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Abstract

Growing on-chip wire delays are motivating architectuedtfires
that expose on-chip communication to the compiler. EDGHiarc
tectures are one example of communication-exposed mahiar
tectures in which the compiler forms dataflow graphs thatifpe
how the microarchitecture maps instructions onto a disteith ex-
ecution substrate. This paper describes a compiler sdhgdai-
gorithm calledspatial path schedulinghat factors in previously
fixed locations - called anchor points - for each placemelnis &l-
gorithm extends easily to different spatial topologies. aMgment
this basic algorithm with three heuristics: (1) local anologll ALU
and network link contention modeling, (2) global criticaltp es-
timates, and (3) dependence chain path reservation. Werase s
lated annealing to explore possible performance improwsrend

to motivate the augmented heuristics and their weightingtfons.
We show that the spatial path scheduling algorithm augmente
with these three heuristics achieves a 21% average penficena
improvement over the best prior algorithm and comes witlin a
average of 5% of the annealed performance for our benchmarks

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage§ Processors—optimization, compilers

General Terms Algorithm, Performance

Keywords Instruction scheduling, path scheduling, simulated an-
nealing, EDGE architecture

1. Introduction

Growing on-chip wire delays will make communication a gnogi
and significant factor in future microprocessor design. fdent
decline of frequency scaling implies that most future pen@ance
gains will come from increased exploitation of concurreridyese
two trends work in opposition, however, because it is beogmi
more difficult to exploit concurrency as communication ¢neads
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increase. One approach researchers are pursuing is theiteapl
implicit exposure of on-chip communication to the softwarae
most popular current approach, chip multiprocessors (QMs
quires the programmer or compiler to explicitly specify con
rency and either the communication or synchronization.

Alternatives include Explicit Dataflow Graph Execution (EB)
architectures, which aim to exploit fine-grained concucyenithin
a single thread. EDGE architectures break a program into a se
quence of multi-instruction blocks that must each comnotrat
cally. Within each block, the ISA explicitly encodes insttions’
dependences in a statically constructed dataflow graphhaiiroetx-
ecution placement in a distributed substrate. This engpelivables
out-of-order execution with lower per-instruction energyer-
heads, as no renaming, associative issue, or multi-poetgidter
files are required to execute instructions within a block.

A key resultant challenge is how to map EDGE dataflow graphs
onto a hardware substrate to minimize the effects of comeauni
tion latencies while taking advantage of the available comncy.

In the TRIPS prototype EDGE architecture, the compilergassi
instruction numbers that determine placement on the ALU sub
strate. The TRIPS prototype microarchitecture contairmuaby-
four array of arithmetic units, each one holding up to eigistriuc-
tions from a 128-instruction block. The microarchitectytaces
each instruction according to its statically assigned remubithin

the block (ranging from 0 to 127). When assigning these nusbe
the scheduler attempts to balance communication, by mjadin
pendent instructions in proximity, and concurrency, bycplg in-
dependent instructions on different functional units.

To exploit instruction-level parallelism, the TRIPS miarohi-
tecture implements out-of-order execution. By assignbgtb in-
structions, the TRIPS schedulgatically placegSP) each instruc-
tion on the array of ALUs, and the hardwadgnamically issues
(DI) instructions when their operands are ready. SPDI diffeom
the VLIW approach, which uses static placement and statieis
and the out-of-order superscalar approach, which usesndgna
placement and dynamic issue. The schedulers in this papee pl
instructions, but do not determine issue order. The SPDdudian
model creates challenges for the scheduler since it mustata
estimate dynamic resource conflicts and critical paths.

This paper describes an algorithm calggaditial path scheduling
(SPS) that reasons explicitly about path routing distarvelesn
mapping a dataflow graph to the ALU topology. The algoritheoal
exploits the fact that some locations are known or partiatigwn
even before the first instruction is in place. For examplehairc
of dependent instructions must follow a path on the chip that
in part determined by the physical locations of the regssterd
cache banks. Figure 1 shows these initial locations in thBPBR
prototype microarchitecture, which has four register lsaakove
the top row of the four-by-four ALU array, and a column of four
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Figure 1. 4x4 TRIPS Processor

data cache banks to the left of the array. For example, a set of after it produces all of its outputs (up to 32 stores, up toegfister

dependent instructions that reads a register in bank 1, ema@n
intermediate value, and stores that value in data cachehanlst
traverse at least 5 operand network links, as shown by thediot
path in Figure 1.

The basic SPS algorithm computes criticality based onmguti
distances using all knowanchor pointsi.e., fixed positions for
operations in the block, such as register accesses. We atgme
this basic SPS algorithm with heuristics to model contento
the ALUs and network links, estimate inter-block (globai}ical
paths, and provide lookahead for planning path routes baséue
number and location of instructions on the path.

We compare SPS with a previously published greedy list
scheduling algorithm for TRIPS (GRST) [17] using a cycle-
accurate, validated simulator with hand-optimized kesrdrwn
from SPEC2000, EEMBC, Livermore Loops, MediaBench, and C
libraries. The basic SPS algorithm improves performancé4%p
on average and up to 46% over GRST, the previous best algorith

Unfortunately, finding ideal schedules for comparisonsis¢
putationally intractable. We thus use simulated annealitij
to approximate ideal schedules. Because our evaluatioctifum
is full simulation of the program, which is prohibitivelyntie-
consuming if unconstrained, we show how to further pruneathe
nealed search space. We use information from the annedied-sc

writes, and a single branch decision). The register readsvaites
are not included in the 128-instruction count, but are pathe
block header. Mapping a block onto the array has a fixed kbl
cost, and thus the blocks must be mostly full of useful irttans

to maximize performance. The microarchitecture supppessa-
tion via next-block prediction, allowing up to eight blodksflight.
Other work describes the architecture in more detail [4] ded
scribes how the compiler produces correct blocks that nfest t
maximum number of instructions, maximum number of dynamic
load/stores, and register banking constraints [22].

The instruction scheduler maps a dataflow graph that encodes
the dependences among instructions onto 41288 that represent
the @x4) ALU array and eight reservation stations per ALU.
(ALUs have a total of 64 reservation stations; eight instans for
each of eight potentially in-flight blocks.) The schedulacedes
the instructions irtarget form, which specifies the physical loca-
tion and operand position of each consuming instructiohérpro-
ducing instruction. The 64-entry reservation station ahealU
is out-of-order and issues at most one instruction per ¢cgelect-
ing the oldesteadyinstruction. An instruction is ready after all of
its operands arrive. Instructions that produce valuesrateto a
block need not access memory or registers. Each hop between a
jacent ALUs, register banks, and cache banks adds one oyitle t

ules to motivate and weight heuristics that we add to SPS. The routing latency, and the deterministic Y-X routing functicoutes

resulting algorithm improves performance by 7% over thddas

north/south to the correct row and then east/west to thecbecol-

SPS algorithm and 21% over GRST. This scheduler is on averageumn. As with a conventional architecture, the registershes ex-

within 5% of the annealed schedules.

By exploiting anchor points, SPS easily generalizes to nainy
ferent topologies. One simply provides the microarchitextand
topology in an abstract form; i.e., location, number, andtisp
relationship of microarchitectural resources such as B&shes,
and register files. While this paper demonstrates SPS'stizffe
ness for the TRIPS ISA and microarchitecture, we believes it i
applicable to schedulers for other partitioned architexstusuch
as WaveScalar [23], and may be useful for clustered VLIWs and
RAW [14, 25].

2. Background

This section explains the basic TRIPS architecture, theuason
scheduling problem, and the previous best scheduler.

2.1 TRIPS Architecture and Scheduling Problem

Figure 1 shows a TRIPS microarchitecture, instantiated 4s4
array of ALUs. Each ALU has eight issue slots per block, for a
maximum of 128 instructions per block. The processor maph ea
block onto the substrate, executes it as a unit, and unmejsabk

actly specify their physical location in a bank. When a neachlis

mapped to the array, the microarchitecture injects allstegireads
into the array, routing their values to the dependent ictioas in

the block. The microarchitecture routes operands for tegigrites

to the appropriate register bank when the value is produced.

2.2 Greedy scheduling for TRIPS

A static local scheduling algorithm considers the insiong 7
in a block, which may be a basic block or a predicated hyper-
block that obeys the TRIPS architectural constraints. Ikdbua
directed acyclic dataflow graph (DFG) that describes theedep
dences among instructions. The scheduling problem for BRIIR
fers from the scheduling problem for static issue architext be-
cause itis legal to place any of a block’s 128 instructions &my of
the 128 positions in a block. The goal of the scheduler, hewés
to minimize the completion time of the block by exploitingtruc-
tion level parallelism, minimizing static routing latenbgtween
pairs of dependent instructions, and minimizing dynantieraies,
such as contention, whenever possible.

Figure 2 shows a@reedylist scheduling algorithm for TRIPS
(GRST) [17]. GRST uses a ready set consisting of instrustion



Input: Z - instructions in a blockg - array of ALUs

output: A - a mappingZ — G
1: S +={j}, V¥ j € Z with no or only register inputs (ready set)
2: S = top_.down_criticality_sort(S)
3: for ¢ = most critical instruction in sorted list do

4:  bestCost 0; bestSlot= none
5:  issueSlots find_legalinstructionslotsg)
6: forall slotin issueSlotslo
7: issudi, slot) = readyg, slof) + ALU Contentiong, slot)
8 pCosti, slot) = completeq, slot) +
lookaheady, slot) * 0.5

9: bestCost min(bestCostpCosti, slot))

10: bestSlot node forbestCost

11:  end for

12: A +=schedulej, bestSlox

3. I=I-{i}

14: S +={j}, V5 € T with all parentsc A

15: S =top.down criticality_sort(S)

16: end for

Figure 2. GRST: The Greedy List Scheduling Algorithm

whose inputs have already been scheduled. It initializes¢hdy
set to instructions with no inputs (i.e., constant-genegainstruc-
tions) or with only register inputs. Like a VLIW list scheéu] it
sorts the instructions in a top-down fashion, putting instions
with the smallest depth in the DFG into the ready set firstrikt p
oritizes instructions to schedule based on their depth ttwroot
instructions in the DFG, and then based on their height frioen t
leaf instructions in the DFG. The depth and height calcoietiin-
clude delays for multicycle instructions and communiaafiten-
cies, such as those to the register and cache banks.

To schedule instructioiy GRST computes the unscheduled is-
sue slots. For each of these slots, it estimatesshaytime fori on
an ALU by determining wheri's operands will be available (line
7). The ready time includes the routing delay of the opersnid(
the ALU from other ALUs. Previous work [17] augments GRST
with heuristics to guide its placement decisions. We use ahi-
mented version as a baseline, and refer to it as GRST. T'osviol
heuristics guide GRST placement decisions:

Critical path ordering (C) and reordering (R): GRST prioritizes
instructions along the critical path first by sorting thetins-

tions from occupying these slots by penalizing instructitvat
do not lead to register-producing instructions.

The register output heuristic attempts to place instrastibat pro-
duce register outputs along a balanced path that ends atgistar
file. It uses a fairlyad hocweighting function to balance paths for
register outputs, by adding the followiigokaheadpenalty (line
8) to an instruction’s placement cost:

lookahead rowDistance/graphDistance

+ graphDistance/rowDistance

whererowDistanceis the number of rows from the register bank
(minimum 1), andgraphDistanceis the number of instructions
in the DFG between this instruction and a write instructidhis
function is minimized whergraphDistanceequalsrowDistance
which pushes instructions that produce register outputardsom
the register file as their dataflow distance from the registée.
This optimization improves performance because placiggster
output instructions near the register banks is importaowvéver, it
is insufficient for a wider array of spatial constraints.
Unfortunately, in the actual TRIPS implementation there ar
more constraints on the scheduler. For example, the TRIB®-pr
type breaks up the centralized register file and data cacloeled
in the previous simulation study [17] into four discrete kanas
shown in Figure 1. Prior work showed that the GRST algorithm
achieved close to ideal, communication-free performaricg. [
This earlier study was limited because it used binary révgiof
Itanium binaries, modeled the microarchitecture at a hiddeel
than the actual implementation, and did not model all casts,
cluding partitioned register bank access. The increasedlation
detail puts more pressure on the scheduler, creating a eshgap
between an ideal schedule and the output of GRST. Closisg thi
gap and finding a general algorithm to handle an arbitraryofet
spatial constraints were key motivations for the SPS algari

3. Simulated Annealing

Computing optimal schedules to understand the performpoee
tential for scheduling is unfortunately NP-complete. Ef@ra sin-
gle full block, exhaustive evaluation requires 128! poesithed-
ules and is impractical. Worse, an optimal schedule woultsicter
global information, since multiple in-flight blocks may énfere
with one another, for a total search space of 12&mbinations,

tions based on the maximum depth of any of their descendentsyherep is the number of blocks in the program. Simulated anneal-

in the DFG and then by their height in the DFG. The scheduler
recomputes the critical path after each instruction plaggm
(this step includes inter-ALU latency costs between scleetiu
instructions) and re-prioritizes the instructions in teady set.

Load balancing (B): GRST estimatesompletion timebased on
its estimates of the issue and completion time of otherunstr
tions on the same ALU (lines 7 & 8). It places an instruction in
the slot that minimizes its completion time, avoiding sakled
ing independent instructions that may issue at the samedime
the same ALU.

Data cache locality (L): GRST assumes loads and stores hitin the
L1 data cache and are equally likely to go to any cache bank.
To reduce latency and contention, it places load instrostio
and their consumers close to the data cache banks by irgsertin
a non-executable pseudo-instruction between the loadtand i
consumers in the DFG. It places the pseudo-instructionén th
cache and models a one-hop latency to it from the left side of
the ALU array.

Register output (O): To place instructions that produce register
outputs close to the register file, GRST prevents otherunstr

ing provides a method for finding good solutions in a largecea
space in tractable time.

Simulated annealing is a probabilistic method that appnaxés
a global optimum in a large search space by searching for good
solutions, but occasionally using worse alternatives toichbe-
coming trapped in local minima. The problem must be expresse
in terms of a set of possible states, an objective functiar) tBat
evaluates thenergyof a particular state, a transition function that
moves from the current statewith energye to a neighbor state’
with energye’, an annealing plannérthat decreases a global time-
varying parameter, T, and a function P€T ¢’) that represents the
probability of transitioning froms to s'.

3.1

Since any static cost function is imperfectly correlatedhwier-

formance, we use a software simulator for the objective tfanc
E(s). The set of possible states consists of all legal mappihgs o
structions to physical locations. A transition from theremt state

Instruction scheduling with simulated annealing

1The simulated annealing literature calls the planner theealing sched-
uler, but that term is overloaded here.



Input: initial placement of instructions
output: the best placement of instructions by simulated annealing

1: T =wnit_temperature

2: while temperature is higher than freeze temperatiore

while equilibrium not reachedo

4 Select a critical block

5: Select latency type proportionately based on the distribu-
tion of delay types in the chosen block

w

6: if latency_type == alu_contention then
7: Move one instruction away from the node or exchange
with another instruction on another node
8: else iflatency_type == network_contention then
9: Move one instruction whose operand passes this link
to a different but nearby location
10: else iflatency_type == route_delay then
11 Find the instruction causing the routing delay
12: Move it closer to its children
13: end if
14: cost = Computecostusesimulatorplacement)
15: if cost < last_cost then
16: Accept the placement
17 if cost < best_cost then
18: Savebestplacemeniglacement)
19: end if
20: else
21: Accept or reject based on probability equation of tem-
perature
22: end if
23:  end while
24: T =T* cooling-rate
25.  placement = Restorebestplacement()
26: end while

Figure 3. Guided Simulated Annealing

to a neighbor state involves swapping the locations of piis-
structions or moving instructions to empty slots. The nunife
instructions the annealer statistically favors moving atteitera-
tion is proportional to the temperature. After the anneslesps or
moves instructions to form a new schedule, it measures ttle cy
count of the application with the new schedule. If the rebehits
the previous schedule, the annealer accepts the new sehéfiul
the result is worse, the annealer accepts it based on thosvinl
probabilistic function:

—(newCost—oldCost)xConstant
oldCostrtemp

rand< e

whererand is a random number between 0 anshéwCostandold-
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Figure 4. Guided versus Unguided Annealing on memset

these contributions into different delay types: ALU cortiem, link
contention, and operand network routing delay. We use tiiis-i
mation to combine random and guided transitions, as ibbstrin
Figure 3. For all results, we start with the best compilecedcite
and low to moderate temperatures.

As a case study, Figure 4 compares guided versus unguided sim
ulated annealing for a hand-coded versiomwmsefrom the C
libraries. The GRST algorithm requires 102,326 cycles &caie.
We carefully hand-scheduled its inner loop and producedra ve
sion that executes in 82,416 cycles. We then used this veesio
the starting point for simulated annealing. Figure 4 plbts per-
formance in simulated cycles (y-axis) of the current besede
ule against the number of evaluation function iteratioraxis) for
guided and unguided annealing. Guided annealing dropsytie c
counts much more quickly than with fully random perturbasip
making intermediate results with guided annealing mordéulise
detect better opportunities for scheduling.

4. Spatial Path Scheduling

This section describes basic SPS, and the next section stmws
we refine SPS with the insights from simulated annealing.

A key deficiency of GRST is that it does not consider all of
the potentialanchor points on a path. Amnchoris an instruction
whose placement is constrained because it accesses a kpatial s
location: a register bank for a read or write, a cache bankafor
load or store, the global control tile for a branch, or a sfeci
execution tile for an instruction the scheduler has alrgaldged.
Consider a pathj ...i, wherei, is an anchor point. For all

Costare the cycle times of the new and current schedules, respec-paths in a legal DFG, the leaf instructions must be anchantgoi

tively, andtempis the temperature, which is scaled by twmling
rate each time the system reaches equilibrium. The cooling te d
termines how the temperature decreases as annealing gsovée
use a constant factor.

3.2 Guided simulated annealing

While simulated annealing is designed to prune large segates,
our lengthy evaluation function makes it too time consuniitays
to months) to search the space blindly. We therefore moveionl
structions that contribute cycles to the program’s critfgzth. To
find the critical path, we use a tool callefim-critical [18] that
implements Fields et al’s critical path modeling methodg! [7].
This tool captures a dynamic event trace from the processur-s
lator, builds the program dependence graph, and emitsalrjiath
information such as the number of cycles each instructidrbémck
contribute to the critical path through the program. It aléddes

(stores, branches, or register writes); otherwise the satlead.
Intermediate instructions may also be anchor points. Famgie,

at line 8 in Figure 6, the cost of placing the current instiarct
i;, wherel < j < a, at some positiorp depends not only on
i1...1;-1 (the instructions scheduled so far) but on the position
of the anchor point,. The basic SPS algorithm computes the cost
of the entire path for each potential positionipf and selects the
position forz; that minimizes this cost. This capability allows the
scheduler to place instructions in any order, whether thaients
are scheduled or not. Each scheduled instruction then besam
anchor point, and the algorithm naturally adapts to facttihé cost

of routing operands to and from that instruction.

Consider scheduling the DFG in Figure 5(a) on a simplified
4x4x1 ALU array. The path in this example starts at register bank
2, ends at register bank 1, and has four intervening instmnt
GRST produces the schedule in Figure 5(b) with a networkmgut
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Figure 5. Path Scheduling Example

latency of nine cycles because it does not use anchors,ipemal instructions in the open list. Lines 9 and 10 in Figure 6 find th
instructions on paths leading to registers, and breakstaighe minimum cost for each instruction, and lines 12 and 13 théetse

right-hand side to minimize unnecessary ALU contentiorsetdo the instruction with the maximum cost. This function subssm

the caches. Using the basic SPS algorithm yields the betiedsle GRST critical path re-ordering by recomputing the critigath for

in Figure 5(c) with seven cycles of routing latency. To obtai  each instruction in the open list every iteration.

the ideal five cycle latency schedule fod&4x1 ALU array in

Figure 5(d) the scheduler must consider ¥iodumeof instructions 4.2 Anchor points with SPS

between the anchor points as well as the anchors (descnibed i Previous alqori ; ; ; ;

. , . gorithms require candidate instructions teetallpar-
Section 5.4). Figure 5(e) shows the ideal schedule on a TRIPS g ic scheduled. SPS naturally accounts for routing laterige-
prototyped x4 x8 array. tween all known anchor point instructions. In addition, legime
4.1 Basic SPS algorithm it places an instruction, that instruction becomes an anphint.

) ) ) . ) . Instructions can therefore be placed in any order and thedstér
We define th@pen listto contain candidate instructions to schedule naturally incorporates the effects of each placement whecing

next. Since an instruction may occupy any slot, it is legahttude subsequent instructions.

all unplaced instructions in the open list. However, to Eoom- Since effective addresses for loads and stores are not kaown
pilation time, we restrict the list to unplaced instrucsonith no til runtime, the scheduler cannot determine their targeheaank.
inputs or at least one schedulled parent. This restrictionledmot We estimate these latencies using the horizontal routiteqdy to
reduce the scheduler’s effectiveness because SPS ewdlbaten-  the cache banks but do not model the vertical routing latsitge
tire path and its anchors when computing an instructiontzafity the cache bank is unknown. We support cache bank locatids, hin
and best location. In contrast to the ready set in GRST aret tigt but we currently only use them in hand-assembled code.
schedulers, the SPS open list does not require that bothtpaot This algorithm will support any microarchitectural topgyo
an instruction be placed before considering it for scheduli and will work well when known anchor points are provided to

For each instruction in the open list, SPS computes the set of he glgorithm before placement. By identifying a greatembar
all legal physical locations. For each locatielot, SPS computes  of target banks for loads and stores, the compiler will emabé
a placement cosaissociated with placing at slot, as shown in scheduler to generate a superior placement.

Figure 6, keeping track of the minimum casbt (lines 9-10). SPS Spatial path scheduling (SPS) thus reasons explicitly et
schedules the instructiarin S whose lowest placement costis the  gnchor points when computing the cost of placing instristjo
highest of the lowest placement costs across all instmstio the which naturally encompasses four of the five heuristics fGRST.

open list (i.e., we choose the maximum of the minimums).énth  Thjs hasic SPS algorithm provides an average improvemetstf
adds any missing children of the scheduled instructionecojpen over GRST, as described in Section 6. Simulated annealiutse
list. This process repeats until all instructions are sakest however, show an additional 12% improvement over the baB& S

The placement cost is the expected latency of the longdstpat  gigorithm, and the next section introduces several héesit help
the DFG that passes through instructiomcluding both execution  ¢jgse this gap.

and routing latencies. SPS uses the following formula topmam

placement costpCos): . ..
5. Extension heuristics to SPS

Analyzing annealed schedules reveals three key shortgsnoh
the base SPS algorithm. First, it does not account for lacglabal

pCost(i, slot) = inputLatency + execLatency (1)
+ outputLatency

The inputLatencyis the maximum of each parent instructipis ALU or network link contention. Second, the critical pathdsal to
completion time plus the communication delay franto i; i.e., a TRIPS block - it does not model global effects (i.e., latévang
the time when the last input operand arrives and the insbrués block inputs or critical block outputs) that may determinkiei
ready to fire. ThexecLatencys the number of cycles necessary to path is critical at runtime. Finally, it does not account #xtra
execute; with no contention. TheutputLatencyis the maximum routing delays required when the number of instructionsvben

expected number of cycles frointo any output-producing leaf  two anchor points is greater than the instruction capaditthe
instruction in the DFG. The cost of the path franto the latest ALUs along that path.

executing DFG leaf instruction is the sum of the executiterieies To address these issues, we extend SPS with an improved load
of the instructions along that path plus static routing gelzetween balancing heuristic that approximates global (cross Hlackd lo-
any anchor points on that path. cal (within a block) ALU and network link contention. We usest

The algorithm selects the most critical instruction by cing annealed schedules to discover heuristics for approxigatiese

the instruction whose lowest placement cost is the worstllof a unknown resource conflicts. We augment the critical pathusal



Input: Z - instructions in a blockg - array of ALUs
output: A - a mappingZ — G

1: S =rootnodesy)

2: while S is not emptydo

3 inst = null; instCost= 0; instSlot= none
4 for all instructions; in S do
5: issueSlots find_legalinstructionslotsg)
6: iCost=0;iSlot=none
7 for all slotin issueSlotslo
8 pCosti, slot) = inputLatencyy, slot) +
execLatencyi) + outputLatencyy, slof)
9: iCost= min(iCost, pCos{, slot))
10: iSlot = slot with minimumiCost
11: end for
12: if iCost> instCostthen
13: inst = ¢; instCost= iCost, instSlot= iSlot
14: end if
15.  end for
16: A +=schedulgfst, instSlo)
17: I =1I- {inst}
18: S +=gettop.nodesl)
19: end while

Figure 6. Spatial Path Scheduling (SPS) Algorithm

lations with limited global information to account for dcial de-
pendences between blocks. We use annealed schedulesaeedisc
which inter-block dependences increase the critical patgth and
what static calculations best approximate their imporafinally,
we add a heuristic that explicitly reasons about the volufme-o
structions and issue slots on a path to anchor pointVe tune
these heuristics with simulated annealing data, and shatthiey
are synergistic, providing total performance greater tharcontri-
butions of each.

5.1 Static metrics

We mined data from the annealed schedules by calculatitig sta
data about the annealed schedules, comparing that dataao da
produced with various scheduler settings, and searchingdip
relations. These correlations guide the SPS augmentdtipeag-
gesting appropriate weighting functions and revealingdsan an-
nealed path latencies. First, we use the critical path waleter-
mine which blocks contribute the most cycles to the critjath,
since those are the blocks most heavily optimized by siradlah-
nealing. For each critical block we derive data including fbl-
lowing:

1. Number of instructions

2. Available ILP

3. Maximum ALU utilization
4, Maximum link utilization
5. Longest static path length

The number of instructions, available ILP, and maximum Aldd a
link utilization provide insights to weight ALU and link ctention
metrics. To estimate available ILP, we divided the highattncy
unscheduled path, including intrinsic delays, by the numidfe
instructions in the block. Comparing the highest latendi pength
between annealed and scheduler-generated schedulesl dpaitfe
how we weight latency and contention, and how we optimize$oo
In addition, we found the highest latency path between eagtti
and each of its dependent outputs to determine which paths we
more heavily optimized by the annealer.

5.2 Contention modeling

ALU contention: We provide a load balancing heuristic to penalize
scheduling instruction on an ALU in which a previously sched-
uled independent instruction may cause a resource conflecadd
this penalty to the placement cost®fThis heuristic is similar to
the load balancing heuristic used in GRST, but we extendapto
proximate global effects and determine more precisely #ieob
instructions that are likely to cause resource conflicts.

To alleviate local (intra-block) contention, we keep tramk
when instructions are expected to fire and penalize an uoigiru
by increasing its path length accordingly after detectipgintial
conflict. We allow a cycle of slack in either direction for tready
time to account for imperfect estimates.

Although intuitively it makes sense to place dependentiiast
tions on the same ALU to minimize communication delays, an-
nealed schedules sometimes break up dependent paths émfprev
resource conflicts between different invocations of theeshlock
in a loop. The local contention metric does not handle these ¢
flicts, so we introduced a global (inter-block) contenticultistic.
Initially, we added the sum of issue slots consumed by altuics
tions scheduled on the same ALU to the placement cost of an in-
struction on that ALU. Comparisons with annealing data aése
that this simple metric was overly conservative. We impcbifés
optimization by eliminating penalties for instructionsatrcannot
conflict.

To avoid penalizing instructions unnecessarily, we idgnti
more cases in which two instructions on the same ALU cannot
cause a resource conflict. A local resource conflict cleaatynot
occur between dependent instructions, nor can one occwebat
instructions on opposite predicate paths. A global resooonflict
occurs when instructions from different blocks are readyde a
resource simultaneously. A global conflict cannot occumwien
two dependent instructions that form a loop carried depecele
unless the successor instruction is on a predicated pathol#alg
conflict is more likely to occur due to this block’s immedigtiee-
decessors or successors (even if they are a separate iovocht
the same block), and cannot occur between blocks that cémenot
in flight simultaneously. We do not penalize an instructibother
instructions on the same ALU meet these criteria and arefibwer
unlikely to conflict.

Link contention: Estimating network link contention is less
straightforward than estimating ALU contention becausehéa-
struction may communicate with multiple other instructicand
consume multiple network links along each path. In addjtibe
scheduler may not know statically which data cache bankadoa
store instruction will access and thus will not know whictvnark
links it will use. To account for link contention without dig

itly knowing each instruction’s link usage, the schedutecks the
number of cycles during which each link is busy for each bldtie
link contention penalty for instructionis the number of network
links i uses that are consumed for more cycles than a threshold. .
Weighting function: When comparing the schedules generated by
the SPS algorithm and by the annealer, we observe that two sta
metrics are proportional to the size of the gap between dethead
SPS performance (e.g., a more full block has a higher pedoca

gap):
1. The fullness of the block
2. The ratio of the most critical path to the average path

Full blocks are less affected by ALU utilization penaltieschuse
the instructions are naturally distributed across the Altkdyadue
to lack of unused slots. Full blocks depend more on good liirk u
lization, however, because more instructions typicallyamenore
communication between instructions. Thus, we introducgladss
factor that we correlate directly with link contention amgérsely



with ALU contention:
fullness = instructions / maxInstructions

@
whereinstructionsis the number of instructions in the block under
consideration, anthaxinstructionss 128 for the TRIPS prototype.

If a resource conflict occurs at runtime the annealer wilhtwe
ally move the less critical instruction away to allow the mariti-
cal instruction to execute without conflict. To approximttes be-
havior, when the scheduler considers placing instructjoon an
ALU with instructioni, and the ratio of instructioy’s placement
cost toi;’s exceeds a threshold, we increase the penalty to twice
the number of issue slots consumed:Ry This moves less criti-
cal instructions that can afford extra latency to differaht)s. The
fullness factor described above will dampen this effect ntree
block is full enough that it is not useful.

Finally, we augmented the global ALU contention and the net-
work link contention metrics by the criticality of the ingttion,
observing that critical instructions should be optimizeddommu-
nication latency while non-critical instructions shoulkeldptimized
for utilization. We calculate criticality as follows:

criticality = pathLength / criticalPathLength 3)

wherepathLengths the length of the longest path through the DFG
that includes this instruction, arditicalPathLengthis the length

of the longest path through the DFG. Because this factoesari
inversely with the importance of utilization penalties, weel -
criticality as a factor for utilization.

Further comparisons with simulated annealing revealedhis
metric worked better for low concurrency blocks. A block wit
high concurrency often has no clear critical path, yetzation is
very important in optimizing these blocks because they ladem-
dant available parallelism. We adjusted the criticalityasiwrement
based on the concurrency in the block as follows:

criticality = (pathLength / criticalPathLength) / concuency (4)

where concurrency is equal to the number of instructionshén t
block divided by the latency of the highest-latency unscited
path through the block (i.e. IPC on an ideal machine). Thislimo
fied metric significantly improved the effects of utilizatim highly
concurrent benchmarks. Thus, the final utilization penedty be
described as follows:

util Penalty = local ALUCntn (5)
+global ALUCntn * (1 — fullness) * (1 — criticality)
+global LinkCntn x fullness * (1 — criticality)

Local ALU contention lpcalALUCntr) is not scaled because it is
more precise - we estimate it based on the exact expectedtmstec
time. Using these weighting functions improves perfornegmg an
additional 3% compared to SPS without them.

5.3 Global register prioritization

Optimizing the longest path through the block is not alwéngsiiest
decision, particularly in the presence of loops. The aretesthed-
ules showed that paths with register reads and writes weea of
optimized differently than expected based only on locabrinfa-
tion. To address this issue, we prioritize registers exqubtti arrive
late by increasing their path length. We first prioritizedhsacon-
taining loop-carried dependences before considering ptitbs by
significantly increasing their path length by a constant amoWe
analyzed the scheduled path length of the annealed resdlttha
SPS results and still found that certain paths were moreiljeav
optimized in the annealed schedules, even if those registputs
were not loop-carried dependences.

In the presence of next-block prediction, a block can begin t
speculatively execute before previous blocks commit. Assailt,

instructions that depend on registers from the previouskobre
often a bottleneck. The paths most aggressively optimineithe
annealed schedules were sometimes those that formed tyeston
path through multiple blocks. The lengths of paths in imratdy
neighboring blocks affect the importance of register ispand
outputs. By approximating a global critical path in the prese

of register dependences in loops SPS improved by an adalition
4% compared to the previous results. The scheduler presitas
follows:

1. Schedule smaller loops (measured in number of blockgyéef
larger loops.

2. Schedule loop-carried dependences before other itistnac

3. Augment the placement cost function for each instructigh
the length of the longest path through predecessor andssarce
blocks with which it forms a register dependence.

The last heuristic approximates a global critical path byeding
the path through three blocks instead of one. Using profiteina-
tion would improve this optimization, but is left for futureork.

5.4 Path volume scheduling

As shown in Figure 5(d), SPS needs to consider the number
of instructions together with the distance between two arxh
Given one source anchar, and one destination anchag, and
i2...14—1, the minimum number of ALUs in which to schedute
instructions isn/(issue slots per ALYif all slots are free. During
scheduling, however, some issue slots may already be @mtupi
The path volume heuristic attempts to find the best physiati p
from iy t0i,.

To find the best path, the scheduler performs a depth firstisear
with iterative deepeninl3] of possible paths to find the shortest
path from source to destination ALU that accommodates. &tl-
structions. lterative deepening attempts to solve a sgaabiem
with a given depth bound. If it succeeds, it returns the tesud
if it fails, it increases the depth bound and repeats. Theduder
initializes its depth bound to the minimum communicatiofage
between the source and destination ALUs, and increaseiliitun
finds a path with enough available instruction slots to acoom
date alln instructions. The search returns the difference between
the number of links traversed in the solution path and thebarraf
links in the minimum latency path. We add this value to thénjsat
latency. This lookahead value prevents the scheduler fnoneact
essarily penalizing locations along the best availablé patause
they are not on the path with the lowest minimum communicatio
delays. This heuristic is generalizable to any mappingiee to
minimize communication latencies.

5.5 Modified placement cost: Putting it all together

SPS combines the above heuristics to calculate a final pkmem
cost. This cost determines both which instruction to scleedaxt
and where to schedule it. The placement cost initially dostthe
total known path length of the most critical path throughrinstion

17, including all execution and communication latencies gltrat
path, as shown in Equation 1. We then add the result of local
and global contention modeling to the total placement cbisis
calculation estimates critical path delay due to resounr@licts
for the ALU in question, rather than just the path length tigto

a single block. We augment the input and output latenciel wit
global register prioritization costs. This prioritizesiructions that
have delayed inputs due to critical read instructions shahthey
are scheduled first, making it more likely they will be pladad
their ideal spot. This step also helps determine which arertbst
critical anchors. Finally, the volume optimization addsi@mninsic
delay to the total placement cost.



Revising Equation 1 (described in Section 4.1) with these
heuristics yields the following placement cost of instioict; at
locationslot:

pCost(t, slot) input Latency + util Penalty (6)

+ execLatency + outputLatency
+ additional RoutingCost

Here, inputLatencyand outputLatencyinclude the global register
prioritization cost of block inputs (register reads) orddautputs
(register writes) along the longest path throughThis informa-
tion percolates up the graph from the leaf instructions amard
the graph from the root instructions. ThélPenaltyis computed
with Equation 6. FinallyadditionalRoutingCosteturns the num-
ber of additional routing cycles necessary between the onitistal
upward anchor andliot, and betweerslot and the most critical
downward anchor. SPS calculates this revised placemenfaos
each instruction at each legal location. If multiple anchomts
may be critical, then the algorithm will calculate this ctmt mul-
tiple pairs of upward and downward anchor points.

5.6 Complexity

For a fixed-size ALU array, the time complexity of both baskRSS
and GRST is Of), where i is the number of instructions in the
block. Varying the number of functional units as well, GRST’
complexity becomes @R + i*n) wheren is the number of func-
tional units. SPS has @ti*) complexity because it considers each
location for each instruction at each step, whereas GRS/fionls
the best location for the most critical instruction at eadpsThe
volume optimization adds@* term whereb is the branching factor
(constant). Reducing the impact of this factor would betnetdy
simple with pruning, but doing so was unnecessary for thayarr
sizes considered so far.

6. Results

We tested SPS and its heuristics on a low-level simulatdfiegr
within 5% on average of the TRIPS prototype RTL. This simiat
closely models delays in the TRIPS prototype including camm
nication and contention delays within the array of ALUs ahd t
operand network.

We selected benchmarks with varying levels of concurrency
and memory behavior to find results applicable across atyasfe
application domains. Because the simulator is prohibitigtow,
we report results for isolated kernels from SPEC2000, EEMBC
Livermore Loops, MediaBench, and C libraries. We creates th
SPEC kernels by profiling the SPEC2000 benchmarks and é&xtrac
ing functions and loops that account for approximately 90%e
program execution time. We used checkpointing to find apjatp
inputs to these functions, and modified the data set sizeaddha
kernels run in tractable time on the cycle-accurate simulat

The scheduling problem is most interesting for blocks with
medium to high instruction counts. Dense blocks require esom
subset of instructions to incur significant communicaticragis
traversing the ALU array. They also require careful balagaf
ALU and network link contention. When blocks are not fullptk
overheads often dominate the critical path, making it ham@/alu-
ate the performance of the instruction scheduler. To peodighse
blocks, we focus on hand-coded versions of these benchn&#iS

6.1 Comparison with GRST

The baseline for all results is the GRST algorithm applieth®
TRIPS prototype configuration. Column 1 in Table 1 provides t
IPC with GRST on the hand-coded microbenchmarks for reeren
The SPS algorithm provides a 14% improvement on average over
GRST on hand-optimized benchmarks, and the annealed gesult
show a 26% improvement over GRST.

The Livermore Loops kernels show lower performance im-
provements than other benchmarks because they make egtensi
use of libraries that were not recompiled with differentamithms.

The annealed results all use a single set of libraries atesita the
best scheduler on-hand at the time we began annealing. Waen w
recompile the libraries with SPS, we improve over simulaad
nealing. However, to preserve a fair comparison betweeedcsdbr
heuristics and annealed results, we exclude schedulifgtheies

in these experiments.

6.2 Tuning SPS

The augmented SPS algorithm provides heuristics to addteisal
interactions and lookahead. In isolation, the path voluomn-
tention modeling, and critical register prioritizationunistics each
provide less than 4% improvement over the basic SPS algurith
We present percent improvement using each of the heuristics
isolation in columns 4-6 of Table 1. The heuristics are sgiséic,
combining to provide a 7% improvement. The path volume Iseuri
tic, in particular, does not improve average performane base
SPS without global register prioritization. The volume hstic is
most beneficial when applied to critical global paths andt the-
chor points; global register prioritization reveals thesiéical an-
chor points. The contention heuristic also performs betttr reg-
ister prioritization in place, because its weighting fuoetis based
on instruction criticality.

Register prioritization using only loop-carried depencenper-
formed 3% better than the basic SPS algorithm with all other
heuristics in place. Adding additional register prio@tin as de-
scribed in Section 5.3 was necessary for the full 7% perfacea
improvement.

Using the static metrics described in Section 5.1 to analyee
annealed results, we developed functions to restrict anghivthe
effects of the contention heuristics. Using the number efrirc-
tions in the block, the available ILP, the critical path lémthrough
the block, and the maximum ALU and link utilization was neces
sary to achieve the best possible improvements in contentifith
all other heuristics in place, the initial contention ogtiation pro-
vided a 4% improvement over the original SPS algorithm. e se
the additional 3% (for a total 7% improvement) only when gsin
the contention heuristics described in Section 5.2.

Profiling could potentially improve global register pritization
and global ALU contention significantly. Without a weighteoh-
trol flow graph, the scheduler uses loop nest depth to determi
which block is the most likely predecessor or successor tweng
block. We leave incorporating profile information for futuwork.

With all heuristics in place, the final scheduler improvegrov
the previous best algorithm by 21%, improves over the baBis S
algorithm by 7%, and is within 5% of the annealed results.

6.3 Comparison to annealed results

We used the annealed results as a target point to analyzeidhe g
ity of the scheduler’s placement choices. The annealedtsqme-

improves over GRST by 21% on average on these benchmarks, andsented here represent weeks to months of annealing time, wit

up to 52%. Section 6.4 contains results using compilerigetee
code from the EEMBC suite. These blocks are not yet as fuli@s t
hand-coded benchmarks, and thus are less sensitive touticiyed

many results converging, but they may be stuck in local ménim
The annealer we implemented is limited because it considers
only the blocks from a single source file (which is why libegri

SPS still improves performance by 17% on average and up to 37%are omitted). Currently, most of the benchmarks that weuaial

over GRST, however.

are contained within a single file. For programs in multiplesij



% Percent cycle count improvement over GRST%

GRST || Base Combined Annealed

Benchmark IPC SPS | Contention | Register | Volume SPS | Annealed IPC
EEMBC
a2time0lhand | 24 12.2] 16.9 | 8.0 | 124 ] 18.6 | 18.9 31
Spec2000 Microbenchmarks
ammp2_hand 2.7 7.2 13.3 30.5 9.3 35.0 36.8 4.4
art 1_hand 4.1 9.3 10.6 32.9 15.0 34.0 354 6.4
art 2_hand 28| 324 41.3 46.8 26.9 48.6 52.2 5.9
art 3_hand 21 24.9 47.6 24.6 25.8 49.1 50.3 4.4
bzip2.1_hand 141 46.6 52.2 48.4 47.9 52.2 52.2 3.0
equakel_hand 2.4 0.2 -4.3 1.4 0.9 6.8 10.4 2.7
gzip-1_hand 0.6 || 26.1 19.0 25.0 27.0 14.6 49.7 1.3
gzip-2_hand 3.9 -1.6 3.2 -1.5 -2.9 11.5 13.1 4.6
matrix_.1_hand 2.9 1.8 3.2 4.6 5.4 8.3 19.6 3.7
parserl_hand 12 || 46.6 425 44.4 422 49.7 49.4 2.4
transposeGMTI_hand 29 ] 25.3 29.6 26.2 24.3 29.9 33.7 4.4
vadd hand 5.0 5.0 7.7 4.7 5.1 8.7 18.2 6.2
Livermore Loop Kernels
cfar_hand 16 [ 10.7 9.5 12.5 10.3 15.6 16.4 1.9
conv_hand 4.8 -2.0 0.6 11.3 -7.3 10.0 19.0 6.0
cthand 3.7 ] 145 14.5 19.6 12.2 13.9 18.9 4.6
db_hand 0.5 7.9 9.1 9.1 8.2 8.8 10.1 0.6
genalghand 1.2 ]| 10.0 12.3 13.0 12.4 16.8 16.8 15
pm_hand 17 7.8 10.1 9.5 9.8 135 14.7 2.0
gr-hand 13 3.1 3.2 3.4 2.8 3.3 3.7 1.4
svd hand 1.0 4.5 45 4.4 4.8 5.1 5.2 1.1
C libraries
memchrhand 111 20.7 27.6 235 25.6 28.2 37.8 1.8
memcpyhand 28 [ 12.2 27.4 22.6 11.5 21.8 324 4.2
memsethand 3.0 33.0 32.0 23.0 24.3 34.0 39.7 5.0
strcmphand 2.2 9.5 8.6 7.3 12.1 15.8 24.5 3.0
MediaBench

shahand 09 ] 12.8 14.3 15.0 14.4 15.6 18.4 1.1
Average 14.6 17.6 18.1 14.6 21.9 26.8

Table 1. Percent improvement in cycle count of hand-coded benchemarér GRST.

we chose the one that contributed the most cycles to the grogr The memset hand-coded benchmark provides cache bank hints,
critical path. For all other input files, we used a consistttof which allows the best SPS schedule to come closer to the l@dnea
schedules for the other files. In most cases, the functiotisian- results (5%, compared to 10% and 11% for vadd and matrix
nealed file consumed the majority of the critical path cyclédse respectively). Most other hand-coded benchmarks do natigeo
Livermore Loops are an exception. They consist of multipleree these hints, and none of the compiler-generated benchnugiks
files and use library calls extensively. Since we anneal omlg them.

file, we do not see as much improvement on them: 3% to 19% ver-  Annealed performance on gzipis 35% better than the fully
sus 10% to 52% for the other benchmarks. Compiling the ardeal augmented SPS schedule. This unusual result is due to tlee-dep
files together with libraries scheduled by SPS sometimesifsig dence predictor in the TRIPS prototype. TRIPS allows spziveal
cantly improves or degrades the results. This result oduecause execution of memory operations and initiates a pipelinenfafser

instructions from blocks in libraries may execute simuttamnsly detecting a dependence violation. The TRIPS implemematies
with instructions from the annealed source file. Applying #n- dependence prediction to help prevent these expensiveefiusbr
nealer again would adapt the schedule to alleviate any resou a set period after a load causes a dependence violation| domi
conflicts that occur. servatively wait for all prior stores before executing. Baip.1,

Some of the memory-intensive benchmarks such as vadd andwhen minimizing latency and contention the scheduler exsahbl
matrix_1 show a significant gap between the best scheduler and thedependent load to issue before its corresponding stoggetiing
annealed results. In some cases, the annealer will prodsicieeal- a pipeline flush, initiating conservative memory orderiagd de-
ule that SPS can never achieve without help from the compiler  grading performance. This particular performance anomalyld
these benchmarks, loads and stores representing arressescge be solved with a more accurate dependence predictor angdade
regular and consistently map to one or more cache banks.f-he a the scope of the scheduler.
nealer places critical loads and their consumers in theogpiate
location based on their cache bank. The cache banks use k& simp N
round robin address mapping, and thus if the compiler kndws t 6.4 Cross Validation
base address and array dimensions, it can also predictititstore Because the heuristics were driven by data from the handecod
cache bank. We have experimented with array base addrgss ali Schedules that we annealed, we ran the same set of tests on the
ment and compiler-inserted cache bank hints for prediethtzds, EEMBC benchmark suite using compiler-generated code to see
and these results match the annealer’s for vadd and nihtrix how well the heuristics perform on new benchmarks. We raaofall

the EEMBC benchmarks except the consumer benchmarks cjpeg
and djpeg, which took too long to simulate. Table 2 showsethes



% Percent cycle count improvement over GRST %

GRST || Base Combined || SPS

Benchmark IPC SPS | Contention | Register | Volume SPS || IPC
Automotive
aztime01 0.8 7.4 8.2 6.5 6.2 9.7 0.9
aifftr01 1110 17.3 20.2 17.9 19.7 19.2 14
aifirf01 0.9 9.6 12.1 95 9.8 12.1 1.0
aiifft01 1.1 18.2 20.4 18.0 20.5 22.1 14
basefp01 0.8 7.5 9.3 7.7 5.7 111 0.9
bitmnp01 1.3 || 105 14.6 11.9 135 16.0 15
cacheb01 0.7 8.4 8.0 7.6 10.0 8.3 0.7
canrdr01 0.8 || 13.6 17.5 13.4 17.8 17.3 1.0
idctrn01 141 11.0 12.6 12.3 11.2 16.2 17
iirflt01 0.7 5.7 7.7 7.9 6.4 10.9 0.8
matrix01 09 || 125 14.8 11.7 13.2 12.9 1.0
pntrch01 0.8 8.5 13.1 7.2 8.4 11.3 0.9
puwmod01 0.8 || 135 17.4 13.8 18.1 17.3 1.0
rspeed01 0.8 || 12.2 15.9 12.1 16.0 16.1 1.0
tblook01 0.8 || 11.3 13.3 10.1 12.3 14.4 0.9
Networking
ospf 0.9 [ 14.9 15.4 12.2 15.3 16.8 11
pktflow 1.0 [| 13.3 12.8 11.5 13.7 18.8 13
routelookup 0.9 17.4 17.8 14.6 18.6 195 11
Office
bezier01 1.1 ] 13.0 16.3 12.9 16.8 17.3 13
dither01 15 185 19.6 239 17.4 21.8 2.2
rotate01 11 ] 16.5 18.6 18.8 19.6 20.2 14
text01 0.8 || 15.8 16.5 17.6 19.3 17.9 1.0
Telecom

autcor00 1.2 8.3 9.2 11.0 7.5 10.6 14
conven00 1.8 ] 16.1 16.0 14.7 16.4 13.7 2.1
fbital00 12 ] 34.2 35.3 35.0 35.9 37.2 1.9
ffto0 211 10.7 22.2 18.9 18.8 34.5 3.2
viterbOO 09 || 28.1 36.4 41.8 37.3 36.5 14
Average 13.9 16.3 14.8 15.8 17.8

Table 2. Percent improvement in cycle count of compiler generatef dor EEMBC over GRST.

sults. The compiler does not yet produce blocks that areybatyt
packed as the blocks in the hand-coded benchmarks. Thegavera
dynamic number of instructions fetched per block fetched5%
larger for the hand-coded benchmarks. Because the reghltoks
have proportionally more block overhead, placement hasalem
impact on their performance. Still, the SPS algorithm impso
13% over GRST for the compiler-generated EEMBC benchmarks,
and with all heuristics in place SPS improves 17% over GRST.

We tested the algorithm with and without the annealing-esh
heuristics on the compiler-generated codes. The contehgaris-
tics produce a 2% improvement, and global register prizaiton
produces a 3% improvement. The heuristics are slightly $gas
ergistic than on the hand-coded benchmarks, but still ingoend
apply to this wider set of applications.

7. Related work

This section compares the TRIPS scheduling problem andiolu
to the scheduling problems and solutions for other archites that
usestaticspatial and/or temporal compile-time scheduling. We also
compare spatial instruction scheduling to ASIC and FPGA®la
and route algorithms.

7.1 Greedy list scheduling for TRIPS

The path scheduling algorithm described here naturallgsules
the heuristics in the prior scheduling work for TRIPS [17fhda
substantially improves performance. GRST uses a list sdimed
approach augmented with heuristics that account for dateecand
register accesses, load balancing, and critical pathifizetion. Its

ability to identify and optimize the critical path is limdehowever,
because it does not account for routing delays between ancho
points along a path, take global effects into account, orosbo
the next instruction to schedule by directly comparing etaent
costs. The GRST study used binary rewriting and a higheatlev
simulator with simplifications such as a shared registerdild a
unified L1 cache, which substantially dampened the influexfce
the scheduling algorithms.

7.2 Static scheduling

Classic VLIW schedulers focus solely on minimizing the depe
dence height of the final schedule. At runtime, instructithvag do
not fire must still check their predicate before subsequesttuc-
tions can execute due to the static issue execution modd][6,
These approaches thus schedule the critical path bottormdp a
do not consider registers or other physical processor tagon-
straints.

The most closely related static (compiler) scheduling [eob
is the one posed by architectures such as partitioned VLIVEQ9
11, 19, 21, 26] and RAW [14, 25], which both consider register
resource constraints and layout. Ozer et al. solve the stihgd
part of VLIW cluster assignment first with a later phase periiog
register assignment based on the cluster assignment ofdiepte
instructions [19]. Ozer et al. also find that placing critipaths
in the same cluster is best in a VLIW compiler. Another VLIW
example is the CARS approach, which is similar to Ozer etwl. b
performs register allocation concurrently with schedyland has
lower algorithmic complexity [10]. The typically modestmber



of VLIW partitions and unlimited instructions per partiiampose
a different structure on VLIW schedulers. In particulae tpaths
are shorter and less constrained compared with TRIPS slihgdu
problem.

RAW’s execution model is essentially a 2D VLIW with in-
dependent sequencers [14, 25]. Lee et al. introduce a aener
scheduler that is similar to the simulated annealing sdieedout
explores the space in a model-driven way rather than acacegn-
dom poor placements occasionally. The convergent schediedds
with the complexity of the 2-D scheduling problem by compagti
an ALU preference for each instruction for a selection ofestth-
ing heuristics. These preferences are weighted to deterthinfi-
nal schedule. Because of the static-issue execution mpdgd)-
lelism is favored over latency.

7.3 Simulated annealing

Because most problems in compiler optimization are NP-detap
researchers on compiler optimizations and schedulingrareas-
ingly turning to machine learning and statistical techegsuch as
simulated annealing [12, 2] to find better heuristics. Sweamd
Beaty apply simulated annealing to scheduling straigie-(a sin-
gle basic block) code for the Alpha 21164, which is 4-way éssu
and evaluate the schedules with a static metric: the remtudti
the schedule length. Their test suite consists of smallkside.g.,
20-40 instructions on average). The TRIPS scheduling pnolis
more complex and requires guidance for simulated annetdia
ficiently search the much larger space.

Swanson et al. suggest a real-time, on-line simulated éingea
approach to optimize reconfigurable hardware dynamicayj.[
They suggest that dynamically reorganizing instructionsiey al-
low the configuration to adjust to changing program behawind
to route computation around defective hardware.

Moss et al. [16] use exhaustive search for small basic blocks
(on the order of ten instructions) in a supervised learnpgra@ach
that generates heuristics for a basic block scheduler éAthha.
Exhaustive evaluation is too expensive for even a singlekblor
TRIPS, but we do consider global effects with simulated ating.
Because the TRIPS prototype is more sensitive to scheduwliag
consider the entire program (versus individual basic t8dokiso-
lation), and we evaluate schedules using simulated cyulsys
statically).

Mercaldi et al. present a static instruction placementgverf
mance model for WaveScalar and analyze its correlationawitial
performance [15]. A similar static cost function is not stiéfnt for
simulated annealing in our setting because we attempt tméad
optimal schedules and use them to discover the appropeatesh
tics. Using a static cost function for simulated annealiroyia not
be useful for discovering heuristics, and without perfectelation
to real performance it would not be useful for exploring tleefor-
mance upper bound. A static metric with good correlatioridtbe
used to guide annealing, however, or to work in combinatidh w
the perfect evaluation function to reduce annealing tintechvis a
direction for future work.

7.5 ASIC and FPGA place and route

Spatial instruction scheduling is similar to place and edugcause
both problems involve mapping a graph of operations ontoa tw
dimensional substrate under a set of constraints. Whenatiad
place and route decisions, however, the latency and res@arm-
flicts are known statically. Spatial instruction schedglfor a dy-
namic issue machine like TRIPS or WaveScalar presents nalw ch
lenges because resource conflicts can only be determinéa-pro
bilistically.

Paulin and Knight present Force-Directed Scheduling folQAS
synthesis [20], an algorithm that bears some similaritteSPS.
The space is constrained in different ways, however. SPSiders
dynamic issue orders with probabilistic contention mauglilts
heuristics map a graph onto a predefined topology, while alftAS
scheduler manipulates many variables including the hawelaan-
figuration. An ASIC scheduler is guided by external constsain-
cluding area and power budget, whereas a spatial instrustioed-
uler operates under no equivalent restrictions.

8. Conclusions

Spatial Path Scheduling is designed to map DFGs of instmgto

a distributed, potentially irregular compute substratémiproves
over list scheduling by explicitly modeling instructionagkement
for all instructions on a path. We extended the base SPSitgor
with three heuristics: a contention heuristic that captuhe run-
time and global effects of contention in the ALUs and network
ing links; a critical register prioritization heuristicahaccounts for
inter-block dependences; and a path volume heuristic taasput

Betz and Rose present Versatile Place and Route (VPR) [3], a Potential routes for long paths in a DFG and avoids overly-con

placement and routing tool for FPGA research that uses ateul|
annealing for placement. Because latencies and resoundécto

strained local minima. The combined SPS algorithm achieved
21% speedup over the best previous algorithm for this achit

are known for place and route, the algorithm can use an easy toture. The SPS algorithm intrinsically captures and augméme

evaluate static cost function as the objective functiorsfotulated
annealing. Because runtime latencies and resource cerghist
with dynamic issue, a static cost function is not sufficient.

7.4 Dynamic scheduling

The TRIPS architecture combines dataflow execution within a
block by forwarding temporary values directly from prodigcéo
consumers and out-of-order speculation across blocksihy ss-
guential memory semantics and register communication dmiw
blocks, together with commit and rollback logic.

Compilers for classic dataflow machines performed no static
scheduling [1, 5]. These machines dynamically schedul&los
tions as the dynamic dataflow graph unfolds. They sidestep se
guential memory semantics by relying on a functional progra
ming model in which programs could only ever produce exactly
one input to an operand. The WaveScalar [23] dataflow aithite
breaks the program up into dataflow waves to preserve saglient
memory semantics. These waves have constraints, but a@snot
resource constrained as TRIPS blocks.

heuristics from GRST while providing flexibility to adapt tew
topologies and constraints.

We also implemented a simulated annealing scheduler that us
program criticality information for faster convergencenelsimu-
lated annealer perturbs schedules periodically in an attenavoid
finding itself in local minima. Although the annealer doe$ mec-
essarily generate optimal schedules, the schedules iipesdipon
convergence were typically close to the best schedulesdymed
across many different starting points. We used them to thee t
SPS heuristics, achieving average performance within 5%hef
annealed results.

This performance bound, however, only applies to genagatin
the best schedule for a fixed set of instructions. More oppért
ties for performance improvement remain if the schedularazd-
lude with other compiler phases to generate graphs that are m
amenable to better scheduling. Three examples of thistedfec
register allocation, fanout tree insertion, and hyperbfocmation.
Since allocated registers serve as pre-schedule anchatspal-
locating registers to minimize critical path lengths carpiove
performance significantly, as we have seen in a few handitune



examples. Fanout trees for distributing produced valuenaay
consumers in a block can have many different topologied) e&c
which will provide a different set of opportunities or coststhe
scheduler. Finally, the hyperblock formation algorithnttie com-
piler attempts to fill blocks as close to 128 instructions a@ssgble
to minimize per-block overheads. However, it may be thabime
cases, overly full blocks constrain the scheduler too manot,that
better performance may be possible if the hyperblock génmera
leaves space in those blocks to provide flexibility to theesiciher.
Coupling the scheduler to these compiler phases is a focaarof
current research efforts.
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