, the value returned in R3 will be 0. Otherwise, R4 will 
ontain thevalue of errno from the simulator's host environment. Note that if no error has o

urred,the value of R4 will be unde�ned upon return from a system 
all.The TRIPS prototype simulators 
urrently provide support-by-proxy for the system servi
eslisted in Table 5. These servi
es are de�ned in the /usr/in
lude/sys/sys
alls.h TRIPS systemheader �le.1Zuker, Steve and Karhi, Kari: System V Appli
ation Binary Interfa
e: PowerPC Pro
essor Supplement,1995.Version A.06 12 O
tober 10, 2006



TRIPS Appli
ation Binary Interfa
e (ABI) ManualServi
e Numeri
 IDexit 1read 3write 4open 5
lose 6
reat 8unlink 10time 13lseek 19brk 45gettimeofday 78stat 106lstat 107fstat 108Table 5: System Call Identi�ers5 Standards Complian
eThis se
tion do
uments any deviation from the relevant standards in use for the TRIPSsystem. This se
tion dis
usses only known deviations for whi
h no 
omplian
e is planned.All other deviations should be regarded as bugs in the relevant software or hardware.The relevant standards are� ANSITM X3.159-1989 1989 C Programming Language� ISO/IEC 9899 1999 C Programming Language� ANSITM X3.9-1978 Fortran 77 Programming Language� IEEE 754-1985 and IEEE 854-1987 Floating Point Representation5.1 C Standards5.1.1 Calling ConventionsAs TRIPS does not support operations on 32-bit IEEE single pre
ision 
oating point values,single pre
ision 
oating point values are always passed as double pre
ision arguments to
alled subroutines. See Se
tion 3.3.2.2 of the ANSITM X3.159-1989 standard and Se
tions6.5.2.2 and 6.9.1 of the ISO/IEC 9899 standard.
Version A.06 13 O
tober 10, 2006



TRIPS Appli
ation Binary Interfa
e (ABI) Manual5.2 F77 StandardsThe TRIPS 
ompiler does not support the \assigned goto" 
apability as spe
i�ed in Se
tion11.3 of the ANSITM X3.9-1978 standard.5.3 Floating Point RepresentationSee the \TRIPS Pro
essor Ar
hite
ture Manual: Version 1.2: Te
h Report TR-05-19 (03/10/05)"for information on this subje
t.

Version A.06 14 O
tober 10, 2006


