Appears in the 21t International Conference on Computer Design

Routed Inter-AL U Networksfor 1L P Scalability and Performance

Karthikeyan Sankaralingam Vincent Ajay Singh*

Stephen W. Keckler Doug Burger

Computer Architecture and Technology L aboratory
Department of Computer Sciences
*Department of Electrical and Computer Engineering
The University of Texasat Austin
cart @s. utexas. edu - www. Ccs. ut exas. edu/ users/cart

Abstract

Modern processors rely heavily on broadcast networks to
bypass instruction results to dependent instructions in the
pipeline. However, as clock rates increase, architectures get
wider, and pipelines get deeper, broadcasting becomes more
complex, slower, and more difficult to implement. This com-
plexity is compounded by shrinking feature size, as the com-
munication speed decreases relative to transistor switch-
ing speeds. This paper examines the fundamental needs
of bypassing networks and proposes a method for classi-
fying these Inter-ALU Networks based on how operands
are routed from producers to consumers. We then propose
and evaluate at both the circuit and architectural level a
fine grain point-to-point Routed Inter-ALU Network (RIAN)
that delivers the same or higher instruction throughput as a
full bypass network but at higher speeds while using fewer
wires.

1 Introduction

The most critical loop in pipelined processors enables data depen-
dent instructions to execute in consecutive cycles. As shown in
prior research [21, 4], increasing this path by even a single cy-
cle dramatically reduces instruction throughput rates. Most mod-
ern processors, including both dynamically scheduled superscalar
and VLIW architectures, use some form of broadcast to deliver in-
struction results to all the places that a consumer instruction could
reside. The ALU execution delay plus the bypass latency to de-
liver the ALU output back to its input often sets the cycle time of
the machine.

However, the complexity and delay of bypass paths is increas-
ing with modern processors and technologies [14]. The wire delay
path from source to destination, fan-out delay at the source, and
fan-in delay at the destination are all increasing with increasing
issue width and functional unit count. Wire complexity growth is
proportional to the square of the number of ALUs, as shown by
Ahuja et al. [2]. The fan-out from each source ALU and the fan-in
at destinations increases roughly with the product of the pipeline
depth and width, as each ALU result must be routed to all possible
places it could be used. Larger fan-out and fan-in increases by-
pass delay as both the capacitive load within the network and the
multiplexor complexity at each sink rises.

Based on optimistic wiring overhead models, we estimate that
the shortest and longest bypass path delays, for a future, ultra-wide

64-issue processor with a 10F04 clock cycle, are 1 and 8 cycles
respectively. In contrast, in many conventional processor designs
the worst case bypass delay is small enough to be incorporated
into the critical path and is a fraction of the clock cycle.

In this paper we analyze the fundamental requirements of inter-
ALU networks (IANs) used in microprocessor bypass networks.
We propose and evaluate an emerging class of bypass networks
called Routed Inter-ALU Networks (RIANs) which scale with
technology and functional unit count, and thus could become a vi-
able alternative to broadcast bypass networks for future designs. In
these networks, neighboring ALUs are connected via direct links
through lightweight routers, and communication between ALUs
is done by making multiple hops through the network. Instead
of being broadcast, operands are routed from source to destina-
tion based on a destination identifier encoded into each instruc-
tion. RIANSs reduce the fan-in and fan-out at each ALU, as well
as the potentially crippling wiring area overhead by using a net-
work with lower bisection bandwidth than a broadcast network.
Such a network significantly reduces the bypass latency between
nearby ALUs but may increase the latency between distant ALUs
that must traverse many hops through the RIAN.

We present the full taxonomy of IANs in Section 2, classifying
them based on (a) the number of target ALUs to which a result
is delivered, (b) the number of ALUs to which a given ALU is
directly connected, and (c) when the routing decision is made. The
RIANs we propose can be classified as Point-to-point, Multi-hop,
Dynamically routed networks, represented by the acronym PMD.

We discuss the applicability of these networks to dynamically
scheduled monolithic and clustered processors where the destina-
tion of an operand is not always known. We then evaluate the use
of this network in statically scheduled architectures in which the
source and destination of each operand can be determined at com-
pile time. We first explore their utility in wide clustered and non-
clustered VLIW architectures. Finally, we examine this network
strategy in an emerging architecture that supports static placement
but dynamic issue to tolerate run-time determined instruction la-
tencies. The key behind the applicability of point-to-point routing
in all architectures is that results inherently need to be sent only
from the producer to the consumer, rather than being broadcast to
all ALUs.

The remainder of this paper is organized as follows. Section 2
describes the design space of inter-ALU networks, and discusses
how they relate to prior bypass network architectures. Section 3
examines circuit implementations of high bandwidth single-hop
networks used in conventional bypass networks and thin multi-
hop networks used in a RIAN. We also describe mechanisms for

Execution Model | Network Architecture | Router Control [[Acronym ||

Examples |

Point-to-point Multi-hop Dynamic PMD Parcerisa et al. [15], Grid Processor [13]
Point-to-point Multi-hop Static PMS RAW [26]

Point-to-point Single-hop Dynamic PSD M-Machine [8], Multicluster [7]
Point-to-point Single-hop Static PSS degenerate case of PMS

Broadcast Multi-hop Dynamic BMD Alpha 21264 [11]

Broadcast Multi-hop Static BMS -

Broadcast Single-hop Dynamic BSD Superscalar [24]

Broadcast Single-hop Static BSS VLIW [5]

Table 1: A taxonomy of bypass networks.

reducing router overhead in this thin network. Sections 4, 5 and 6
explore the use of thin networks in dynamically scheduled super-
scalar architectures, VLIW architectures and Grid Processor ar-
chitectures. Finally, Section 7 provides summary and concluding
remarks.

2 A Taxonomy of Inter-ALU Networks

Bypass networks are intended to provide fast paths between the
outputs of ALUs and inputs to prior stages of the pipeline down-
stream from the register file. Their primary effect on perfor-
mance is to reduce or eliminate read-after-write hazards and pos-
sible pipeline stalls that result from issuing back-to-back producer
and consumer instructions. In conventional processors, these by-
pass paths have typically been implemented as broadcast networks
where the output of every ALU is routed to the input of every
ALU.

These broadcast bypass networks are really a part of a broader
class of Inter-ALU Networks (IANs) which can be classified along
three axes: (a) the execution model, (b) the network architecture,
and (c) router control. The execution model indicates whether the
output of an ALU is to be broadcast by default to all ALUs, or
whether the target ALUSs are specified explicitly and then operands
sent point-to-point. The network architecture indicates whether an
operand is sent directly from the output of one ALU to the input
of another (single-hop), or whether it may pass through intermedi-
ate routers (multi-hop). Router control indicates whether all of the
routing decisions are made prior to execution of the ALU instruc-
tion producing the data (static), or whether the routing decisions
take place at runtime (dynamic). These networks differ dramati-
cally from multiprocessor networks because the payload is a scalar
value rather than a multi-word message or cache line.

Table 1 lists the eight possible bypass network configurations
and architectures which use them, with a 3-letter acronym for each
network criterion: {P,B}, {M,S}, {D,S}. Pipelined and super-
scalar architectures are classified as BSD networks since operands
are broadcast to all target ALUSs, there are no intermediate routers,
and all arbitration is done dynamically. The clustering of the Al-
pha 21264, in which operands are broadcast to both the local and
remote cluster can be classified as BM D, since operands take one
hop to reach a remote cluster, with arbitration done dynamically.
Traditional VLIW processors with a shared register file names-
pace broadcast data across the ALUs through statically scheduled
busses and is thus BSS.

As transistors have become faster and wires have become rel-
atively slower, broadcast networks have become less attractive

due to increasing wiring overhead for large connectivity networks.
Several architectures have proposed or implemented one of the
family of point-to-point IANs instead of using broadcast networks.
The M-Machine is an example of a PSD network since destina-
tions are specified statically and encoded in an instruction while
delivery occurs dynamically from the source cluster to the des-
tination cluster. The Multicluster architecture is also PSD as it
dynamically routes operands on demand between two clusters in
a partitioned register file superscalar architecture. The MIT RAW
processor includes a bypass routing network which is integrated
into the pipeline. The routing overhead is mitigated through a
statically scheduled router which eliminates the need for dynamic
arbitration for the shared router and wire resources, thus making
it a PM S network. While this architecture achieved the per-hop
latencies of a single cycle, their experience showed that these la-
tencies were too high to achieve sufficient ILP. RAW requires a
full cycle for each hop because the components that communicate
are complete processors, rather than small ALUs, as found within
a more conventional processor core [22].

Finally, a budding category of IANs is PMD: point-point,
multi-hop, dynamically routed operand networks. Parcerisa et al.
proposed a multi-hop routing network for clustered superscalar ar-
chitectures with partitioned register files [15], similar in principle
to Multicluster. The microarchitecture keeps track of the loca-
tion of producers/consumers and dynamically inserts instructions
to transmit operands from a source to a destination cluster.

In this paper, we focus on a different flavor of PM D networks
in which the instruction dependencies are expressed explicitly in
the instruction encoding and the physical locations of the producer
and consumer instructions are known prior to execution. With this
knowledge, bookkeeping hardware to dynamically track instruc-
tion dependencies is not required, nor are instruction results broad-
cast to every ALU, thus providing support for fast ALU chaining
and technology scalability. We examine large networks of up to
64 ALUs and explore a range of topologies and connectivities.

A key feature for using routed point-to-point networks for
operand bypass is the identification of producer-consumer pairs
prior to execution of the producer, and scheduling of these pairs in
nearby ALUs. While we focus on static compile-time schedulers
to place instructions to minimize communication distance, run-
time scheduling, such as the retire-time cluster assignment scheme
proposed by Bhargava and John, is also possible [3].

A different taxonomy for scalar operand networks which con-
sists of a 5-tuple cost model, closely based on network transport
models was proposed by Taylor et al. [23]. The 5-tuple con-
sists of send occupancy (# cycles ALU spends in transmitting a

value), send latency (# cycles at sender without consuming ALU
cycles), network hop latency (# cycles spent in the network), re-
ceive latency and receive occupancy. Each of the class of net-
works in Table 1 can be characterized by a 5-tuple. Our axes
of classification focus on the architecture and circuit character-
istics of the operand network and are not specific to delay mod-
els. That 5-tuple model, although very expressive in terms of de-
lays, is insufficiently expressive to characterize the diversity of
operand interconnect networks completely. Different types of net-
works have the same tuple: for example PSD and BM D networks
map to < 0,0,7,0,0 >, while BSD and BSS networks as imple-
mented in conventional superscalar and VLIW processors map to
<0,0,0,0,0 >.

3 Circuit modeling of Inter-ALU Networks

This section describes our circuit modeling of inter-ALU networks
and explains the technology models, circuit estimation tools and
different delay components in the circuit. In the proposed tax-
onomy of 1ANSs, the key circuit feature is the Network Architec-
ture. Both single-hop and multi-hop network circuits can be used
in broadcast or point-to-point execution models, while the router
control can be static or dynamic. The circuit design of the IAN
is largely independent of the execution model and router control.
In this section, we analyze single-hop and multi-hop network cir-
cuits in detail and compare their delays. We show that multi-hop
networks outperform single-hop networks on large networks.

3.1 Technology modeling

We estimated circuit latencies using SPICE models derived from
the 1999 International Technology Roadmap for Semiconduc-
tors [17]. We estimated the wire delays assuming optimal buffer
placement, with capacitance numbers obtained using Space3D (a
three dimensional field solver) [1]. Technology parameters for the
wire delay tool were based on the 2001 International Technology
Roadmap for Semiconductors [18], using the 90nm technology
point scaled to 100nm to match our SPICE libraries.

For our analysis, we assume that the functional units produc-
ing and consuming values are laid out in a 2-dimensional rectan-
gular array with a Manhattan routing scheme. We refer to these
functional units as nodes. All distances are measured in segments,
with 1 segment being the distance between adjacent nodes. The
network size (N) is the total number of nodes in the network. Fig-
ure 1 shows a single-hop and multi-hop inter-ALU network of size
9.

In our experiments, the node consists of an ALU, an integer
multiplier, an FPU, and a 64-entry register file. All the functional
units are 64 bits wide. The area and dimensions of these nodes
are estimated using an empirical area model [9]. Each node is a
square 32K\ on a side, occupying an area of 1GA2, where X is
half the channel length of a minimum sized transistor. The pro-
cessing core of the Alpha 21264 in comparison occupies an area
of approximately 6G\2.

3.2 Single-hop Inter-ALU Networks

There are three main components that contribute to the communi-
cation delay in single-hop networks: the fan-out gate delay (¢,),

1-segment
/

i |m |m

(a) Single-hop network (b) Multi-hop network

Figure 1: Single-hop and multi-hop networks of size 9. Only wires
corresponding to the top left node are shown for (a).

the wire delay, and the fan-in gate delay (¢ ;). The total delay for
an n segment path is given by the following equation:

ts =to+tri+nxtyxlsa Q)

The third term in the equation denotes the wire delay, which is the
product of the number of segments traversed (n), wire delay per
unit length (¢.,), length of a segment (1), and the wiring distance
overhead . The wiring distance overhead is a factor used to incor-
porate the physical VLSI design constraints of wire routing. When
the number of tracks required to route the wires fits within the area
occupied by the ALUs, @ = 1, indicating no wiring overhead.
However, when the wires require extra area for routing, « indi-
cates the ratio by which the length of these wires increase, because
of the excess area they must be routed over. This wiring overhead
is strongly dependent on technology, ALU dimensions, data-path
width, routing strategies and repeater placement and area. For a
64-bit data-path assuming a wire pitch of 16, our simple wiring
area models, which do not account for any repeater area overhead,
show that only single-hop networks of size greater than 32 incur
any wiring overhead. For a network of size 64, a = 2.05. All
the multi-hop network configurations we examined have very low
fan-outs (< 8) and hence incur no wiring overhead.

Delay analysis. Using SPICE simulations, the total fan-out and
fan-in gate delays for 8-wide, and 64-wide networks was measured
as 150ps, and 240ps respectively®. Figure 2a shows the percent-
age that each component contributes to the total communication
latency for different distances. For both 8- and 64-wide configu-
rations, the communication latency is evenly shared by the wire
delay and the fan-out/fan-in delay for short distances. 57% and
44% of the delay is due to fan-in and fan-out for communication
between immediate neighbors. Hence, reducing this fan-out and
fan-in delay using a low fan-out network will produce significant
reduction in short distance communication latency.

The total wire delay in nanoseconds, for an ideal 64-wide
single-hop network assuming no wiring overhead is shown by the
dashed line in the graph in Figure 2b. The dotted line shows the
realistic delay, incorporating the wiring overhead estimation. A
multi-hop network, in addition to having lower fan-in and fan-out

1By comparison an aggressive 10FO4 clock period at 100nm
technology is 360ps [10].

204
---9-- 9ngle-hop, overhead = 2.05
—+— Sngle-hop .-® F
= 7 15] MUt-hop Cr_ossover point
5 5 o (in segments)
: : ' o [N=8 | N=64
5 1.0
3 8 1.0 2 3
B > 12| 3 4
< T 051 13 4 6
14 7 10
0 T T T 1 00 T T T | 15 All distances
012 4 8 12 16 0 1 2 3 4
Distancein segments Distance in segments
(a) (b) (©)

Figure 2: Percentage wire delay contribution, total communication delay.

. The table shows the crossover point for single-hop and multi-hop

networks. The crossover point indicates the maximum distance communication for which multi-hop networks are better.

delays, can reduce this wire delay also, since it has no wiring over-
head, thus making the effective communication distances shorter.

3.3 Multi-hop Inter-ALU Networks

Multi-hop networks are defined as those networks that require
routing decisions to be made in between the source and the desti-
nation nodes. The five parts of the delay are source router delay
(t+s), fan-out gate delay, wire delay, fan-in gate delay, and the
intermediate router delay(¢,;). Compared to single-hop networks,
the wire delay per segment is reduced because typically there is no
wiring area overhead. The fan-in and fan-out delays are reduced
since these are low-degree networks (typically with fan-in/fan-out
of 4 to 8). The multi-hop network routes data through multiple
nodes, incurring a router delay for every node that the data must
pass through on the way to the destination node. We denote the
number of hops as (h). Figure 1b shows a possible topology for a
multi-hop network, with routers at every node. The total delay for
a n-segment path on such a network is given by Equation 2.

tar = (trs +tfo +tfi +tr) xh+nsty =l)

The solid line in Figure 2b shows the variation of communi-
cation delay with distance for multi-hop networks. For short dis-
tance communication multi-hop networks are better than even the
idealized single-hop network on a 64-wide network, whose delay
is shown by the dashed line. When the wiring overhead of the
single-hop network is included, as shown by the dotted line in the
graph, multi-hop networks are better for all distances.

Router design: The source router and intermediate router de-
lays are incurred because arbitration must be performed at each
hop of the communication path to avoid resource hazards. Peh and
Dally describe a latency-hiding approach for inter-chip networks
using a lookahead flit reservation mechanism [16]. Based on their
work, we evaluated a lookahead scheme for use in routers in RI-
ANSs to hide the arbitration delay. Two networks are implemented,
one for control and one for the payload (the data operand). The
control packet arrives in advance of the payload, and reserves a
path (if one will be available) for the payload, thereby taking the
routing and decision making logic off the critical data transmis-
sion path. The details of this design are beyond the scope of this
paper and are explained elsewhere [19]. With the lookahead reser-
vation scheme, the multi-hop delay effectively degenerates to the
components shown in Equation 3.

tv = (tfo +t5i) xh+nsty x1 3)

Based on SPICE simulations we determined the router packet
processing delay (¢rs, trs) to be approximately 9FO4 gate delays
at 100nm technology. The fan-out/fan-in gate delay (¢ ¢, +¢£:) on
4 fan-out network is 2.7FO4 gate delays. Effectively, the looka-
head reservation scheme hides the packet processing delay from
the data transmission critical path making the per-hop forwarding
latency just the fan-out/fan-in gate delay, which is approximately
1/4th of a cycle, at a 10F04 clock period.

Delay analysis and implications: For short distances multi-
hop networks are faster, because of the lower fan-out/fan-in delay
and no wiring overhead. However, in a multi-hop network, a for-
warding delay is incurred at each hop. For long distance multi-hop
communication, this accumulated forwarding delay can overcome
the fan-out/fan-in and wire delay savings, eventually making the
multi-hop network delay larger than the single-hop network de-
lay at some distance. Equating (1) and (3), we can determine
this distance (n.), measured in the number of segments, at which
the single-hop network delay equals the multi-hop network delay.
Communication delay is thus lower using a multi-hop network
than a single-hop network, for distances less than n. segments.
This cross-over point varies based on the network size, since the
fan-in, fan-out, and wiring overhead of single-hop networks is de-
pendent on the size. The table in Figure 2 shows the crossover
point for networks of size 8 and 64 for different values of .. For an
idealized single-hop network assuming no wiring overhead, short
distances of up to 2 and 3 segments in the 8 and 64 size networks
respectively are faster using multi-hop networks. The crossover
point increases super-linearly with « and when o > 1.5, multi-
hop networks are faster for communication between any two nodes
in the network, regardless of the distance. These crossover points
are specific to the machine configurations, technology and wiring
overhead. Architects must consider these parameters while choos-
ing the operand network design.

Based on this circuit analysis and delays, the following sec-
tions discuss the design and performance of single-hop and multi-
hop networks in different processor architectures. \We compare RI-
ANs which are point-to-point, multi-hop, routed networks (PM D)
to conventional broadcast single-hop networks (BSS, BSD). We
examine dynamically scheduled superscalar architectures, VLIW
architectures and Grid Processor architectures.

4 Dynamically Scheduled Architectures

Bypass delays are critical in conventional dynamically scheduled
superscalar architectures. Current designs use a broadcast single-
hop network among ALUs, since the execution model of such ar-
chitectures does not provide information in the instruction stream
to determine the consumers of the operands of each instruction.
Future superscalar processors are likely to have large instruction
windows and large numbers of functional units to extract more
parallelism. Both the bypass delay and the instruction wakeup-
select delay on such designs could become unmanageably large.

Partitioning the instruction window between clusters of tightly
coupled functional units is one mechanism for keeping these two
delays reasonably small, while increasing machine issue-width.
Such clustered architectures typically use a broadcast single-hop
network among the functional units in a cluster. Since the number
of ALUs within a single cluster is small, this bypass delay is small
compared to the cycle time. Between clusters, a separate network
with variable inter-cluster communication delay can be used. In
the absence of mechanisms to determine the ALU and cluster to
which consumers of operands produced by other instructions have
been assigned, every ALU must broadcast its results to every other
ALU in the processor. Clustering by itself helps in only scaling the
instruction window size and does not solve the broadcast problem.

To avoid having to broadcast operands, Parcerisa et al. pro-
posed a clustered architecture in which an instruction steering
stage of the processor pipeline assigns instructions to clusters, and
inserts copy instructions to orchestrate point-to-point inter-cluster
communication [15]. Within a cluster, operands are broadcast us-
ing a full bypass network (BSD). They studied several network
interconnects and cluster configurations and concluded that a low
bandwidth torus-like routed network (PM D) performed almost as
well as an idealized full broadcast high bandwidth inter-cluster
network (within 2%).

Based on the bypass network circuit characteristics alone,
namely fan-in, fan-out, wire delay, and the wiring overhead, our
circuit models suggest inter-cluster operand networks for large
clusters will have lower delays when built as a single-hop net-
work instead of a multi-hop network. However, port limitations
on storage structures like remote register files in clusters impose
limitations on the fan-in allowed at each cluster. In their work,
Parcerisa et al. and others point out these constraints and show
that RIANSs are preferable in inter-cluster networks also.

5 VLIW Architectures

VLIW architectures are naturally amenable to point-to-point rout-
ing of operands using multi-hop networks because instructions
are statically scheduled and producer-consumer pairs can be de-
termined at compile time and encoded in the instructions. Con-
ventional VLIW processors have used single-hop high bandwidth
broadcast networks (BMD, BSS) to implement operand bypass-
ing. In this section, we compare these networks to PM D networks
and also evaluate the effectiveness of software schedulers in plac-
ing source and consumer nodes close to each other, which is a key
feature for multi-hop networks.

Single—hop networks Multi-hop networks
X X
2. % 2x
Sl 2N G DY Mo & VRN
e} o
6x 6x N\6x
S 6x

Figure 3: VLIW interconnect networks. The scaling factors on the
arcs refer to the relative delays of the wires based on the distance
traveled.

5.1 Machine model

We model a conventional VLIW machine where the compiler stat-
ically assigns instructions to named functional units (nodes) and
decides the execution order of instructions. We used a greedy bot-
tom up algorithm for generating the schedules. We examine a fam-
ily of single-hop full bypass networks: 1) S;4eq - an ideal network
where we set all wire delays to the shortest delay path, 2) Syeqr - @
realistic best case single-hop network where we scale wire delays
between nodes linearly with distance, and 3) Syorst - @ WOrSt case
single-hop network, where we set all wire delays to the longest
delay path. Conventional bypass networks resemble Syorst, Since
delay paths between all ALUs is set to be the worst case delay. We
compare these single-hop networks with two multi-hop networks,
one with only short paths, the M2 network with wires between
adjacent nodes, and one with medium distance paths, the M4 net-
work with wires to the nearest 4 neighbors. The diagrams of the
connectivity are shown in Figure 3. We also simulated multi-hop
networks with infinite bandwidth (infinite wires and ports between
connected nodes) to study the effect of contention. To bound the
sensitivity to the wiring overhead, we simulated single-hop net-
works with @ = 1 and o = 2, and examined 4-wide, 8-wide and
16-wide machine configurations. Both the multi-hop networks we
examined have very low fan-outs and we expect them to have no
wiring area overhead. Hence we did not examine configurations
with o = 2 for these networks.

Equations (1) and (3) are used to obtain the delays used in the
simulations. In all our simulations we assume a processor execut-
ing at a 10FO4 clock cycle in 100nm technology. At this technol-
ogy, the router forwarding delay is 0.25 cycles and wire delay to
traverse 1 segment (¢,,) is 0.6 cycles (220 ps). We use a custom
event-driven simulator to model the micro-architecture with the
following parameters: functional unit latencies similar to an Alpha
21264; a 3-cycle, 64KB L1-cache; a 12 cycle, 2 MB L2-cache; and
a 2-level history based branch predictor. The simulator models an
aggressive lookahead resource reservation scheme implemented in
our router. We assume that the data packet never catches up with
the control packet, and hence only the fan-out/fan-in forwarding
delay is incurred at every hop for the multi-hop networks, with the
full router processing delay always hidden.

5.2 Benchmarks

To evaluate the performance of these networks on realistic work-
loads, we selected a set of benchmarks from the SPEC CINT2000,
SPEC CFP2000, and three Mediabench [12] benchmarks — gzp,
mcf, parser, ammp, art, equake, dct, adpcm, and mpeg2encode.
We also examined one in-house benchmark, radar that performs

Latency (cycles) | Contention | # of
Config. [a=1]a=2 (%) Hops
4-wide VLIW
Sideal 0.13 0.43 0 1
Sreal 0.36 0.81 0 1
Sworst 0.79 1.69 0 1
M2 1.06 26.4 1.2
8-wide VLIW
Sidear | 017 0.51 0 1
Sreal 0.78 1.59 0 1
Sworst 2.38 4.62 0 1
M2 1.72 232 15
M4 1.69 20.7 1.2
16-wide VLIW
Sideal 0.17 0.52 0 1
Sreal 1.38 2.78 0 1
Sworst 5.35 10.54 0 1
M2 2.36 13.9 2.1
M4 2.05 117 15

Table 2: Interconnect network performance on VLIW architec-
tures. Latencies shown in processor cycles, at a 10FO4 clock cy-
cle. The single-hop networks, Sideai, Sreat, and Sworst have no
contention since every pair of ALUs is connected by a dedicated
wire. Also, the number of hops for them is 1.

radar signal-processing in which the computation is dominated by
a 677-point complex FIR filter. We use the Trimaran tool set,
which targets the HPL Play-doh ISA [25] to compile these bench-
marks. We fast forwarded all benchmarks by five hundred million
instructions, and then simulate two hundred million instructions.

5.3 Reaults

Routing Latency: Routing latency is the number of cycles be-
tween operand production and receipt at the destination. When the
source and destination nodes are the same, we assume direct by-
pass in the execution cycle, and hence the routing latency is zero.
This assumption makes the average latency shorter than the fastest
transmission path through the network. The routing latency for the
different machine configurations is shown in Columns 2 and 3 of
Table 2. At width 4, the routed multi-hop network M2 is worse
than the Syeq: and Syor st NEtWorks since the network size is only
4. At larger machine widths of 8 and 16, the routed multi-hop
network M4 has routing latencies within 120% (1.69 versus 0.78)
and 50% (2.05 versus 1.38) of the S,.q; network, and is always
better than the Syors¢ Network. When we incorporate the wiring
overhead of o = 2 for the single-hop Syear and Syorst NEtWOrkS,
both the M2 and M4 networks are almost as good or better than
them at all machine widths.

Contention: We measure the percentage contribution of the
delay due to contention by measuring the percentage difference
between the routing latency on a real multi-hop network and an
idealized multi-hop network with infinite ports and wires between
connected nodes. On this idealized network no delays are incurred
due to resource hazards in the interconnect network. This percent-
age of latency due to contention is shown in Column 4. None
of the single-hop networks have any contention, since they have
a dedicated path between every pair of ALUs. The M2 and M4

2.0+

mm Sdeal

== Seal

mm Svorst

mm Seal (alpha=2)
= Sworst (alpha=2)
M2

M4

Average |PC

b4 & s

Figure 4: VLIW IPC averaged across the high IPC benchmarks
dct, mpeg2encode and radar.

networks show roughly the same amount of contention, with the
higher bandwidth M4 network always showing slightly less con-
tention. This contention accounts for roughly 20% of the latency
for the 8-wide machine and is about 11% for the 16-wide machine,
suggesting higher bandwidth multi-hop networks could improve
performance further.

Number of Hops: The number of hops taken to route operands
from source to destination indicates the effectiveness of the sched-
uler in placing producer-consumer pairs close together. For the
conventional single-hop networks, number of hops is always one,
since there is a dedicated wire from every node to every other
node. As shown in Column 5 of Table 2, the average number of
hops in the M2 and M4 networks is relatively low (< 2.1) com-
pared to the machine width, showing that the scheduler is effective
in placing producer-consumer pairs close together.

IPC: Figure 4 shows the IPCs averaged across only high
performance benchmarks for the 4-wide, 8-wide and 16-wide
configurations. Some benchmarks in our suite did not exhibit
much improvement in performance when the machine width is in-
creased. These benchmarks are not included in Figure 4, which
shows the IPCs averaged across dct, mpeg2encode and radar. In
these benchmarks, the performance with an idealized interconnect
nearly doubles when the machine width is increased by a factor
of 4 as shown by the S;4eq: bar in the graph. Multi-hop networks
are effective at extracting a significant fraction of this idealized
performance and are almost as good or better than single-hop net-
works where wiring overhead is ignored. When we incorporate
the wiring overhead of single-hop networks (o = 2), the multi-
hop networks are better at all machine widths. Performance details
for individual benchmarks are presented in [20]. We also exam-
ined clustered VLIW processors, where our results showed that
a inter-cluster routed multi-hop network connecting every N/4th
node, with a full bypass intra-cluster network performed best, in
an N-wide processor.

6 Grid Processor Architectures

Grid Processor Architectures (GPAS) use static placement but dy-
namically issue instructions. The three goals of this family of ar-
chitectures are to extract high ILP, execute at a fast clock rate,
and scale with technology. We use an array of ALUs with short

@) le) @) @) @) O
m o o
Mesh Star

Triangle

Figure 5: Multi-hop GPA Interconnects. Only the wires out of the
center node of the representative 3x3 array is shown.

paths among them, mapping compiler-generated hyperblocks to
this array. Multi-hop networks are ideally suited for this class of
architectures for which the primary goal is to avoid global commu-
nication and extract performance from ALU chaining by mapping
the critical path onto the shortest physical path. Previous work de-
scribed the architecture and demonstrated the criticality of inter-
connect latency [13]. This section contains a more detailed anal-
ysis of the effects of latency and different network configurations
on overall performance. Similar to the VLIW machine model, we
simulate a perfect lookahead reservation scheme, hiding the router
processing delay and incurring only the fan-out/fan-in forwarding
delay of 0.25 cycles. Again, the 1 segment delay was 0.60 cycles,
and we simulate a 10F04 clock cycle.

We examine the same three parameters of performance as in
the VLIW experiments, and investigated several different connec-
tion topologies on an 8x8 grid. This paper discusses only 3 rep-
resentative multi-hop interconnect networks shown in Figure 5,
while details on all the networks we investigated are presented
in [20]. The networks range from very low fan-out (3), to moder-
ately high fan-out (8). The triangle network connects 3 neighbors
together, similar to the VLIW M2 interconnect, while the moder-
ately rich star network with a fan-out of 8, connects the immediate
8 neighbors together. For comparison we looked at the ideal, re-
alistic and worst case single-hop networks. We examined wiring
overhead factors of 1 and 2 to determine the wiring area effect on
the single-hop, high-bandwidth networks.

Routing Latency: ~ Column 2 of Table 3 shows the average
routing latency in the grid network averaged across all the bench-
marks. The realistic single-hop network S;...; has a 2-cycle rout-
ing latency and achieves performance closest to the ideal network
Sidear. The very low fan-out mesh and triangle multi-hop point-
to-point networks show significantly higher routing latency. The
star network, with a fan-out of 8, is within 50% of the high band-
width all-to-all Sy.q: network. When we account for the wiring
overhead for the single-hop networks (as shown in the last 2 rows
in the table), they perform worse than the star network.

Contention: The contention in the network is again closely
correlated with the fan-out of the topologies. The star network
has the least contention (13%), while the triangle and mesh show
much higher contention. This trend is to be expected because, as
the interconnect richness increases, the latency due to contention
decreases, making the star network the most efficient.

Number of Hops: As shown in column 4 of Table 3, the num-
ber of hops is also the least for the star network, with the triangle
and mesh networks requiring slightly more. In all networks the
number of hops is approximately 3 on the 64 node array, indicat-
ing effective scheduling. The mesh network has a higher average
number of hops but a lower average latency simply because of the

Network Latency | Contention | #of | Avgerage
(cycles) (%) Hops IPC
Sideal 0.25 0 1 7.8
Sreal 2.07 0 1 5.0
Sworst 7.85 0 1 2.3
Star 3.26 13 2.47 4.2
Mesh 5.11 27 3.17 3.7
Triangle 7.8 43 2.80 3.7
Sreal (= 2) 420 0 1 3.6
Sworst (@=2) | 15.58 0 1 1.6

Table 3: Grid processor interconnect network performance and
instruction throughput.

higher contention of the triangle network.

IPC: Due to its dynamic issue capability, the Grid Proces-
sor achieves significantly higher IPC than the VLIW machines de-
scribed in the previous section. Column 5 in Table 3 shows the
IPC averaged across all of the benchmarks, using each of the inter-
connects. The fully connected single-hop network S,...; achieves
63% of ideal performance (7.8 versus 5.0), when wiring overhead
is ignored. The three multihop networks provide roughly the same
performance, between 4.2 and 3.7, and approach the performance
of the Syeq: Network without wiring overhead. When the wiring
area overhead is imposed on the single-hop networks, their perfor-
mance drops significantly (from 5.0 average to 3.6 for the Syca:
network), making them worse than all the multi-hop networks.
These results show that RIANs are effective and perform better
than single-hop high bandwidth interconnects on very wide-issue
architectures.

7 Conclusions

Dramatic increases in on-chip real-estate have driven architectures
to scale the number of execution units in search of higher perfor-
mance. However, traditional operand transmission networks that
rely on broadcasting do not scale well with the technology con-
straints of faster transistors and slower wires. In addition, wiring
overheads for broadcast networks scale poorly. In this paper, we
have provided a taxonomy of Inter-ALU Networks (IANs) that in-
cludes traditional routing networks as well as emerging classes of
point-to-point operand networks. The key components of these
networks are their execution model (broadcast or point-to-point),
their connectivity (single-hop or multi-hop), and when routing de-
cisions are made (dynamically or statically). We have proposed a
dynamically routed, point-to-point, multi-hop network, classified
as PMD in our taxomony, and also called a routed inter-ALU net-
work (RIAN) as a communication architecture scalable to tens of
ALUs.

In our circuit analysis, we showed that these multi-hop net-
works scale much better than broadcast networks which suffer pri-
marily from wire delays resulting from significantly larger area re-
quired for wiring. We designed and measured novel features of a
router tailored to a fine grain RIAN including simple topologies
and lookahead routing prior to data arrival. With these mech-
anisms, our measurements show that we can limit per-hop la-
tency to 1 cycle in a 100nm technology with a 10F04 clock cycle.
We applied these routing techniques to a conventional VLIW ar-
chitecture and Grid Processor architecture, showing that operand
broadcast is not necessary in these architectures and that existing

scheduling algorithms are effective at placing producers and con-
sumers close to one another in such a network.

Our results show these RIANs outperform single-hop broad-
cast networks in both architectures when conservative wiring over-
heads are incorporated into the modeling of single-hop networks.
These results are similar to Dally’s conclusions on the design of k-
ary interconnection networks for multicomputers [6]. Low-degree
k-ary n-cube networks with express channels performed better
than very high degree networks which are difficult to build be-
cause of physical wire limitations - the exact constraint faced in
IANSs in microprocessors. The lessons from the design of multi-
computer networks may be applicable to scalar on-chip IANs. One
important difference though, is that in multicomputer networks the
node-delay (forwarding delay) is more than an order of magnitude
higher than the wire delay, whereas in RIANSs those two delays are
comparable.

Future architectures must address the issue of operand bypass
among a large number of ALUs. The RIANs we propose scale to
tens of ALUs and are designed to work at fast clock rates. A key
feature to the processor architectures which enabled our point-to-
point routing strategy is the knowledge of producer and consumer
instruction locations. While statically scheduled architectures nat-
urally provide this support for RIANs, dynamically scheduled su-
perscalar processors currently do not. We foresee these architec-
tures also adopting RIANSs by using dynamic rescheduling tech-
niques and clustering.

References

[1] V. Agarwal, S. W. Keckler, and D. Burger. Scaling of microarchi-
tectural structures in future process technologies. Technical Report
TR2000-02, Department of Computer Sciences, The University of
Texas at Austin, Austin, TX, February 2000.

[2] P. Ahuja, D. W. Clark, and A. Rogers. The performance impact of
incomplete bypassing in processor pipelines. In Proceedings of the
28th Annual International Symposium on Microarchitecture, pages
36-45, November 1995.

[3] R.Bhargava and L. K. John. Improving dynamic cluster assignment
for clustered trace cache processors. In Proceedings of the 30th In-
ternational Symposium on Computer Archictecture, pages 264-274,
June 2003.

[4] M.D.Brown, J. Stark, and Y. N. Patt. Select-free instruction schedul-
ing logic. In Proceedings of the 34th Annual International Sympo-
sium on Microarchitecture, pages 204-213, December 2001.

[5] R.P. Colwell, R. P. Nix, J. J. O’Donnell, D. B. Papworth, and P. K.
Rodman. A VLIW architecture for a trace scheduling compiler. IEEE
Transactions on Computers, 37(8):967-979, August 1988.

[6] W. Dally. Express Cubes: Improving the Performance of k-ary n-
cube Interconnection Networks. 40(9):1016-1023, September 1991.

[7]1 K. . Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The multiclus-
ter architecture: reducing cycle time through partitioning. In Pro-
ceedings of the 30th International Symposium on Microarchitecture,
pages 149-159, December 1997.

[8] M. Fillo, S. W. Keckler, W. J. Dally, N. P. Carter, A. Chang, Y. Gure-
vich, and W. S. Lee. The M-Machine Multicomputer. In Proceedings
of the 28th International Symposium on Microarchitecture, pages
146-156, December 1995.

[9] S. Gupta, S. W. Keckler, and D. C. Burger. Technology indepen-
dent area and delay estimations for microprocessor building blocks.
Technical Report TR-00-05, Department of Computer Sciences, The
University of Texas at Austin, Austin, TX, February 2001.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

R. Ho, K. W. Mai, and M. A. Horowitz. The future of wires. Pro-
ceedings of the IEEE, 89(4):490-504, April 2001.

R. E. Kessler. The Alpha 21264 microprocessor.
19(2):24-36, March 1999.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: A
tool for evaluating and synthesizing multimedia and communications
systems. In Proceedings of 30th Annual International Symposium on
Microarchitecture, pages 330-335, December 1997.

IEEE Micro,

R. Nagarajan, K. Sankaralingam, D. C. Burger, and S. W. Keckler. A
design space evaluation of grid processor architectures. In Proceed-
ings of the 34th Annual International Symposium on Microarchitec-
ture, pages 40-51, December 2001.

S. Palacharla, N. P. Jouppi, and J. Smith. Complexity—effective su-
perscalar processors. In Proceedings of the 24th Annual Interna-
tional Symposium on Computer Architecture, pages 206-218, June
1997.

J. M. Parcerisa, J. Sahuquillo, A. Gonzélez, and J. Duato. Efficient
interconnects for clustered microarchitectures. In Proceedings of the
International Conference on Parallel Architectures and Compilation
Techniques, pages 291-300, September 2002.

L. S. Peh and W. J. Dally. Flit-reservation flow control. In Pro-
ceedings of the 6th International Symposium on High-Performance
Computer Architecture, pages 73-84, January 2000.

The National Technology Roadmap for Semiconductors. Semicon-
ductor Industry Association, 1999.

The International Technology Roadmap for Semiconductors. Semi-
conductor Industry Association, 2001.

V. A. Singh, S. W. Keckler, and D. Burger. A routing network for the
grid processor architecture. Technical Report TR-03-10, The Uni-
versity of Texas at Austin, April 2003.

V. A. Singh, K. Sankaralingam, S. W. Keckler, and D. Burger. Design
and analysis of routed Inter-ALU Networks for ILP scalability and
performance. Technical Report TR-03-17, The University of Texas
at Austin, July 2003.

E. Sprangle and D. Carmean. Increasing processor performance by
implementing deeper pipelines. In Proceedings of the 29th Inter-
national Symposium on Computer Archictecture, pages 25-34, May
2002.

M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Green-
wald, H. Hoffman, P. Johnson, W. L. Jae-Wook Lee, A. Ma, A. Saraf,
M. Seneski, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe,
and A. Agarwal. The RAW microprocessor: A computational fab-
ric for software circuits and general-purpose programs. IEEE Micro,
22(2):25-35, March 2002.

M. B. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal. Scalar
operand networks: On-chip interconnects for ILP in partitioned ar-
chitectures. In Proceedings of the 9th International Symposium on
High Performance Computer Architecture, pages 341-353, February
2003.

R. Tomasulo. An efficient algorithm for exploiting multiple arith-
metic units. IBM Journal Research and Development, 11:25-33,
January 1967.

V.Kathail, M.Schlansker, and B.R.Rau. Hpl-pd architecture speci-
fication: Version 1.1. Technical Report HPL-93-80(R.1), Hewlett-
Packard Laboratories, February 2000.

E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee,
J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Amarsinghe, and
A. Agarwal. Baring it all to software: RAW machines. IEEE Com-
puter, 30(9):86-93, September 1997.

