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Abstract

In this paper, we survey the design space of a new class of architec-
tures called Grid Processor Architectures (GPAs). These architectures
are designed to scale with technology, allowing faster clock rates than
conventional architectures while providing superior instruction-level
parallelism on traditional workloads and high performance across a
range of application classes. A GPA consists of an array of ALUs,
each with limited control, connected by a thin operand network. Pro-
grams are executed by mapping blocks of statically scheduled instruc-
tions to the ALU array and executing them dynamically in dataflow or-
der. This organization enables the critical paths of instruction blocks
to be executed on chains of ALUs without transmitting temporary val-
ues back to the register file, avoiding most of the large, unscalable
structures that limit the scalability of conventional architectures. Fi-
nally, we present simulation results of a preliminary design, the GPA-
1. With a half-cycle routing delay, we obtain performance roughly
equal to an ideal 8-way, 512-entry window superscalar core. With
no inter-ALU delay, perfect memory, and perfect branch prediction,
the IPC of the GPA-1 is more than twice that of the ideal superscalar
core, achieving an average of 11 IPC across nine SPEC CPU2000 and
Mediabench benchmarks.

1 Introduction

Microprocessor performance has improved at a rate of 50-
60% per year over the past two decades. In the 1970’s,
wider datapaths and hardware support for memory manage-
ment contributed to most of the performance improvement.
In the 1980’s, microprocessors benefited from levels of inte-
gration that allowed mainframe techniques to fit on a single
chip: memory hierarchies, speculation, and superscalar exe-
cution. Since then, however, the bulk of performance growth
has come from faster clock rates. Despite copious research
efforts, instruction-level parallelism has improved much less
than the clock in actual products; current high-end superscalar
processors typically sustain one instruction per cycle, and of-
ten much less. Comparatively, through the 1990’s, four-fifths
of performance growth came solely from faster clock rates: a
40% annual increase from 33MHz in 1990 to over 2GHz in
2001.

Clock rate improvements have come both from technology

scaling and deeper pipelines, but more from the latter, with
pipeline depths increasing by nearly a factor of four over the
last decade. This growth will soon end, as deeper pipelines
reach limits on the number of gates per pipeline stage [1].
Once that limit has been reached, clock rates will increase at
best with gate speeds, which are estimated to improve at a rate
of 12-19% per year [22]. Further performance improvements
must come from higher levels of instruction- and thread-level
parallelism.

Increasing wire resistance will make achieving higher ILP
in conventional architectures more difficult than today. Agar-
wal et al. estimate that the latency to transmit a signal across
one dimension of a 35nm chip will be approximately 30 clock
cycles, even with optimal repeater placement [1]. In addition
to limiting the number of devices useful to a conventional core,
the wire delays will make memory-oriented microarchitectural
structures slower, making it difficult to sustain even current
levels of ILP. Slow instruction issue windows, rename tables,
branch predictors, bypass networks [17], register files [13],
and caches [12] will reduce IPC for a given clock at feature
sizes under 100 nanometers. These issues have already be-
come first-order design constraints. For example, the Alpha
21264 uses clustered functional units and a partitioned reg-
ister file to overcome wire delays, while the Intel Pentium 4
devotes two pipeline stages solely for routing information —
instruction distribution and delivery of values to the register
file.

Future microprocessors must thus achieve ILP consider-
ably higher than today’s designs, even while being partitioned,
and do so with a high clock rate. These future processors must
exploit increased device counts to meet the above goals, but
must do so while considering the increased communication de-
lays and partitioning requirements [25].

In this paper, we introduce a class of architectures intended
to address these problems faced by future systems. Grid Pro-
cessor Architectures (GPAs for short) are designed to enable
both faster clock rates and higher ILP than conventional ar-
chitectures, even as devices shrink and wire delays increase.
The computation core of a GPA consists of a two-dimensional
array of nodes, each containing a small instruction buffer and
one execution unit. These fine-grained computation nodes are
connected using a dedicated communication network for pass-
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ing operands and data, and are controlled by a single thread
of control that maps large blocks of instructions to the nodes
en masse. This organization eliminates the centralized instruc-
tion issue window and converts the conventional broadcast by-
pass network into a routed point-to-point network. Similar to
VLIW architectures, a compiler is used to detect parallelism
and statically schedule instructions onto the computation sub-
strate, such that the topography of the dataflow graph matches
the mapping. However, instructions are issued dynamically
with the execution order determined by the availability of in-
put operands.

In a GPA, few large structures reside on the critical exe-
cution path, enhancing scalability as wire resistance increases.
Out-of-order execution is achieved with greatly reduced reg-
ister file bandwidth and with no associative issue window or
register rename table. Compiler-controlled physical layout en-
sures that the critical path is scheduled along the shortest phys-
ical path, and that banked instruction caches reside near the
units to which they will issue instructions. Finally, large in-
struction blocks are mapped onto the nodes as single units of
computation, amortizing scheduling and decode overhead over
a large number of instructions.

In a GPA, the register file bandwidth is also reduced. Our
experiments show that register file writes are reduced by 30%
to 90% using direct communication between producing and
consuming instructions. On a set of conventional uniprocessor
(SPEC CPU2000 and Mediabench [14]) benchmarks, our sim-
ulation results show IPCs of between one and nine, running on
a substrate that can likely be clocked faster than conventional
designs and that will scale with technology. Assuming small
routing delays, perfect memory and perfect branch prediction,
the GPA averages eleven instructions per cycle across these
benchmarks.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the block-atomic execution model of programs
on GPAs and how programs are mapped onto them. Section 3
describes the GPA-1, one possible implementation of a Grid
Processor Architecture. Section 3.3 presents experimental re-
sults that both characterize pertinent aspects of program be-
havior and show potential and actual performance gains. Sec-
tion 5 discusses design tradeoffs and extensions to the GPA
class of machines. Section 6 describes related work pertaining
to wide-issue and dataflow-oriented machines. Finally, Sec-
tion 7 concludes with a discussion of the strengths and weak-
nesses of GPAs and plans for future work.

2 The Block-Atomic Execution Model

The execution model implemented on Grid Processor Archi-
tectures treats groups of instructions as an atomic unit for
fetching, mapping onto the execution resources, and commit-
ting. The execution substrate is a collection of ALUs, each of
which is architecturally visible and named. For simplicity in
this paper, we assume that all ALUs are homogeneous and can
execute any instruction.

2.1 Instruction Groups

In the block-atomic execution model, instructions are placed
into groups by the compiler. A group has no internal transfers
of control; taken branches (and the last instruction in a group)
transfer control to a succeeding group. A group could thus
be a basic block, a predicated hyperblock [16], or a run-time
trace [21].

Data used and consumed by a group are of three types:
(1) group outputs, which are values created within the group
and used by subsequent groups, (2) group temporaries, which
are values that are produced and consumed within the group,
and (3) group inputs, which are values produced by preced-
ing groups and must be read when the execution of the group
begins. Under block-atomic execution, group temporaries can
be forwarded directly from producers to consumers, without
ever being written back to any central storage. Group outputs,
however, must be written to a central storage like a register file
when the group commits. The output of control transfer in-
structions which specify the address of the succeeding group
are also treated as group outputs. Modifications to memory are
maintained in a temporary storage until the group is commit-
ted.

2.2 Group Execution

The compiler statically assigns each instruction in a group to
one of the named ALUs, and no ALU is assigned more than
one instruction. Special move instructions, used to read group
inputs, are assigned to the register file. Execution of an in-
struction group proceeds as follows: A group is fetched and
mapped onto the ALUs in the execution substrate at once.
Each instruction in the group is stored in the instruction buffer
at the ALU (similar to a reservation station) to which it was
statically assigned. The move instructions issued at the regis-
ter file read group inputs and forward the values to the appro-
priate ALUs.

When all of an instruction’s operands have arrived at an
ALU, the instruction is executed. This data-driven execution
model is similar to that of a traditional dataflow machine [2, 9].
When the instruction completes, its result is forwarded to the
ALUs holding consuming instructions, and/or to the register
file if the result is a group output.

The physical destinations of the operation’s result are en-
coded explicitly into an instruction. Each destination is re-
ferred to by the name of the ALU, so that the result can be
sent directly to the target instruction. Operands are delivered
directly from producers to consumers (point-to-point) in the
grid network rather than being broadcast to all ALUs. Since
all operands are forwarded to the location where instructions
are buffered, an instruction does not encode the source loca-
tions or register names of its inputs, only its outputs.

When all of the instructions in a group have completed, the
group is committed–group outputs are written back to the reg-
ister file and updates to memory are carried out. Subsequently,
the group is removed from the ALUs, and the next group is
mapped onto the execution substrate. In the event of an ex-
ception being raised by any instruction in a group, the entire
group is re-executed after the the exception is serviced. Some
implementations of the execution model overlap both fetch,
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I1) add r2, r7, r8
I2) ld  r1, r8, 0x0f
I3) add r2, r2, r2
I4) add r3, r2, r1
I5) beqz r3, 0xdeac

I2 I3

I1

I4

I5

a) Code schedule c) Block-atomic codeb) Dataflow graph

MOVE-1: r8, ALU-1, ALU-2
MOVE-2: r7, ALU-1

I1  ALU-1: add, ALU-3
I2  ALU-2: ld 0x0f, ALU-4
I3  ALU-3: add, ALU-4
I4  ALU-4: add, ALU-5, r3
I5  ALU-5: beqz 0xdeac

I1

I4

I5

I3I2

d) Physical mapping

Register file

Branch
register R3

Figure 1: Simple Example of Block-Atomic Mapping

mapping, and execution of the subsequent group with the exe-
cution of the current group.

Figure 1 shows an example of the mapping and execution
of a group onto a GPA. Part (a) depicts the original code frag-
ment for a basic block consisting of five instructions and part
(b) shows the corresponding dataflow graph (DFG). Group in-
puts are r7 and r8, while r3 is the group output. The block
is scheduled for five ALUs, named ALU-1 through ALU-5, as
shown in part (c). Part (d) shows the physical mapping on an
execution substrate, consisting of a 4x4 array of ALUs. The
two move instructions shown in part (c) are mapped at the reg-
ister file. They read the group inputs and forward them to the
consumers at ALU-1 and ALU-2. Temporaries are produced
by the instructions at ALU-1, ALU-2, ALU-3, and ALU-4 and
are not written to the register file. The output of I4 is a group
output and is written to the register file. The branch instruc-
tion I5 implicitly writes its result to a special branch register,
which is used to transfer control to the next hyperblock.

2.3 Key Advantages

The block-atomic model will be effective if the number of
instructions in the group is large enough to yield long de-
pendence chains that can benefit from the ALU chaining in
the grid. The experimental results in Section 3.3 show that
compiler-generated group sizes are significant, when predica-
tion is used to eliminate control flow hazards.

This execution model addresses several of the challenges
for microprocessor performance scaling described in Sec-
tion 1. There are fewer large structures involved with the
execution: there is no centralized, associative issue window,
no register renaming table and there are fewer register file
reads and writes. Despite the lack of these structures, instruc-
tions can execute in dynamic order, without expensive hazard
checking or a broadcasting bypassing and forwarding network
that scales poorly with increasing execution width [17]. Fur-
thermore, if the physical instruction layout corresponds to the
dataflow graph, communication from producers to consumers
will take place along short, point-to-point wires. Instructions
off of the critical path can afford longer communication la-
tencies between more distant ALUs. The physical layout of
ALUs is exposed to the instruction scheduler, so that the wire
and communication delays can be used to help the scheduler
minimize the critical path. In the next section, we describe

one implementation of a GPA that realizes this block-atomic,
data-driven execution model.

3 A GPA Implementation

In Figure 2a, we show a high-level diagram of the GPA-1,
our first Grid Processor Architecture design. ALUs are ar-
ranged in an m by n array, shown as 4-by-4 grid in the ex-
ample. In this implementation, instructions are delivered by
instruction cache banks on the left side of the array. The block
sequencer and block termination control determines which in-
struction groups to map to the grid and when each group has
been completed and can be committed. Instruction group in-
puts are fetched from the register file banks and injected from
the top of the grid. Operands are passed from producer to con-
sumer instructions through a lightweight network, shown as a
mesh augmented with diagonal channels. Memory accesses
are routed to the primary cache banks located on the right side
of the grid through a separate network.

The architecture of a grid node is shown in Figure 2b. Note
that in this terminology, a node refers to a functional unit with
the logic shown in the figure, rather than a full-fledged proces-
sor with its own program counter. Each node contains input
ports for arriving operands, instruction and operand buffers,
and a router that delivers values to the output ports and the grid
network. The buffers hold instructions and input operands un-
til all operands have arrived and the instruction can execute.
The router can deliver both values produced by the node’s
ALU and those being routed through the node to a destination
elsewhere in the grid.

The instruction and operand buffers each have multiple en-
tries, enabling multiple instructions to be mapped to a single
physical node. A frame consists of a single instruction slot in
all of the grid nodes and can be pictured as a single virtual
grid. Thus each additional slot provides another frame and a
virtual grid of nodes. For scheduling and dynamic data for-
warding purposes, the (x,y) coordinate of the grid node in the
array along with the slot label is used as the name of the desti-
nation. In this example, one frame consists of 16 instructions,
using one instruction slot in each of the 16 grid nodes. An 8x8
grid with 8 frames would thus be capable of mapping a total
of 512 instructions at a time. Groups larger than one frame
are allowed to span multiple frames. Free frames can be used
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Figure 2: High-level Grid Processor organization

to map speculatively fetched groups. Below, we describe the
other major features of our design.

3.1 Instruction fetch and map

Each group of instructions mapped to the grid consists of one
predicated hyperblock. These hyperblocks have a single point
of entry, and may have multiple exits, but have no internal
transfers of control. The primary instruction cache consists of
multiple banks, in which one bank is associated with each row.
When a hyperblock is mapped onto the grid, each bank reads a
row’s worth of instructions and delivers those instructions hor-
izontally into the grid along the instruction distribution wires,
taking four cycles. After a hyperblock is mapped, branch and
target predictors in the block sequencer predict the succeeding
hyperblock, and begin fetching and mapping it onto the grid
prior to the completion of the previous hyperblock.

3.2 Instruction execution

At the top of the grid resides the register file, which in this
example contains one three-ported bank per column. When a
hyperblock is mapped onto the grid, the corresponding move
instructions are fetched and delivered to queues at the appro-
priate register file banks. Each bank can issue two move in-
structions per cycle, injecting two operands into the grid. The
move instructions contain the register number to be read and
the location of up to three target ALUs within the grid.

When an operand arrives at the node, the control logic at-
tempts to wakeup, select, and issue the instruction correspond-
ing to the frame identifier of the arriving operand. If all of
the operands are present, the instruction is issued to the ALU.
Upon completion, its result is sent to the output router with the
frame identifier and the address of up to two target ALUs. If
no new operand arrives at the node in a given cycle or if the in-
struction whose operand arrived must wait for more operands,
any other ready instruction is selected and issued.

Operand routing: Because the physical locations of con-
sumers are explicitly encoded within producer instructions,
there is a trade-off associated with the instruction fanout. If
instructions encode a large number of target consumers, each

instruction may be overly large. Too few targets results in ex-
tra instruction overhead to replicate the values within the grid.
In this example, we support three consumers per instruction,
since our results show that over 70% of producer instructions
have three or fewer consumers. If an instruction has more
than three consuming instructions for a particular value, a data
movement instruction called a split instruction can be in-
serted into the schedule to forward results to multiple con-
sumers.

Inter-node network: Four kinds of delays inhibit back-to-
back execution of instructions in consecutive cycles: a) routing
delays, b) transmission/wire delays, c) instruction wakeup de-
lay and d) delays induced by contention for the wires/ports at
the nodes. For instructions on the critical path all these delays
should be minimized. From a sensitivity analysis of these fea-
tures using simulation results, we discovered that the amount
of contention in the grid is not substantial and two I/O ports at
each node is sufficient. The router and wire delays, however,
are the single most important factor in overall performance of
the GPA-1.

3.3 Hyperblock control

To increase instruction group size and reduce the number of
branches in the program, the GPA-1 uses hyperblocks that in-
clude predication and multiple exit points. Hardware support
is provided to execute these hyperblocks, which contain pred-
icated instructions and early block exits.

Predication: There are several possible strategies for han-
dling predication within the block-atomic execution model.
The GPA-1 uses an execute-all approach, in which both predi-
cate paths execute, but only one path delivers a result to the
common instructions after the predicate. This approach is
implemented by predicating only the leaf instructions in the
DFG of the predicated region. This strategy reduces the num-
ber of instructions to which the predicate must be delivered
and permits execution of all but the leaf instructions of the
DFG before the predicate is calculated, reducing the critical
path. A special class of instructions called cmove (conditional
move instructions) are used to implement predication. They
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I1) add r2, r7, r8
I2) ld  r1, r8, 0x0f
I3) cmp p1, R1, #0
I4) ld r9, r8, 0x101f (p1)
I5) add r2, r2, r9    (p1)
I6) add r3, r2, r1
I7) beqz r3, 0xdeac

I1) add t2, r7, r8
I2) ld  r1, r8, 0x0f
I3) cmp p1, R1, #0
I4) ld r9, r8, 0x101f
I5) add r2, t2, r9    (p1)
C1) cmove f r2, t2, p1
I6) add r3, r2, r1
I7) beqz r3, 0xdeac

I4 I3

I2

C1

I6

I5

I1

a) Code schedule b) Rescheduled code c) Dataflow graph

I7

Figure 3: Code example for a Grid Processor

accept one input operand and a boolean condition and create
one output value. The cmove instructions are of two types:
cmove t and cmove f. The cmove t instruction forwards
the input operand to the output if the condition is true, while
the cmove f forwards the input if the condition is false. If the
boolean condition is not met, then no output is produced.

Figure 3a shows a predicated sequence of code in which
instructions I4 and I5 form a predicated region. I6 uses
register value r2 which is defined by I1 and conditionally re-
defined by I5 depending on the predicate p1. Figure 3b shows
the rescheduled code with one cmove f instruction (C1) in-
serted. C1 is added to ensure that exactly one value for r2,
produced either by I1 or I5, reaches I6. The dataflow graph
for the rescheduled code is shown in Figure 3c. The data de-
pendences are shown in solid lines and the predicate values
passed in dotted lines. Note that the predicate value p1 is now
sent only to I5 from the original region, and not I4, since I4
produces a temporary that is created and destroyed in the pred-
icated region (i.e., I5 is the only leaf node in the predicated
region).

We discuss other alternatives to support predication in
Section 5. The approach taken here is chosen for high
performance—few instructions must wait for the predicate to
be calculated. However, this approach results in a less effi-
cient use of power; other approaches may be preferable in a
power-constrained implementation.

Early exits: A branch from the middle of a hyperblock
is called an early exit. When a hyperblock contains an early
exit branch, the GPA-1 must ensure that only the correct val-
ues are ultimately written back to the register file and memory.
Further, to maintain program correctness, branch instructions
should be executed in serial order. The GPA-1 uses predication
to enforce this sequentiality when natural data dependences do
not. Every branch instruction is predicated on the complement
of the condition for the immediately preceding branch in that
hyperblock — this branch should be executed only if the pre-
vious branch was not taken.

Like predication, early exits introduce the potential for the
same output register name to be produced at several points in
a hyperblock. The GPA-1 should guarantee that exactly one
value reaches the block termination control. Every such out-
put instruction is predicated on the condition for the immedi-
ately following branch — if the branch is taken, this output
should be written out, otherwise it should be ignored. Extra
predication is necessary only when the same register name is

to be produced by multiple instructions in the block and not
for every output instruction.

Since the mapped blocks execute in dataflow order, in-
structions generating output values may execute before a prior
taken branch. These results must be filtered so that they do not
modify the register file or memory. An index number assigned
to each instruction, which indicates its position in static pro-
gram order, is used to filter values at the block commit logic.
When a branch executes, and sends its target to the global con-
trol, all outputs generated by instructions later than the branch
are discarded by the block commit logic.

Block commit: GPAs benefit from distributing execution
state, but that same distribution makes decisions about global
control more complicated. The hyperblock can be committed
when all stores and output register values have been produced.
In the presence of early exits and predication, detecting when
all values have been produced requires additional logic at the
block termination control. The GPA-1 employs a count of out-
put values statically associated with each hyperblock. When
a store or register output fires, it send a signal to the commit
logic that sums the signals to detect block completion. If an
output is produced by an instruction whose predicate is false,
a signal is still sent to the commit logic, but without an associ-
ated value. This policy means that a block cannot be commit-
ted until all instructions have fired, even those on false predi-
cate paths or those after taken branches. We are investigating
specialized networks and in-grid combining trees to ease that
restriction.

Block stitching: Thus far, we have described a GPA design
in which fetch, map, and execute are serialized across differ-
ent hyperblocks. However, fetching, mapping, and execution
can be overlapped to utilize the available frames and functional
units in the grid more effectively. While one hyperblock is exe-
cuting, the next block can be speculatively fetched and mapped
using the address returned by a block level predictor.

Concurrent execution of multiple hyperblocks is also fea-
sible, similar to previously proposed speculative threads [24].
Register values passed between concurrently executing blocks
are communicated through the in-grid network, bypassing the
register file. Register inputs of speculatively mapped blocks
that are not produced by a previously mapped block are deliv-
ered to the consumers by executing the corresponding move
instructions. We call this mechanism block stitching.
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Block size Register usage
Name Static Dynamic Inputs Temp reads Temp writes Outputs Branch exits Memory conflicts(%)
adpcm 51.1 30.7 6.5 26.7 22.4 5.7 5.7 0
dct 187.9 172.1 14.7 199.8 163.6 7.3 1.7 0
mpeg2 109.7 94.1 11.9 98.5 84.4 7.4 3.4 1.6
gzip 66.2 37.1 11.6 29.8 28.4 7.1 4.4 9.3
mcf 40.1 28.8 4.7 33.6 25.7 2.3 1.7 0.9
parser 20.3 16.2 3.4 13.7 12.7 2.8 1.8 4.8
ammp 82.5 72.3 6.6 67.8 58.1 3.8 8.7 0.6
art 82.7 79.6 25.6 54.2 54.0 20.0 5.3 54.9
equake 50.2 44.1 10.0 34.4 32.7 9.5 2.3 11.9

Table 1: Program characteristics

3.4 Memory access

In the GPA-1, the primary data cache resides on the right-hand
side of its execution array. When a load executes at a node,
it forwards its effective address and targets from the node to
the data cache, which performs the memory access and sends
the result of the load directly to the targets. Maintaining the
correct ordering between loads and stores that do not have an
explicit and visible data dependence between them is a well-
known problem. We use traditional load-store queues to main-
tain sequential memory semantics for loads and stores that ar-
rive out of order. However, since the queues are on the criti-
cal path to memory, they may slow accesses down in a wire-
dominated design, even if no ordering violations are detected.

4 Evaluation

This section presents a study of pertinent program charac-
teristics, followed by an evaluation of GPA-1 performance
across a set of nine applications. We chose three SPEC
CPU2000 floating-point benchmarks (equake, ammp, and art),
three SPEC CPU2000 integer benchmarks (parser, gzip, and
mcf), and three Mediabench benchmarks (adpcm, dct, and
mpeg2enc) [14] for our analysis. All benchmarks were com-
piled with the Trimaran tool set [26] to generate the neces-
sary hyperblocks. The SPEC benchmarks were compiled with
the train input set and run using with ref input set, while Me-
diabench applications were compiled and run using the same
input set. All compilations were performed with full optimiza-
tions (-O4).

To characterize the applications, the Trimaran simulator–
which performs functional execution of the Trimaran-
generated code–was modified to track block size profiles and
register usage. We collected dynamic statistics for first 1 bil-
lion instructions executed in each benchmark.

We used a custom instruction scheduler that accepts the
Trimaran-generated hyperblocks as inputs, inserts overhead
instructions, and schedules the blocks onto the GPA-1. The
scheduler assigns instructions to nodes in the grid using a
greedy critical path scheduling strategy. This strategy sched-
ules one instruction per node, with the longest path in the DFG
on the shortest possible physical path in the grid. Further, for
best proximity to the caches, load instructions are placed as
far to the right of the grid as possible. Finally, we assume full
floating-point and integer units at each node, so each node in

the GPA-1 can execute any instruction.
We estimated performance using a custom event-driven

timing simulator. We modified the functional front-end of the
Trimaran simulator to generate an execution trace of a hyper-
block, which is used by our timing back-end to simulate ex-
ecution on the GPA-1. The simulator accounts for dynamic
behavior including routing latencies, contention for the wires
in the grid and at the input and output ports of each node, a
memory hierarchy with two levels of data caches and main
memory, and next-hyperblock prediction. We fast-forwarded
through the first 500 million instructions of each application,
and then simulate the following 200 million instructions to ob-
tain timing results.

4.1 Application Characteristics

In Table 1, we display the characteristics of the benchmarks
compiled with the Trimaran compiler. The average number
of instructions per hyperblock statically produced by the com-
piler is shown in column 1 and the average number of instruc-
tions dynamically executed per hyperblock is shown in column
2. These sizes correspond to only the useful instructions in
a hyperblock; overhead instructions (move, split, and
cmove) are not included for the static sizes and further, in-
structions that receive false predicates and those beyond a
taken early exit are not included in the dynamic sizes. Unsur-
prisingly, the integer SPEC CPU2000 benchmarks show the
smallest dynamic hyperblock sizes, ranging from 16 to 37 in-
structions on average.

The next four columns show the number of register inputs
to each hyperblock, the number of temporary reads and writes,
and the output values. The temporary reads and writes are
values produced, forwarded and consumed within the grid and
require no register file accesses. A significant reduction (30%
to 90%) in register file bandwidth is achieved. Some of that
reduction may be lost, however, if large hyperblocks are split
to fit onto a GPA of finite size.

The branch exits column shows the average number of
branches per hyperblock. Larger numbers of potential early
exits will require complicated control to pass the correct regis-
ter values to the register file, and to subsequent blocks if group
stitching is supported.

Finally, the rightmost column shows the fraction of hyper-
blocks that contain a store with a later load to the same address.
The number is significant (greater than 5%) for three bench-
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Figure 4: Overhead of Block-Atomic Execution

marks, indicating that even with greatly reduced register spills
due to the large number of compiler-visible, intra-hyperblock
temporaries, some mechanism to reduce the penalty or fre-
quency of load-store conflicts, such as dependence specula-
tion, will likely be needed.

Figure 4 shows the fraction of overhead instructions
(move, split, and cmove) required by the block-atomic ex-
ecution model. split instructions are added when an instruc-
tion requires more than three targets. The average across the
benchmarks is approximately 35% of all instructions. How-
ever, only the split and cmove instructions add execution
overhead by consuming instruction slots on a grid; the move
instructions are kept in a separate instruction cache bank, and
do not consume execution resources, nor do they reside in be-
tween dependences on the critical path. Discounting the move
instructions, which only affect program binary size and lower-
level cache miss rates, the remaining overhead instructions
consume less than 20% of the instructions scheduled on the
grid.

4.2 Performance evaluation

The baseline GPA-1 configuration is an 8x8 grid with 32
frames. Each node is connected to three of its neighbors in
the next row. Express channels, which are higher-level metal
channels route operands from the bottom to the top of the grid,
at double the velocity of the short node-to-node wires. In this
simulated implementation, integer add and logical instructions
require a single cycle to execute. Other instruction latencies
are configured to be similar to that of the Alpha 21264. We as-
sume that long latency operations such as floating-point adds
and multiplies can be fully pipelined.

We evaluate performance on GPA-1 configurations with
both perfect and realistic assumptions for memory and next
hyperblock-prediction. When modeling a realistic memory
system, we simulate a memory hierarchy with 64KB, 2-way
L1 data caches with 3-cycle access, and a 1MB, 4-way, 13-
cycle L2 cache, a 62-cycle physical memory latency. When
modeling realistic branch prediction, we simulate a 2-level
global branch predictor with a 14-bit history, a 16K entry pat-
tern history table, and a 512-entry, 2-way branch target buffer.
We assumed a perfect instruction cache for all experiments.

Our GPA simulator does not model wrong-path execution.
When a misprediction occurs, we account for the delay by
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Figure 5: Performance Comparison of GPA with superscalar

stalling the mapping of the subsequent hyperblock until its
target is known, permitting correct control flow to resume.
We also assume ideal behavior for store-load pairs with the
same address: those loads are stalled until the store completes,
whereas independent loads are allowed to issue when ready.
This assumption is less optimistic than it would be in a con-
ventional system, as discussed in Section 5.

The major features that influence performance in the GPA-
1 are the organization of the ALUs (the number of ALUs and
their layout), the interconnect network latency, and the num-
ber of I/O ports at each node. Our default GPA-1 configura-
tion assumes an 8x8 grid of ALUs with two I/O ports at each
node. The interconnect network is configured such that the
three nodes directly below any given node can be reached in a
single hop. Two components constitute the routing delays of
passing an operand from a producer to its consumer: wire de-
lay, which depends on the physical distance in nodes between
a producer and consumer, and the router delay at every node in
the path. The default GPA-1 parameters assume that the wire
and router each consume a quarter cycle, totaling half a cycle
per hop of routing delay.

Comparison with alternate architectures: Figure 5
shows a direct performance comparison of the 8x8 GPA-1 to
an idealized 8-way issue superscalar processor. The left bar in
each benchmark cluster shows the performance of the GPA-1,
while the right bar shows the same for the superscalar proces-
sor. The white portions of each bar represent the IPC assuming
perfect memory and perfect branch (or next-hyperblock) pre-
diction. The colored portions show the IPC assuming realistic
memory and realistic branch prediction.

The superscalar processor was simulated with the Sim-
pleScalar tools [4], for which we assumed a 512-entry RUU
(instruction window and reorder buffer). Furthermore, we as-
sumed that the clock rates of both the machines were the same,
despite the difficulty of building an 8-wide, large window su-
perscalar core, with full bypassing, that could be clocked at the
same frequency as the distributed-window GPA-1. We also
simulated each benchmark on Trimaran’s VLIW processor
simulator assuming 8-way issue, perfect memory, and static
branch prediction. In Figure 5, the third bar in the last cluster
shows the mean performance of this VLIW machine. Despite
the assumption of perfect memory, the simulated VLIW pro-
cessor performs worse on average than the superscalar proces-
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Perfect Mem + BP Realistic Mem + BP
IPC Stitching IPC Stitching

Name No stitch Speedup No stitch Speedup
adpcm 1.4 1.4 1.1 1.2
dct 4.0 2.5 3.7 2.2
mpeg2 3.0 1.8 2.7 1.4
gzip 1.9 2.2 1.4 1.7
mcf 1.0 1.5 0.6 1.9
parser 1.0 2.4 0.8 1.7
ammp 2.3 1.8 0.2 3.1
art 2.5 1.9 1.5 2.2
equake 2.5 3.4 2.0 2.2

Table 2: Speedup achieved by stitching

sor with realistic memory.
The results show promise for the GPA-1. In four of nine

benchmarks with perfect memory and branch prediction, and
for five of nine benchmarks with the more realistic models–
the GPA-1 demonstrates superior performance to the idealized,
large-window superscalar engine, which in turn showed higher
performance, in every case, than the VLIW core. The disparity
is higher for perfect memory and prediction, indicating that the
GPA-1 has higher performance potential, but that further im-
provements in the memory system and branch predictor are
more important for GPAs than for conventional superscalar
cores. The code for which the GPA-1 performs best is dct,
showing 10.2 IPC for perfect memory/prediction and 8.5 for
the realistic assumptions. This architecture is able to harvest
substantial ILP when it exists. Of the benchmarks on which
the GPA-1 performs substantially worse than the superscalar
processor, three of them (adpcm, mcf, and parser) are due to
disparities in the compilers: the Compaq C compiler (V6.3-
025) with full optimization versus the lower-performing Tri-
maran compiler. Individual analysis of these three benchmarks
showed that, the superscalar core with perfect memory and
predictors achieves higher IPC than there is available ILP in
the Trimaran-generated code, assuming an ideal machine with
infinite resources. Extensions to our compiler infrastructure to
handle small inner loops with loop-carried dependences will
improve the performance of those benchmarks on the GPA-1.

Block stitching: Concurrent block execution on the GPA-1
efficiently utilizes available frames and functional units, and
benefits from block stitching. Table 2 shows the speedup ob-
tained due to stitching. The second and third columns corre-
spond to the baseline GPA configuration with perfect mem-
ory and prediction assumptions and the last two columns cor-
respond to the GPA configuration with realistic assumptions.
The second and fourth columns show the IPC achieved on a
GPA without stitching. Columns 5 and 6 show corresponding
speedups with stitching. Block stitching provides roughly a
factor of two speedup for both perfect and realistic assump-
tions. These results indicate that the ability to map multiple
blocks, even speculatively, to a GPA is critical for competitive
performance of sequential threads.

Average hops per data value
Name Input Temporary Memory
adpcm 2.8 1.8 1.9
dct 2.9 2.4 3.7
mpeg2 3.3 1.5 3.8
gzip 3.0 2.1 2.7
mcf 2.1 2.8 1.9
parser 2.6 1.8 1.8
ammp 2.4 1.7 4.9
art 3.8 1.7 3.2
equake 3.8 2.0 2.8

Table 3: Average hops for different types of data operands
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Figure 6: Sensitivity to wire delays

Routing delay: Our results show that the routing delay
from an operand’s producer to its consumer is the single largest
determinant of the aggregate GPA-1 performance. The por-
tions of operand routing delay that we measure or vary in this
section are the three most significant components of that total
delay: 1) the number of hops traversed, 2) the inter-node wire
delay, and 3) the router delay at each hop.

Table 3 shows the average number of hops needed to route
data in the grid for the GPA-1. Because the number of in-
put register values is non-negligible, input operands are typi-
cally routed between two and three hops in the network. The
scheduler is effective at reducing the number of hops needed
for temporaries, which require roughly two hops on average.
The number of hops to and from memory varies more than the
routing of operands, and represents one of the performance
bottlenecks that more sophisticated schedulers must avoid.

The inter-node wire and router delay is critical for perfor-
mance. We simulate GPA-1 configurations for router delays of
0, 0.125, and 0.25 cycles with wire delays varying from 0 to
0.75 cycles. Figure 6 shows the effects on mean IPC (across
our nine benchmarks) as the inter-node wire delays are var-
ied, assuming perfect memory and prediction. For example,
the bottom curve corresponds to a fixed router delay of 0.25
cycles. The GPA-1 configuration with zero wire and router
delays models back-to-back execution in consecutive cycles,
with performance being limited only by the availability of
functional resources and instruction buffers. The horizontal
lines show the mean IPC of the VLIW and superscalar cores
with perfect memory/predictor assumptions. The circled dot
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GPA-1 Contention Connectivity
Name IPC 5/5 I/O Zero C5 C6 C10
adpcm 2.2 2.2 2.4 2.2 2.4 2.5
dct 10.2 10.0 19.8 10.4 11.0 11.9
mpeg2 5.7 5.8 6.9 5.8 6.7 6.4
gzip 4.2 4.2 4.8 4.2 4.3 4.5
mcf 1.6 1.6 1.7 1.6 1.8 1.7
parser 2.5 2.5 2.6 2.4 2.3 2.5
ammp 4.2 4.3 4.6 5.2 4.6 5.9
art 5.0 4.8 5.4 4.7 5.0 4.9
equake 8.8 8.9 11.5 8.3 9.0 9.6

Table 4: Sensitivity analysis for different features

shows the GPA-1 configuration that was used for the perfor-
mance results, shown in Figure 5. As the wire delay of the
GPA-1 shrinks to zero from 0.5 cycles, close to a factor of two
improvement in mean IPC is achieved, from just under five to
over nine. When both the router delay and the wire delays are
set to zero, the mean IPC is almost 11.

The router operation at the first hop is assumed to be in
parallel with instruction execution. As shown in Table 3, the
average number of hops per communication is 2. This corre-
sponds to one router and two wires being traversed resulting
in an effective communication delay of 0.75 for the baseline
GPA. Thus for any GPA configuration, the wire delay affects
performance more than the router delay. The wire and router
delays are analogous to both operand bypass delays in a con-
ventional superscalar microarchitecture, and inter-cluster de-
lays in a partitioned superscalar or VLIW processor. Our base-
line parameters assume a quarter cycle delay each for both the
wire and router. Conversely, we assume that in the superscalar
processor, dependent operations can issue in back-to-back cy-
cles. It is possible, however, that the point-to-point communi-
cation in a GPA can be faster than operand bypassing in future
superscalar processors. That analysis is beyond the scope of
this paper.

Connectivity: Table 4 presents the effect of connectivity
and contention for I/O ports on IPC. All the results presented
in the table assume a 8x8 grid with perfect memory and perfect
prediction. The second column shows the IPC for the baseline
GPA-1 configuration. The third corresponds to the GPA-1 with
5 input and 5 output ports at each node. The fourth column cor-
responds to the GPA-1 with zero contention for the I/O ports
and wires in the grid. Infinite inter-node communication paths
improves performance minimally, indicating that contention
plays a minor role. To examine the effect of the richness of
the interconnect in the grid, we varied the number of nodes (5,
6, and 10) to which each node is connected. These results are
shown in the columns C5, C6, and C10 respectively. C5 and
C10 correspond to a node being connected to 5 of its neigh-
bors in the next row and next two rows, respectively, whereas
C6 corresponds to a node connected to three of its neighbors
in the next two rows. The average performance speedup when
simulating 10 point-to-point paths per node instead of 3 was
1.1. However, higher connectivity could increase delays in the
network due to router complexity and number of wires.
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Figure 8: GPA effectiveness

Grid dimension: Figure 7 shows the sensitivity of perfor-
mance to grid height. Performance increases linearly up to 8
rows, beyond which the performance improvement tapers off.
Some benchmarks perform best with 8 rows. The loss in per-
formance when more rows are added is due to the longer rout-
ing delays to reach the bottom of the grid — either to reach
the termination control or to pass through an express channel.
Programs with large available ILP and large block sizes benefit
from increase in the number of rows. Among the benchmarks
we studied, dct, mpeg2, ammp, and art fall into this category.

GPA Effectiveness: Figure 8 shows the fraction of achiev-
able ILP that the GPA-1 exploits in each benchmark, both for
perfect memory/prediction and realistic assumptions. Each bar
is normalized by dividing the GPA-1 performance by the IPC
observed on an ideal machine. The ideal machine is mod-
eled by simply traversing the program dataflow graph, and di-
viding the number of instructions by the critical path length.
That ideal IPC value for each benchmark resides atop its cor-
responding bar. The middle bar corresponds to the GPA-1
configuration assuming both perfect memory and prediction
(PMP), while the bottom bar corresponds to the configuration
with realistic assumptions for memory and prediction. We see
that the GPA-1 exploits between 10% and 40% of the available
ILP in each benchmark.

While these results are promising, they represent only an
unoptimized, first-cut GPA design. The performance benefits
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are likely to diminish as we add detail to our simulator, but are
also equally likely to improve as we enhance the scheduler and
tune the performance of the architecture. In the next section,
we describe some of the possible extensions and alternatives
to the GPA-1 that could further improve performance.

5 Design Alternatives

Because the design space for GPAs is large, there are many un-
knowns about performance/complexity trade-offs for the new
aspects of this system. In this section, we describe unexplored
opportunities for performance tuning in the grid network, the
block control logic, and the memory system. We then describe
more radical extensions to the block-atomic execution model
that may eventually provide higher performance or flexibility
in the architecture.

5.1 Performance tuning

Grid network design: One of the key determinants of GPA
performance is the logic and wire delay between producers and
consumers on the critical path. With clock rates close to the
speed of the grid ALUs, the latency in the routers and wires
in the network must be kept as short as possible. The latency
to communicate ALU results from producer to consumer will
depend heavily on the distance and the number of hops in the
grid network. Larger degree routers will reduce the number of
hops, but increase the delay per hop. Achieving the right bal-
ance between near and far communication between producers
and consumers is critical for high performance. While this
trade-off is similar to those found in multiprocessor intercon-
nection networks, the fine granularity of the operand network
magnifies the effect. Furthermore, since the routers may not
necessarily have dedicated channels and ports, efficient flow
control of the operand packets will be critical for obtaining
high performance. To reduce the handshaking overhead re-
quired by many flow control protocols, we are currently ex-
amining techniques for pre-reserving network channels to a
consumer node while the producer ALU is executing its in-
struction. Such techniques are similar to Flit-Reservation Flow
Control, which has been proposed for coarser-grained on-chip
networks [18]. We are also examining how express channels
can reduce the communication latency, by trimming the num-
ber of hops between distant producer and consumer ALUs [8],
as well as circuit techniques to minimize delays in the routers.

Predication strategies: Since the GPAs run with a data-
driven execution model, predication is difficult to implement.
The problems with predication are a) communication of pred-
icate bits to instructions in predicated regions and b) added
complexity of block termination control to handle instructions
that receive false predicates. The simplest of the strategies is
to send predicate bits to all instructions in the predicated re-
gion. This strategy avoids superfluous execution but requires
high bandwidth for predicates. Alternately, predicates may be
sent only to the root instructions in the data dependence sub-
graph controlled by the predicate, reducing predicate fan-out.
Both of these approaches limit performance as all instructions
in the predicated region need to wait until the predicate bit is

received [3]. In our current solution, the compiler predicates
only those instructions that update stable storage (stores and
register file writes). That strategy provides a critical path re-
duction, since the predicate computation is not needed until
later, plus a lower fanout of the predicate values is needed, at
the expense of less efficient use of power.

Memory system: Efficient delivery of instructions into an
ALU grid relies upon placing the instructions in the corre-
sponding instruction cache bank to avoid routing delays. Since
the schedule may have holes due to unused ALU slots, an un-
compressed version is likely to be large. While not discussed
above, we anticipate maintaining the program code in a com-
pressed format in the memory hierarchy below the L1 instruc-
tion cache to conserve both capacity and bandwidth. In the
data memory, the first-order challenge is to maintain proper
ordering of load and store instructions to the same memory lo-
cations. Our existing design requires a structure similar to a
load/store queue with store-load forwarding. We are exploring
both speculative and conservative strategies to detect ordering
violations and enforce ordering among subsets of the load and
store instructions. We are also exploring a scheme in which
previously communicating store-load pairs speculatively com-
municate via point-to-point messages, bypassing the memory
system.

5.2 Execution model extensions

Grid speculation: In addition to the speculative block map-
ping and execution described in Section 3, a GPA can poten-
tially support speculation and inexpensive recovery within a
single hyperblock. For example, if the dependence between a
load and a store is unknown, a GPA may issue the load specu-
latively, fetch the data from memory, and pass it to the instruc-
tions that will consume the value. If the load is later deter-
mined to have needed the result from a prior store, the entire
hyperblock need not be nullified. Instead, the grid may be able
to employ selective re-execution by injecting the new load re-
sult into the grid where it is routed to the instructions that are
still mapped onto the ALUs. The new values trigger only those
instructions along the dependence path from the load to the end
of the block for re-execution. This capability will greatly re-
duce the overheads associated with rollback from a data value
misprediction.

Frame management: Multiple frames essentially provide
multiple logical processors on the same grid substrate. Manag-
ing these frames is key to the execution model implemented by
a GPA. As described above, these frames can be used for spec-
ulative mapping and execution of hyperblocks in a sequential
program. For applications that consist of independent threads
of control, the frames can support a multithreaded execution
model. A subset of frames may be allocated to each thread
and then used in a manner chosen by each thread: sequential
with speculative mapping or data parallel with mapping reuse,
as described below. It is also possible that different threads
could share the same frame, with each thread using a physi-
cally different subset of the ALUs, but the complexity for this
level of sharing appears prohibitively complex.
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ALU control: While Section 3 describes each ALU as hav-
ing only a single instruction per frame with only data trig-
gered control, we are examining extensions that provides a
small amount of additional local control at each ALU site. The
extensions include increasing the amount of local instruction
and data storage, and treating the ALUs as simple microcon-
trollers. Mapping reuse is possible in the grid by delivering
inner kernels to each ALU which could then self-sequence
through the instruction blocks with limited intervention from
any global grid controller. The potential exists for mapping a
repeated hyperblock to a grid once, and then dynamically re-
instantiating the block locally, with no refetching, for multiple
iterations. Different iterations can thus be executed in different
frames.

6 Related Work

The goals of high clock rate and high IPC are not unique to
GPAs. Many prior approaches have attempted to use both
static and dynamic techniques to discover and execute along
the critical path of a program, but they are too numerous to
discuss here. In this section we describe what we believe to be
the most relevant related work.

Dennis and Misunas proposed a static dataflow architec-
ture [9], and Arvind proposed a Tagged-Token Dataflow archi-
tecture with purely data-driven instruction scheduling for pro-
grams expressed in a dataflow language [2]. Culler later pro-
posed a hybrid dataflow execution model where programs are
partitioned into code blocks made up of instruction sequences,
called threads, with dataflow execution between threads [7].
Our approach differs from these in that we use a conventional
programming interface with dataflow execution for a limited
window of instructions, and rely on compiler instruction map-
ping to reduce the complexity of the token matching.

In a sense, GPAs are a hybrid approach between
VLIW [10] and conventional superscalar architectures. A GPA
statically schedules the instructions using a compiler, but then
dynamically issues them based on data dependences. Other ef-
forts have attempted to enhance VLIW architectures with dy-
namic execution. Rau proposed a split-issue mechanism to
separate register read and execute from writeback and a de-
lay buffer to support dynamic scheduling for VLIW proces-
sors [20]. Grid Processors share many characteristics with
the Transport Triggered Architectures proposed by Corporaal
and Mulder, including data driven execution, reducing regis-
ter file traffic, and non-broadcasting bypass of execution unit
results [6, 5].

Others have looked at various naming mechanisms for
values to reduce the register pressure and register file size.
Smelyanskiy et al. proposed Register Queues for allocating
live values in software pipelined loops [23]. Llosa proposed
register sacks, which are low bandwidth port-limited register
files for allocating live values in pipelined loops [15]. Patt
proposed a Block-Structured Instruction Set Architecture for
increasing the fetch rate for wide issue machines where the
atomic unit of execution is a block and not an instruction [11].

Many researchers are exploring distributed or partitioned
uniprocessor designs. Waingold et al. proposed a distributed
execution model with extensive compiler support in the RAW

architecture [29]. The RAW architecture assumes a coarser-
grain execution than does the Grid Processor, exploiting paral-
lelism across multiple compiler-generated instruction streams.
Ranganathan and Franklin described an empirical study of de-
centralized ILP execution models [19]. Sohi et al. proposed
Multiscalar processors, in which a single program is broken up
into a collections of speculative tasks [24].

A different approach to creating a distributed window used
dynamic traces for the execution partitions [28]. In that work,
Vajapeyam and Mitra proposed renaming temporary registers
within a trace to reduce the needed global register file and re-
name bandwidth; GPAs use a similar approach, except that the
renaming is performed statically. Unlike that design, however,
the GPA-1 executes hyperblocks in a fine-grain dataflow fash-
ion and overlaps speculative tasks/hyperblocks on the same
computation substrate.

Finally, Uht et al. are currently investigating an architec-
ture [27] that is also intended to exploit high ILP with many
ALUs in a single execution core, but using different commu-
nication mechanisms than Grid Processor Architectures.

7 Conclusion

This paper has introduced Grid Processor Architectures as a
new class of microarchitectures, that are intended to enable
continued scaling of both clock rate and instruction through-
put. By mapping dependence chains onto an array of ALUs,
conventional large structures such as register files and instruc-
tion windows can be distributed throughout the ALU array,
permitting better scalability of the processing core. By deliv-
ering ALU results point-to-point instead of broadcasting them,
GPAs mitigate the growing global wire and delay overheads
of conventional bypass architectures. Our initial studies on
sequential applications are promising, with the grid processor
achieving IPCs ranging from 1 to 9, competitive with those of
idealized superscalar microarchitectures, and exceeding those
of VLIW microarchitectures.

It it not clear that GPAs will be superior to the conventional
alternatives, which may find more incremental, but equally
good solutions to the wire delay and clock scaling problems.
GPAs have several disadvantages; they force the data caches
to be far away from many of the ALUs, and incur delays
between dependent operations due to the network router and
wires, which can be significant. The complexity of frame man-
agement and block stitching (allowing successor hyperblocks
to execute speculatively) is significant and may interfere with
our goal of fast clock rates.

However, future architectures must be partitioned some-
how, and the partitioning and the flow of operations are likely
be exposed to the compiler, while still preserving dynamic exe-
cution. Many of the techniques discussed herein are thus likely
to appear in future designs. We are actively working to refine
the microarchitecture of the GPA-1 and the hyperblock sched-
uler with the anticipation that the hardware complexity can be
further reduced without undue burden on the software. Future
work will also include an exploration of different grid exe-
cution models for mapping streaming/media, scientific/vector,
and multithreaded codes.
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