
Appears in the 19th International Conference on Supercomputing

A NUCA Substrate for Flexible CMP Cache Sharing

Jaehyuk Huh Changkyu Kim† Hazim Shafi Lixin Zhang §

Doug Burger Stephen W. Keckler†

†Dept. of Computer Sciences §Austin Research Laboratory
The University of Texas at Austin IBM Research

ABSTRACT
We propose an organization for the on-chip memory sys-
tem of a chip multiprocessor, in which 16 processors share
a 16MB pool of 256 L2 cache banks. The L2 cache is or-
ganized as a non-uniform cache architecture (NUCA) array
with a switched network embedded in it for high perfor-
mance. We show that this organization can support the
spectrum of degrees of sharing: unshared, in which each
processor has a private portion of the cache, thus reduc-
ing hit latency, completely shared, in which every processor
shares the entire cache, thus minimizing misses, and every
point in between. We find the optimal degree of sharing for
a number of cache bank mapping policies, and also evaluate
a per-application cache partitioning strategy. We conclude
that a static NUCA organization with sharing degrees of two
or four work best across a suite of commercial and scientific
parallel workloads. We also demonstrate that migratory, dy-
namic NUCA approaches improve performance significantly
for a subset of the workloads at the cost of increased power
consumption and complexity, especially as per-application
cache partitioning strategies are applied.

Categories and Subject Descriptors: C.1.2 [Processor
Architectures]: Multiple Data Stream Architectures (Mul-
tiprocessors), B.3.2 [Memory Structures]: Design Styles –
Shared memory, C.4 [Performance of Systems] – Design stud-
ies

General Terms: Performance, Design, Experimentation,
Measurement

Keywords: chip-multiprocessor, cache sharing, non-
uniform cache architecture

1. INTRODUCTION
Assuming that power ceilings do not limit continued CMP

integration, future server-class processors are likely to con-
tain large numbers of processors along with large caches.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’05, June 20–22, 2005, Boston, MA, USA.
Copyright 2005 ACM 1-59593-167-8/06/2005 ...$5.00.

While level-one caches are likely to remain private to each
processor, the degree of sharing for the integrated level-two
caches will be a key design decision. The level-two caches
may be shared by all processors, or may be separated into
private per-processor partitions, or any point in between.
In this paper, we explore this range of caching and sharing
policies for a CMP targeted at 45 nanometer technologies,
with 16MB of on-chip cache and 16 high-capability proces-
sors. The specific layout we propose, based on a non-uniform
cache architecture (NUCA) designs, mitigates the effects of
growing wire resistivity and thus intra-cache communication
delays, and permits any degree of cache sharing in this sin-
gle implementation. The underlying hardware is sufficiently
flexible to have its degree of sharing chosen dynamically,
adjusted by the operating system.

The tension between a greater versus lesser degree of shar-
ing is driven by the reduced misses of greater cache sharing
versus the reduced hit latencies of lesser cache sharing. More
precisely, we call the sharing degree the number of proces-
sors that share a given pool of cache. In this terminology, a
sharing degree of one means that each processor has its own
private L2 partition, whereas a sharing degree of sixteen
means that all processors are sharing a single large cache
array.

Greater sharing degrees reduce misses in two ways. First,
they reduce the number of shared copies of a single line exist-
ing on-chip, since each line maps to only one place in shared
caches. Second, they provide a larger shared pool to toler-
ate imbalances across the sharers’ working sets. However,
larger sharing degrees result in longer cache latencies, as the
shared cache is larger than the individual private partitions,
assuming total cache area is held constant. An ideal design
would somehow capture the benefits of both reduced misses
and reduced hit latencies.

As shown in Figure 1, the floorplan we evaluate consists
of a single large cache array, broken into numerous banks
which are connected by a lightweight, switched 2-D mesh
network. Processors span the top and bottom edges of the
cache array, and each has a port into the L2 cache network.
By adjusting the bits used to route memory addresses to a
cache bank, the cache array is configurable by the system to
use any degree of sharing. If each processor maps the same
address bit string to a different bank, the sharing degree is
one. If all processors map the same address bits to a single
bank, the sharing degree is sixteen.

We first measured the optimal bank size and sharing de-
gree for a cache in which the mapping of lines to banks does
not change (this uniprocessor organization was called static

 P2

I D

 P0

I D

 P1

I D

 P3

I D

 P5

I D

 P7

I D

 P6

I D

 P4

I D

Sharing Degree = 1

Sharing Degree = 8 Sharing Degree = 16

Sharing Degree = 2 Sharing Degree = 4

Directory

I D

 P15

I D I D I D I D I D

 P9

I D

 P8

I D

 P14 P13 P12 P11 P10

(a) CMP Substrate: 16 CPUs 8x8 Banks (b) Sharing degree: 1, 2, 4, 8 and 16

Figure 1: 16 Processor CMP Substrate

NUCA, or S-NUCA, in prior work [13]). We then evaluated
per-application sharing degrees, as well as different tech-
niques, such as intra-cache line migration (called dynamic,
or D-NUCA caches in prior work) and level-one prefetching,
to reduce average L2 hit latencies and thus support larger
sharing degrees. The results of this study are the following:

• The ideal bank size across all configurations is 64KB.

• We confirmed that significant latency reductions are
possible for private L2 caches, and significant miss re-
ductions are possible for shared L2 caches. The results
showed 54% latency reduction with private L2 caches
and 33% reduction of external memory accesses with
fully shared caches.

• For shared S-NUCA organizations, low-to-medium shar-
ing degrees, from one to four, provide the best perfor-
mance for all applications except one. The best shar-
ing degree across all benchmarks is four.

• Although dynamic mapping (D-NUCA) reduces hit la-
tencies for high sharing degrees by 30%, performance
improvement is relatively modest except two applica-
tions with 17% and 20% speedups. However, this im-
provement incurs considerable complexity and power
overheads.

• Level-one prefetching improves performance propor-
tionately to the L2 cache hit delay, but does not change
the ideal sharing degree significantly.

• A priori, application-specific adaptation of the sharing
degree provides an average 5% performance boost for
the D-NUCA organization, but little gain for the S-
NUCA organization.

• Per-line sharing degree, which provides two different
sharing degrees for private and shared cache blocks,
can mitigate the negative effect of large sharing de-
grees, thus reducing overall miss rates and avoiding
slow hit latencies. The best private sharing degree is
one or two, reducing hit latencies for private blocks,
but the best shared sharing degree is 16, maximizing
caching efficiency.

In Section 2, we describe the flexible NUCA substrate that
supports reconfigurable sharing degrees. In Section 3, we
describe the simulation environment that we use, evaluate
per-application and per-class sharing degrees, and compare
the performance of S-NUCA and D-NUCA. We also discuss
the effect of L1 prefetching on the best sharing degree. In
Section 4, we describe related work in CMP L2 cache de-
signs. We conclude in Section 5.

2. CMP L2 CACHE DESIGN SPACE
Figure 1 (a) shows a multiprocessor chip projected for

45nm process technology in 2010. The chip has 16 proces-
sors and 16MB of L2 cache capacity on a die area of ap-
proximately 300mm

2. The L2 cache resides in the middle
of the chip and contains an array of banks connected by a
lightweight routing network. Half of the 16 CPUs are at
the top and the other half are at the bottom. Because of
the large number of CPUs and cache banks, there are many
possible design options for the L2 cache. In this paper, we
search for the cache sharing organization that gives the best
average performance across a range of commercial and sci-
entific applications.

In the rest of this section, we first discuss the implica-
tions of varying the number of CPUs that can share a cache
bank. We then describe both static and dynamic ways to
map lines to cache banks. We then propose two approaches
for reducing L2 latency and facilitating larger shared cache
pools (thus reducing both latency and misses): an efficient
migration policy that moves data to tiles closer to the re-
questing CPU, and partial tag arrays to speed up the lookup
of remote cache banks.

2.1 Sharing Degree
Shared L2 caches have been adopted as an alternative to

traditional private L2 caches for CMP L2 cache designs [3,
7, 11, 23]. One of the key factors in CMP shared caches is
the number of CPUs that can share a L2 cache, called the
sharing degree (SD for short). A sharing degree of N means
that N CPUs share a L2 cache.

The basic trade-offs of varying the sharing degree are
hit latency, hit rate, inter-processor communication, and
coherence maintenance overhead. In general, for hit la-
tency, a lower sharing degree is better as each L2 cache is

smaller. For hit rates and inter-processor communication,
higher sharing degrees are better because they make more
efficient use of cache capacity. Since a higher sharing degree
has more L1 caches sharing an L2 cache, it is more expen-
sive to maintain L1 coherence. However, a lower sharing
degree means more discrete L2 caches on a chip, making
maintaining L2 coherence more expensive.

The main advantage of higher sharing degrees is higher
L2 cache hit rates. If the working sets across CPUs are
not well balanced, private L2 caches can make one CPU
suffer from capacity misses while other CPUs have unused
cache space. Shared caches, on the other hand, allow that
otherwise unused cache space to be used by the space-hungry
CPU. Furthermore, shared caches keep at most one copy of
a block, not wasting space by storing multiple copies of the
same block, unlike private L2 caches sharing copies of the
same line. As a result, shared caches can effectively store
more data, indirectly increasing hit rates. A shared cache
also avoids the L2 coherence misses generated by private L2
caches [8].

Inter-processor communication through a shared L2 cache
is normally faster than through private L2 caches connected
by a coherent bus. With shared L2 caches, processors com-
municate through L2 cache blocks directly. With private L2
caches, processors have to communicate through private L2
caches and coherence fabric.

The main drawback of a higher sharing degree is the po-
tential for higher average hit latency due to the larger size,
longer wire delays, and increased bandwidth requirements.
In future wire-dominated implementations, the effect of in-
creased hit latency may outweigh the benefit of increased
hit rate.

Another overhead of shared caches is that each L2 cache
needs to maintain coherence for the L1 caches sharing the
L2 cache. In this study, the system maintains L1 cache
coherence by embedding sharing status vectors in the L2 tag
arrays. The tag of an L2 cache line includes a bit mask to
indicate which L1 caches have copies of the line. When a L2
cache receives an update request from an L1 cache, it sends
invalidation messages to other L1 caches that have a copy
of the requested block. Such directory-based L1 coherence
was used in the Piranha CMP [3]. Although broadcast-
based protocols can reduce the area overhead for sharing
vectors [11, 23], we used the directory protocol because it
is more scalable for these types of systems, demanding less
L2-to-L1 bandwidth than broadcast protocols.

A lower sharing degree means that each chip will have
more private L2 caches, thus it is more difficult to main-
tain L2 data coherence. As with the L1 caches, we use a
centralized L2 tag directory to maintain on-chip L2 coher-
ence. When a L2 miss is detected, the request is sent to the
centralized L2 tag directory. The directory decides, with-
out snooping other L2 caches in the chip, whether to get
data from another L2 cache on the chip or whether to issue
an off-chip memory request. The directory-based coherence
protocol has a number of advantages over broadcast-based
protocols. First, it relieves the coherence bus from becom-
ing the bottleneck. Second, it detects on-chip cache misses
faster because it does not need to snoop other L2 caches in
the chip. Third, the directory functions as the single ex-
ternal coherence snoop point for requests from other chips,
avoiding the need to have multiple L2 caches on the same
chip snoop the global bus.

2.2 Organization
Shared caches require more bandwidth than private caches,

since the data request rate is proportional to the number
of processors. Two common ways of increasing bandwidth
are i) adding more access ports and ii) splitting a mono-
lithic cache into multiple independently operated banks. L2
caches typically use the latter because it is more cost-effective
than having multiple ports. For instance, the dual-processor
Power4 CMP [23] uses three banks, and the eight-processor
Piranha CMP uses eight banks for each L2 cache.

As exemplified in Figure 1, a CMP chip can consist of
many independently operated L2 cache banks. To enable
high-speed clocking and reduce the space for wires, we use
a switched network, instead of traditional dedicated wires,
to connect cache banks and processors. A processor may
access only one L2 cache directly and must use the coherence
fabric to access other L2 caches. Figure 1 (b) shows five
possible partitioning schemes in a 16 processor CMP that
have sharing degrees of 1, 2, 4, 8, and 16, respectively. With
a sharing degree of 1, there are sixteen 1 MB caches, each
of which is private to one processor. With a sharing degree
of 16, there is only one 16 MB cache, which is shared by all
16 processors.

To optimize bank organization, we evaluated 5 different
bank sizes: 64KB, 128KB, 256KB, 512KB, and 1MB. We
estimated bank access latencies using Cacti [18] and a wire
delay model [1]. Network hop delays are derived from the di-
mension of banks, with switching overheads. Among the five
bank configurations, our experiments show that the 64KB
bank size has the best performance across all experimental
configurations. For the remainder of this paper, we assume
a 16x16 64KB bank array.

To change sharing degrees, the bank mapping tables in L1
cache controllers, bank controllers, and the central on-chip
directory are updated by the operating system. For fully
reconfigurable sharing degrees, the sharing status vectors
both in L2 tags and the central directory should have enough
bits to represent all processors in the CMP. In this substrate,
the size of bit vectors in L2 tags and the central directory is
the maximum 16.

2.3 Mapping Algorithms
With multiple banks per L2 cache, we have the choice

of either always putting a block into a designated bank or
allowing a block to reside in one of multiple banks (but not
simultaneously). We call the former static mapping and the
latter dynamic mapping.

In static mapping, a fixed hash function uses the lower
bits of a block address to select the correct bank. L2 ac-
cess latency is proportional to the distance from the issuing
L1 cache to the L2 cache bank. By allowing non-uniform
hit latencies, static mapping can reduce hit latencies of tra-
ditional monolithic cache designs, which fix the latency to
the longest path [13]. Because a block can be placed into
only one bank, its L2 access latency is essentially decided by
its address. If frequently accessed blocks happen to map to
banks with longer latencies, static mapping will not provide
optimal performance.

Dynamic mapping (D-NUCA) addresses the problem faced
by static mapping by allowing a block to go to multiple can-
didate banks, or a bank set. With proper placement and
migration policies, D-NUCA enables the cache to place fre-
quently accessed blocks in the banks closest to the CPU

and less frequently accessed block in the banks that are far-
ther away. Previous studies have shown that generational
promotion that migrates blocks towards banks near the re-
questing processors yields good performance in uniprocessor
systems [5, 13].

CMPs pose new challenges to dynamic mapping. First,
migration in multiple directions can cause migration con-
flicts, with shared blocks ping-ponging between two proces-
sors. Second, searching blocks in bank sets becomes more
complicated than single-processor D-NUCA organizations.
Past studies have shown that centralized partial tags work
well in uniprocessor D-NUCA [13]. In CMPs, however, be-
sides increased bandwidth requirements on the central par-
tial tag array, the central partial tags cannot be located close
to all processors, thus requiring multi-hop latencies to access
the tags.

We address the challenge with two mechanisms: distributed
partial tags and a dynamic lookup mechanism.

2.3.1 Migration Policies
A simple migration policy permits a block to be mapped

to only one column and restricts migration to the vertical di-
mension only (D-NUCA 1D, Figure 2 (a)). In this policy, the
vertical migration does not reduce the network latency for
the horizontal traversal of requests and data blocks. We as-
sumed the following bank set policies for misses: new cache
blocks are inserted at the tail of a column bank set. For 8
and 16 sharing degrees, the victim banks are selected from
the banks in the middle.

The second migration policy allows blocks to be mapped
to any bank without restriction. Migration can happen in
both vertical and horizontal directions (D-NUCA 2D, Fig-
ure 2 (b)). This policy can further reduce hit latency by de-
creasing horizontal network latencies. However, it requires a
more complicated search mechanism since an L1 miss might
need to look up all banks in a shared cache. In D-NUCA
2D, new blocks are inserted at the column closest to the
requesting processor.

Unlike single-processor D-NUCA caches, in which blocks
are always promoted in one direction, multiple processors
from different locations in CMPs can cause cache blocks to
be promoted in conflicting directions. In a worst-case sce-
nario, a block may ping-pong between two adjacent banks,
with no reduction in hit latencies. To reduce unnecessary
migration for conflicting promotion, we simulated two-bit
saturated counters embedded in the cache tags, which al-
low a block to migrate only if the relevant counter for that
moving direction is saturated.

2.3.2 Lookup Mechanisms
A partial tag structure replicates low-order bits of full

cache tags as a way to reduce the number of requests to full
tags [12]. In single-processor D-NUCA caches, centralized
partial tags detect L2 misses early and reduce the number of
requests to banks. However, the centralized partial tag ap-
proach has three drawbacks. First, since the global partial
tag array is required to hold the information about all cache
blocks in the cache, its access time and energy consumption
will be relatively large. Second, since the centralized struc-
ture should be placed near the center of the cache, wire
delays to and from it can be significant. Finally, the cen-
tralized tag array may require many ports since all primary
cache misses must access it.

Parameter Value

Processor frequency 10 GHz
Issue width 4
Window size 64-entry RUU
Number of CPUs 16
L1 I/D cache 32KB, 2-way, 64B block, 8 MSHRs
L2 cache 16x16 banks
L2 cache bank 64KB, 16-way, 5 cycle latency
Network 1 cycle latency between two adjacent banks
On-chip directory 10 cycle access latency
Main Memory 260 cycle latency, 360 GB/s bandwidth

Table 1: Simulated system configuration

Application Dataset/Parameters

SPECWeb99 Apache web server, file set: 230MB
TPC-W 185MB databases using Apache & MySQL
SPECjbb IBM JVM version 1.1.8, 16 warehouses
Ocean 258 × 258 grid
Barnes 16K particles
LU 512 × 512, 16 × 16 blocks
Radix 1M integers

Table 2: Workloads.

To overcome these drawbacks, we employ a distributed
scheme: partial tags are distributed over the columns, and
each column’s partial tag array tracks the state of blocks
cached in that column. Any changes in a bank column’s
contents must be reflected in its partial tags synchronously.
Cache lookups for a bank column always start from the dis-
tributed partial tag array. In the SD=8 or 16 cases, we
replicate the partial tags at both ends of a column. This
doubles the space overheads of partial tags, but greatly de-
creases the distance from processors to column partial tags.

In D-NUCA 1D, the search mechanism is straightforward
with column partial tags. L1 misses are sent to the head
of statically mapped columns, and the first bank and par-
tial tags are accessed simultaneously. For a miss in the first
bank, the column partial tags can command further lookups
of other banks in the same column or start an L2 refill re-
quest. In D-NUCA 2D, the partial tags of all columns that a
block can map to may be searched. L1 misses are first sent
to the column closest to the requesting processor. If the
block is not found in that column, other columns’ partial
tags are searched.

3. EXPERIMENTAL RESULTS

3.1 Methodology
We evaluated our CMP cache designs using an execution-

driven full-system simulator derived from IBM’s SimOS-
PPC, which uses AIX 4.3.1 as the simulated OS. The core
timing model extends the SimpleScalar simulator with mul-
tiprocessor support. Table 1 shows a summary of the main
architectural parameters. We used three commercial ap-
plications: SPECWeb99, TPC-W, and SPECjbb, and four
scientific shared-memory benchmarks from the SPLASH-2
suite [24]: Ocean, Barnes, LU, and Radix. Table 2 shows
the dataset size and other notable features of each applica-
tion.

As previously discussed, we model an invalidation-based
cache coherence protocol in the CMP. The L2 caches are
the points of L1 coherence and maintain sharing vectors for
L1 caches. The L2 cache bank array is embedded with a

New blocks from memory or
other shared caches

New blocks from memory or
other shared caches

Block
Migration

(a) D−NUCA 1D

CPU0 CPU1

Partial tags

4X4 Banks

Partial tags

4X4 Banks

Block
Migration

(b) D−NUCA 2D

CPU0 CPU1

Figure 2: D-NUCA Block Migration Policies

Sharing Degree (SD) SD=1 SD=2 SD=4 SD=8 SD=16
L2 hit time (cycles) 16.5 18.0 20.9 30.0 35.9
Norm. Remote L2 hits 1.00 0.75 0.60 0.36 n/a
Norm. Mem. accesses 1.00 0.88 0.78 0.78 0.66

Table 3: Average L2 hit times, and normalized re-
mote L2 hits and memory accesses

2D-mesh point-to-point interconnection network comprised
of links and switches. All messages for coherence and data
migration are modeled to consume network bandwidth; how-
ever, we assume infinite buffering at each switching node. A
centralized directory is used to track cache lines that are
cached in the CMP and is consulted on a cache miss to en-
force coherence and/or detect misses.

3.2 Degree of L2 Sharing
In this section, we study the performance effect of the

varied L2 cache sharing degrees. In the baseline CMP with
S-NUCA based shared caches, the sharing degree changes
the effective L2 hit latency, communication frequency among
shared caches (e.g., cache-to-cache transfers), and external
memory accesses. Table 3 shows the trends in average L2
hit latencies, the number of remote L2 hits and memory ac-
cesses as the sharing degree (SD) is changed, with the latter
two normalized to the SD=1 case. As the sharing degree
increases, shared cache hit latencies increase monotonically
from 17 cycles to 36 cycles.

Remote L2 accesses can occur in two cases: First, a read-
only shared line is evicted from a local L2 cache, due to a
conflict/capacity miss, and upon the next access that line
is provided by another shared cache, which has an intact
copy of that line. Second, a producer-consumer line is in-
validated by another processor in a remote shared cache. In
both cases, communication across shared cache boundaries
is more expensive in terms of latency and energy consump-
tion than intra-shared cache communication. After detect-
ing a miss in the local shared cache, a miss request is sent
to the centralized on-chip directory. The on-chip directory
re-transmits the request to another shared cache to service
the miss if the cache line is on-chip. Such remote L2 accesses
(cache-to-cache transfers) decrease as the sharing degree in-
creases since the likelihood that shared cache lines fall within
the same L2 cache increases.

Memory accesses also decrease as the sharing degree in-
creases. With a high sharing degree, processors can share
the cache capacity dynamically, reducing the effect of a

temporal working set imbalance, resulting in fewer capac-
ity misses than smaller caches. Furthermore, by reducing
the number of replicated copies of shared data, the limited
on-chip cache capacity can be more efficiently utilized. As
shown in Table 3, increasing the sharing degree to 16 can
reduce the external memory accesses by 33% on average.

In several ways, the sharing degree affects L1 miss penal-
ties. Figure 3 shows a breakdown of the average L1 miss
penalty for each application as the L2 cache sharing degree
is varied. L1 misses are served by either the local L2 cache,
a remote L2 cache, or external memory. Each bar in the
graph shows how much latency each component contributes
to the average L1 miss penalty.

Across all benchmark applications, the L2 hit time com-
ponent (black bar) increases monotonically as the sharing
degree increases, due to the wire delay increase in the larger
caches. The remote L2 and memory components decrease
as the degree of L2 sharing is increased; however, those re-
ductions in latency are often not enough to outweigh the
increase in local L2 hit latency. For applications that have
high local L2 hit rates and low sharing of cache lines like
Barnes-Hut, an increased sharing degree beyond private L2
caches degrades performance.

Figure 4 shows the relative execution times for each ap-
plication as the sharing degree is varied. As expected from
Figure 3, SPECWeb99, Ocean, and LU have the best per-
formance at sharing degree two or four. For Barnes and
SPECjbb, increasing the sharing degree degrades perfor-
mance, with the best performance at the sharing degree
of one. The bar with the lowest average L1 miss penalty
does not always correspond to the fastest execution time
since each miss may affect the execution time with different
weight (e.g., SPECWeb99 with SD=4). Critical misses that
are not overlapped with other misses can increase execution
times more than non-critical misses.

We draw three conclusions from these results. First, build-
ing high-degree shared caches for CMPs does not have any
advantage in wire-delay dominated future technologies even
when high degrees of application sharing exist. The in-
crease in L2 hit latency in shared caches degrades perfor-
mance more than the reduced misses improve it. Second,
the sharing degree can change overall performance signifi-
cantly. The difference between the best and worst sharing
degree ranges from 9% to 22%. Third, no single sharing de-
gree provides the best performance for all the benchmarks.
The best performing sharing degree varies across applica-
tions. Nevertheless, the SD=4 design point has the best

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
Sharing Degree

0

20

40

60

80

100

L1
 M

is
s

T
im

e
(C

yc
le

s)

Memory
Remote L2 hit
Local L2 hit

SPECweb99 TPC-W SPECjbb Ocean Barnes LU Radix

Figure 3: S-NUCA L1 miss latencies (16x16 banks)

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
Sharing Degree

0.0

0.5

1.0

E
xe

cu
tio

n
T

im
e

SD = 1
SD = 2
SD = 4
SD = 8
SD = 16

SPECweb99 TPC-W SPECjbb Ocean Barnes LU Radix

Figure 4: S-NUCA execution time (normalized to SD=1)

0

20

40

60

80

100

L1
 M

is
s

T
im

e
(C

yc
le

s)

Memory
Shared Remote L2 hit
Shared Local L2 hit
Private Local L2 hit

SD=4

PSD=1/SSD=16

SD=16

PSD=2/SSD=16

Ocean Radix

Figure 5: Per-line sharing degrees

average performance for the applications used in this evalu-
ation, and would be the best compromise fixed design point
for this mix of workloads for S-NUCA.

3.3 Per-line Sharing Degree
Sharing degree can affect individual cache blocks in dif-

ferent ways based on the sharing patterns of the block. For
private blocks, which will never be replicated in other caches,
a low sharing degree can reduce the access latencies without
hurting caching efficiency. For shared blocks, a higher shar-
ing degree may be more beneficial than lower sharing degree
when the reduction of replicated blocks can decrease miss
rates significantly. In this section, we investigate the poten-

tial benefit of multiple sharing degrees for different classes
of blocks.

We divide the address space into private and shared block
addresses, and assign different sharing degrees to the two ad-
dress classes. To evaluate the per-line sharing degrees, we
simulated S-NUCA with the two different sharing degrees,
private and shared (PSD and SSD). Since our full-system
simulator does not have support for distinguishing private
and shared blocks, we used an approximate method of track-
ing access patterns for the entire address space during run
time. Until more than one processor access a block address,
the address is assumed to be a private block. Once an ad-
dress is recognized as a shared block, the block is re-mapped
to caches by shared sharing degree. We assumed that the
shared sharing degree is always higher than or equal to the
private sharing degree.

Figure 5 presents the breakdown of L1 miss penalties for
the two applications in which per-line sharing degree is ef-
fective. We measured all combinations of private and shared
sharing degrees. The two bars for each application represent
the baseline ideal uniform sharing degree and the best per-
line sharing degree configuration. We divided the local L2
hit latencies into private and shared accesses.

For the two applications, per-line sharing degree reduced
execution time by 7% and 6%. With fixed sharing degree,
the best sharing degree was 4 (Ocean) or 16 (Radix). When
different sharing degrees are allowed for private and shared
blocks, the best combination is 1 or 2 for private sharing
degree and 16 for shared sharing degree. For these two

Sharing Degree SD=1 SD=2 SD=4 SD=8 SD=16
S-NUCA 16.5 18.0 20.9 30.0 35.9
D-NUCA 1D Perfect 9.8 11.2 13.8 21.7 28.6
D-NUCA 1D Real 11.2 12.3 15.0 24.8 31.5
D-NUCA 2D Perfect 10.0 10.4 11.7 19.8 25.2
D-NUCA 2D Real 11.6 13.5 16.2 25.1 31.9

Table 4: Average D-NUCA L2 hit latencies

benchmarks, access latencies to private blocks are reduced
by having lower sharing degrees (1 or 2), while replications
are minimized with high shared a sharing degree (16). With
a low private sharing degree, private blocks, which will never
be accessed by other processors, are placed on a small range
of banks close to processors. With a high shared sharing de-
gree, block replication is reduced, although the shared blocks
may be spread across a larger range of banks than private
blocks, thus increasing access latencies. It is possible that
a finer-grained distribution of lines to banks would improve
performance.

3.4 Overcoming Wire Delay Dominance
In Section 3.2, we showed the performance trade-offs of

changing the sharing degree in CMP S-NUCA L2 caches. In
this section, we evaluate dynamic mapping policies which
can potentially reduce long latencies with large sharing de-
grees. Performance improvements are achieved when the
migration policy is successful and the reduction in latency
dominates the increased latency of the more complex lookup
mechanism. To isolate the effectiveness of dynamic migra-
tion from the overheads of the search mechanism, we evalu-
ated two more configurations: perfect D-NUCA 1D and 2D
caches. The two configurations assume an oracle searching
mechanism that allows L1 misses to be sent directly to the
L2 bank storing the requested block on a hit. L2 misses are
detected without any overhead. The simulated system mod-
els other overheads such as network and bank bandwidth
consumption for accesses and migration in detail.

Table 4 shows the average L2 hit times across all appli-
cations for five sharing degrees. With the perfect lookup
mechanism, both 1D and 2D migration policies show sig-
nificant reductions in L2 hit latencies. The latency reduc-
tions increase as the sharing degree increases. At SD=16,
the perfect D-NUCA 1D and 2D policies reduce the average
L2 hit latency by 22% and 33%, respectively compared to
the S-NUCA design. However, with a realistic search mech-
anism with distributed partial tags, the latency reduction
of D-NUCA is significantly reduced, confirming the search
mechanism is a key design issue with D-NUCA.

Figure 6 shows the relative execution times of the best
performing sharing degree for the S-NUCA and D-NUCA
design points across all applications. Each bar shows the
SD with the best performance noted at the top. This figure
illustrates two issues: (1) the performance potential of the
two perfect search and migration mechanisms (1D and 2D
perfect) and how closely the realistic implementations can
match them, and (2) performance of two realistic D-NUCA
designs compared to S-NUCA with the best sharing degree.

The perfect search mechanisms with 1D and 2D dynamic
migration can reduce execution time by 3-25%, except Ocean.
For Ocean, although D-NUCA reduces average hit latencies,
L2 miss rates are increased since blocks are not promoted
quickly, and thus replaced by new blocks. For SPECjbb,
the performance improvement is small, since SPECjbb does

not take any advantage of the increased sharing degree, and
the effect of dynamic migration is not high at low sharing
degrees.

With realistic search mechanisms, performance improve-
ment of D-NUCA can be lost (SPECWeb99 and TPC-W).
For LU and Radix, both 1D and 2D migrations show large
improvement by 17%-20%. LU has a relatively large L1 data
miss rate of 12%, but the entire working set nearly fits in
the L2 caches. The reduction in L2 hit latencies directly im-
proves performance. In Radix however, external memory ac-
cesses dominate performance due to both capacity and con-
flict misses. The increased bank associativity with dynamic
migration reduced conflict misses significantly. Since shared
caches, especially with high sharing degrees, are prone to
conflict misses, the increased associativity helps avoid cer-
tain pathological conflict miss cases.

Although dynamic migration improves the performance
of shared caches, the improvement is still modest (less than
5%) for 5 tested applications. Considering the complexity
of a D-NUCA implementation and the extra energy con-
sumption due to lookups, it is unlikely that implementing
dynamic migration is justified for CMPs.

3.5 Interaction Between L1 Prefetching and
NUCA Design Alternatives

In this section, we investigate the effect of hardware-based
strided prefetching [2, 10] on NUCA design alternatives.
Since effective prefetching can tolerate L1 miss latencies,
it can potentially diminish the effect of the increased L2 hit
latency observed with larger sharing degrees. We evaluated
the effect of strided prefetching on the CMP caches using
an implementation similar to the one used by Beckmann et
al [4], but restricted to L1 prefetching. The strided prefetch-
ing strategy uses three filters with 32 entries each to detect
streams. The three filters, positive unit stride, negative unit
stride, and non-unit stride use four consecutive misses before
confirming a stream, and allocate an entry in an eight-entry
stream table. As soon as a stream is detected, six consecu-
tive prefetch requests are issued on behalf of the L1 caches.
Prefetching can be stopped when all MSHR entries are used
or prefetches cross physical page boundaries. Prefetched
cache blocks are stored directly into the caches, which may
cause cache pollution problems. If the processors access a
prefetched block, another prefetch for the stream is issued
from the stream table if the entry is still resident. Stream
table entries are replaced using an LRU policy.

Table 5 shows the coverage and accuracy of L1 prefetch-
ing. Coverage is the ratio of prefetch hits to L1 misses, and
accuracy is the ratio of prefetch hits to the total number of
prefetches, ignoring any late prefetches that may partially
hide latency. SPECjbb and LU have small coverage (0.5%
for SPECjbb and 0.1% for LU) and relatively low accuracy.
Prefetching is most effective for Ocean, with a coverage of
32% of the L1 data misses and 95% accuracy.

Figure 7 shows the relative execution times of S-NUCA
and D-NUCA 2D with L1 prefetching compared to the base-
line without prefetching using the best performing SD con-
figuration for each run. For S-NUCA shared caches, L1
prefetching can reduce execution time for SPECweb99 (3%),
Ocean (10%), and Radix (20%). For SPECjbb, L1 prefetch-
ing does not reduce execution time due to the low coverage.
Although prefetching can improve performance for many ap-
plications for the different configurations, it does not change

0.0

0.5

1.0
E

xe
cu

tio
n

T
im

e
S-NUCA
D-NUCA 1D perfect
D-NUCA 1D
D-NUCA 2D perfect
D-NUCA 2D

2 2 1
4

1
4 16 2 4

2
16

1

2 16

4 4
2

16 1

2 16

4 4
4

16
2

4 16

4 4
2 16 1

4 16

SPECweb99 TPC-W SPECjbb Ocean Barnes LU Radix

Figure 6: D-NUCA execution time (normalized to S-NUCA with SD=1)

SPECweb99 TPC-W SPECjbb Ocean Barnes LU Radix
L1 I Coverage 31.3% 14.1% 28.3% 20.3% 15.0% 14.8% 25.5%
L1 I Accuracy 46.4% 39.2% 34.0% 61.4% 50.4% 56.5% 49.4%

L1 D Coverage 14.0% 6.8% 0.5% 32.4% 12.2% 0.1% 10.3%
L1 D Accuracy 96.9% 90.0% 35.2% 95.3% 41.5% 0.1% 98.8%

Table 5: Prefetching coverage and accuracy for L1 instruction and data caches

the choice of the best average sharing degree for each design
significantly. For six applications, the best sharing degrees
with prefetching are either the same as or close to the best
sharing degree without L1 prefetching.

We observe that prefetching can also improve dynamic mi-
gration. For applications where S-NUCA prefetching is ef-
fective, D-NUCA caches have similar performance improve-
ments. This observation confirms that dynamic migration
and prefetching are complementary memory latency reduc-
tion/tolerance techniques.

3.6 Energy Trade-Offs
One concern with dynamic migration designs is the in-

creased energy consumption due to the complex search mech-
anism and cache line movement. Instead of estimating the
actual energy consumption, we indirectly show the total
number of bank accesses of S-NUCA and 2D D-NUCA. For
each application, we compared the best sharing degree of the
two configurations in Table 6. The numbers in parentheses
in the 2D D-NUCA row show the percentage of extra bank
accesses compared to the S-NUCA case.

As expected, block migration increases the total bank ac-
cesses significantly. The extra bank accesses for block mi-
gration constitute 28-48% for the tested applications. In
shared caches, unnecessary block migration may occur more
frequently than private D-NUCA caches. Although we re-
duced the unnecessary migration by 2-bit saturating coun-
ters, the number of bank accesses due to migration is still
significant.

D-NUCA lookup mechanisms also consume energy. For
each L2 access, at least a part of distributed partial tags
should be accessed. With D-NUCA 2D, the number of par-
tial tag lookups may increase, if blocks are not found in the
closest column.

4. RELATED WORK
Shared Cache Designs: Shared caches have been stud-

ied in the context of chip multiprocessors and multithreaded
processors. Sohi and Franklin’s early study proposed the in-
terleaved banks for extra ports in private L1 caches, which
resembles multi-banking in shared caches [19]. Nayfeh et al.
investigated shared caches for primary and secondary caches

on a multi-chip module substrate with four CPUs [16]. They
examined how the memory sharing patterns of different ap-
plications affect the best cache hierarchy. Subsequent work
from the same authors showed the trade-offs of shared-cache
clustering in multi-chip multiprocessors [17]. With eight
CPUs, they observed for private L2 caches, a coherence
bus becomes the performance bottleneck, suggesting shared
caches to reduce the bus traffic.

Recent studies considered wire latency as a primary de-
sign factor in CMP caches. Beckmann et al. compared
three latency reduction techniques including D-NUCA for
CMPs with an 8-CPU shared cache [4]. Their study fixed
the sharing degree to 8 and observed that combining the
three latency reduction techniques can decrease the L2 hit
latencies of CMPs. With NuRAPID-based CMP L2 designs,
Chishti et al. studied optimizations to reduce unnecessary
replication and communication overheads [6]. Speight et al.
studied how CMP L2 caches interact with off-chip L3 caches
and how on-chip L2 caches temporarily absorb modified re-
placement blocks from other caches [20].

Dynamic Partitioning: Several researches investigated
dynamically re-allocating cache capacity for CMPs and mul-
tithreaded processors. Suh et al. studied a monitoring sys-
tem for an optimal dynamic partitioning [21], and a hard-
ware partitioning mechanism for set-associative caches [22].
Liu et al. proposed achieving dynamic bank allocation by
re-mapping the banks [15]. Iyer proposed a priority-based
cache management systems to allocate cache resources by
OS-assigned priority [9]. To prevent thread starvation due
to cache capacity sharing, Kim et al. investigated fairness
issues in CMP cache sharing [14].

5. CONCLUSION
The CMP organization that we introduced in this paper is

designed to support both low-latency, private logical caches
as well as highly shared caches, simply by adjusting the map-
ping of the same address on different processors to the L2
cache.

The results showed that–compared to private, non-shared
L2 partitions–the L2 latency more than doubled for a fully
shared cache. The results also showed that the fully shared

0.0

0.5

1.0

E
xe

cu
tio

n
T

im
e

S-NUCA
S-NUCA + l1 pref.
D-NUCA 2D perfect
D-NUCA 2D perfect + l1 pref.
D-NUCA 2D
D-NUCA 2D + l1 pref.

SPECweb99 TPC-W SPECjbb Ocean Barnes LU Radix

2 2 1
4

1
4 16 4 1 2

4

1

2

2

4 4
4

16
2

4 16

4 4
4

16

2

4

16

4 4
2 16 1

4 16

4 1
2

16

1

4

16

Figure 7: Prefetching execution time (normalized to S-NUCA with SD=1)

SPECweb99 TPC-W SPECjbb Ocean Barnes LU Radix
S-NUCA Best 44 25 4 10 12 31 20
D-NUCA 2D Best 72 (40%) 34 (28%) 6 (32%) 18 (49%) 15 (27%) 60 (43%) 49 (48%)

Table 6: Bank accesses per 1K instructions

cache could eliminate a third of off-chip misses. Clearly, a
large opportunity exists if this gap can be bridged.

The S-NUCA organization worked best with a low-to-
medium sharing degree for all applications; the extra hit
latency was simply too detrimental with larger sharing de-
grees. Consequently, we evaluated L1 prefetching and dy-
namic migration of lines, attempting to reduce the average
hit latencies and make the larger sharing degrees more ef-
fective. L1 prefetching worked uniformly well, but did not
drive the ideal sharing degree significantly in one direction
or the other, even though the L1 miss rates were reduced.

Dynamic migration (D-NUCA 1D and 2D) showed mod-
est performance improvements, despite reductions in aver-
age hit latency. However, for a subset of applications, D-
NUCA drove the ideal sharing degree to higher sharing de-
grees, showing that mechanisms to reduce latency can in-
deed make higher-degree shared caches the optimal point. It
remains to be seen whether the added complexity and power
consumption justify moving to a D-NUCA design since only
a subset of the applications benefit appreciably; we think it
unlikely to be justifiable.

Since the underlying cache framework permits different
degrees of sharing on the same hardware, further oppor-
tunity exists: The cache can be configured differently to
have the ideal sharing degree for each specific application
or for individual cache lines. Figure 8 shows a comparison
of the average execution time across all applications for the
S-NUCA and D-NUCA designs normalized to the S-NUCA
design with the best sharing degree of four. For each pol-
icy, we show the performance with the best fixed sharing
degree across all applications, the worst fixed sharing de-
gree, and a per-application “variable” degree. Choosing the
best sharing degree at a finer granularity provides a small
but measurable (5%) speedup for the more aggressive poli-
cies. In Table 7, we list the ideal per-application sharing
degrees for each policy and show the percentage speedup
over the best fixed sharing degree for that policy. For D-
NUCA, SPECjbb, Ocean, and Radix showed a measurable
boost of 5-25%.

Based on these results, we conclude that the simplest de-
sign is probably the best: an S-NUCA organization with a
sharing degree of two or four. However, the D-NUCA results
still hold promise, and we are continuing to explore ways to

exploit the flexible mapping. Treating different classes of
lines with different sharing degrees showed significant po-
tential for two applications, and this approach is a subject
of continuing effort.

6. ACKNOWLEDGMENTS
This research is supported by the Defense Advanced Research

Projects Agency (DARPA) under contracts F33615-01-C-1892

and NBCH30390004, NSF infrastructure grant EIA-0303609, and

two IBM University Partnership Awards. We thank the members

of the IBM PERCS team for their technical feedback.

7. REFERENCES
[1] V. Agarwal, S. W. Keckler, and D. Burger. The effect

of technology scaling on microarchitecture structures.
Technical Report TR-00-02, Department of Computer
Sciences, University of Texas at Austin, May 2001.

[2] J.-L. Baer and T.-F. Chen. Effective hardware-based
data prefetching for high-performance processors.
IEEE Transactions on Computer, 44(5):609–623, 1995.

[3] L. A. Barroso, K. Gharachorloo, R. McNamara,
A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets,
and B. Verghese. Piranha: A scalable architecture
based on single-chip multiprocessing. In The 27th
Annual International Symposium on Computer
Architecture, pages 282–293, June 2000.

[4] B. M. Beckmann and D. A. Wood. Managing wire
delay in large chip-multiprocessor caches. In 37th
International Symposium on Microarchitecture
(MICRO), December 2004.

[5] Z. Chishti, M. Powell, and T. N. Vijaykumar. Distance
associativity for high-performance energy-efficient
non-uniform cache architectures. In The 36th Annual
International Symposium on Microarchitecture
(MICRO), pages 55–66, December 2003.

[6] Z. Chishti, M. D. Powell, and T. N. Vijaykumar.
Optimizing replication, communication, and capacity
allocation in cmps. In Proceedings of the 32nd annual
international symposium on Computer Architecture,
2005.

[7] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu,
M. Chen, and K. Olukotun. The Stanford Hydra

S-NUCA S-NUCA + prefetch D-NUCA 2D perf. D-NUCA 2D D-NUCA 2D perf.+ prefetch D-NUCA 2D + prefetch
0.0

0.5

1.0

E
xe

cu
tio

n
T

im
e

Fixed Best
Fixed Worst
Variable Best

4
2 4

4

16
16

8
16

1 8
1 1

Figure 8: Execution time for fixed best, fixed worst and variable best sharing degree

SPECweb99 TPC-W SPECjbb Ocean Barnes LU Radix Fixed Best
S-NUCA 2 (1.4%) 2 (1.4%) 1 (1.6%) 4 (0.0%) 1 (2.0%) 4 (0.0%) 16 (6.6%) 4
S-NUCA +pref. 4 (0.4%) 1 (0.4%) 2 (0.0%) 4 (2.4%) 1 (0.9%) 2 (0.0%) 2 (0.0%) 2
D-NUCA 2D 4 (0.0%) 4 (0.0%) 2 (9.4%) 16 (4.1%) 1 (3.6%) 4 (0.0%) 16 (25.4%) 4

Table 7: Per-application best sharing degrees

CMP. IEEE Micro, pages 71–84, December 2000.

[8] J. Huh, J. Chang, D. Burger, and G. S. Sohi.
Coherence decoupling: Making use of incoherence. In
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), Oct. 2004.

[9] R. Iyer. CQoS: a framework for enabling QoS in
shared caches of cmp platforms. In Proceedings of the
18th annual international conference on
Supercomputing, pages 257–266, 2004.

[10] N. P. Jouppi. Improving direct-mapped cache
performance by the addition of a small
fully-associative cache and prefetch buffers. In
Proceedings of the 17th annual international
symposium on Computer Architecture, pages 364–373,
1990.

[11] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5
Chip: A dual-core multithreaded processor. IEEE
Micro, 24(2), Mar/Apr 2004.

[12] R. Kessler, R. Jooss, A. Lebeck, and M. Hill.
Inexpensive implementations of set-associativity. In
Proceedings of the 16th Annual International
Symposium on Computer Architecture, pages 131–139,
May 1989.

[13] C. Kim, D. Burger, and S. W. Keckler. An adaptive,
non-uniform cache structure for wire-delay dominated
on-chip caches. In Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), pages 211–222, October 2002.

[14] S. Kim, D. Chandra, and Y. Solihin. Fair cache
sharing and partitioning in a chip multiprocessor
architecture. In Proceedings of the 13th International
Conference on Parallel Architecture and Compilation
Techniques (PACT’04), pages 111–122, 2004.

[15] C. Liu, A. Sivasubramaniam, and M. Kandemir.
Organizing the last line of defense before hitting the
memory wall for cmps. In Proceedings of the 10th
International Symposium High Performance Computer
Architecture, Feb. 2004.

[16] B. A. Nayfeh, L. Hammond, and K. Olukotun.
Evaluation of design alternatives for a multiprocessor

microprocessor. In Proceedings of the 23th Annual
International Symposium on Computer Architecture,
pages 67–77, May 1996.

[17] B. A. Nayfeh, K. Olukotun, and J. P. Singh. The
impact of shared-cache clustering in small-scale
shared-memory multiprocessors. In Proceedings of the
2nd IEEE Symposium on High-Performance Computer
Architecture (HPCA), page 74, 1996.

[18] P. Shivakumar and N. P. Jouppi. Cacti 3.0: An
integrated cache timing, power, and area model.
Technical Report 2001-2, HP, Western Research
Laboratory, 2001.

[19] G. Sohi and M. Franklin. High-performance data
memory systems for superscalar processors. In
Proceedings of the Fourth Symposium on Architectural
Support for Programming Languages and Operating
Systems, pages 53–62, Apr. 1991.

[20] E. Speight, H. Shafi, L. Zhang, and R. Rajamony.
Adaptive mechanisms and policies for managing cache
hierarchies in chip multiprocessors. In Proceedings of
the 32nd annual international symposium on
Computer Architecture, 2005.

[21] G. Suh, S. Devadas, and L. Rudolph. A new memory
monitoring scheme for memory-aware scheduling and
partitioning. In Proceedings of the 8th International
Symposium High Performance Computer Architecture,
Feb. 2002.

[22] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic
partitioning of shared cache memory. Journal of
Supercomputing, 28(1):7–26, 2004.

[23] J. M. Tendler, S. Dodson, S. Fields, H. Le, and
B. Sinharoy. Power4 system microarchitecture. IBM
Journal of Research and Development, 46(1), 2002.

[24] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The splash-2 programs: Characterization
and methodological considerations. In Proceedings of
the 22nd International Symposium on Computer
Architecture, pages 24–36, 1995.

