CS 341 Homework 4
Deterministic Finite Automata

1. If M isadeterministic finite automaton. Under exactly what circumstancesise [1L(M)?

2. Describe informally the languages accepted by each of the following deterministic FSMs:

a-

(from Elements of the Theory of Computation, H. R. Lewisand C. H. Papdimitriou, Prentice-Hall, 1998.)

Homework 4 Deterministic Finite Automata

3. Construct a deterministic FSM to accept each of the following languages:
(@ {wO{a b}*:each‘a inwisimmediately preceded and followed by a‘'b’}
(b) {w O {4, b}* : w has abab as a substring}
(c) {w O {a, b}* : w has neither aa nor bb as a substring}
(d) {w O {4, b}* : w has an odd number of as and an even number of b's}
(e) {w O {a, b}* : w has both ab and ba as substrings}

4. Construct a deterministic finite state transducer over {a, b} for each of the following tasks:
(@) On input w produce @', where n is the number of occurrences of the substring ab in w.
(b) Oninput w produce &', where n is the number of occurrences of the substring abain w.
(c) On input w produce a string of length w whose i symbol isan aif i =1 or if i > 1 and thei™ and (i-1)®
symbols of w are different; otherwise, the ™ symbol of the output is b.

5. Construct a dfa accepting L ={w [0 {&, b}* : w contains no occurrence of the string ab} .

6. What language is accepted by the following fsa?

7. Give adfaaccepting {x [J {a, b}* : at least one ain x is not immediately followed by b} .

8. LetL={w{a b}*: wdoesnot endin ba}.
(a) Construct adfaaccepting L.
(b) Give aregular expression for L.

9. Consider L ={a@":0<n< 4}
(a) Show that L isregular by giving adfathat acceptsit.
(b) Give aregular expression for L.

10. Construct a deterministic finite state machine to accept strings that correspond to odd integers without
leading zeros.

11. Imagine atraffic light. Let > ={a}. In other words, the input consists just of astring of as. Think of
each a as the output from atimer that signals the light to change. Construct a deterministic finite state
transducer whose outputs are drawn fromthe set { Y, G, R} (corresponding to the colors yellow, green, and
red). The outputs of the transducer should correspond to the standard traffic light behavior.

12. Recall the finite state machine that we constructed in class to accept $1.00 in change or bills. Modify
the soda machine so that it actually does something (i.e., some soda comes out) by converting our finite state
acceptor to afinite state transducer. Let there be two buttons, one for Coke at $.50 and one for Water at
$.75 (yes, it's strange that water costs more than Coke. The world isa strange place). In any case, there will
now be two new symbolsin the input aphabet, C and W. The machine should behave as follows:

Homework 4 Deterministic Finite Automata 2

» The machine should keep track of how much money has been inserted. If it ever gets more than $1.50, it
should spit back enough to get it under $1.00 but keep it above $.75.

» If the Coke or Water button is pushed and enough money has been inserted, the product and the change
should be outpui.

« If abutton is pushed and there is not enough money, the machine should remember the button push and
wait until there is enough money, at which point it should output the product and the change.

13. Consider the problem of designing an annoying buzzer that goes off whenever you try to drive your car
and you're not wearing a seat belt. (For ssimplicity, we'l just worry about the driver's possible death wish. If
you want to make this harder, you can worry about the other seats aswell.) Design afinite state transducer
whose inputs are drawn from the alphabet { K1, KR, SO, SU, BF, BU}, representing the following events,
respectively: "key just inserted into ignition", "key just removed from ignition”, "seat just became
occupied”, "seat just became unoccupied”, "belt has just been fastened”, and "belt has just been unfastened".
The output alphabet is{ ON, OFF}. The buzzer should go on when ON is output and stay off until OFF is
output.

14. Isit possible to construct afinite state transducer that can output the following sequence:
1010010001000010000010000001...
If it is possible, design one. If it's not possible, why not?

Solutions

1. e O L(M) iff theinitial stateisafinal state. Proof: M will hatinitsinitial state given € asinput. So: (IF)
If theinitial stateisafinal state, then when M haltsin theinitial state, it will bein afinal state and will
accept e asan element of L(M). (ONLY IF) If theinitial stateis not afinal state, then when M haltsin the
initial state, it will reject itsinput, namely €. So the only way to accept € isfor the initial state to be afinal
state.

2.

(o) You must read a to reach the unique final state. Once there, you may read ba
and still accept. So the language is a(ba)*. (Or (abd)*a.) This problem is fairly easy to
analyze. (Informally, you could describe this as all strings that begin and end with a, and
the symbois alternate a and b, or something of this nature; giving the regular expression is
much clearer and easier.)

.{(b) There are two final states that are reachable. This one is quite easy because
once you reach the final states you cannot go further. The obvious answer is aa*bUb. This
can be simplified to a*b. The machine is distinguishing between whether the aumber of a’s
is positive or 0, but there is no need to.

¢) This one is trickier. How can we reach the final state here? By going to the
middle state with a and then returning with . This can be iterated. But while in the
middle state we may iterate ab. So the answer is (a(abd)*b)".

(d) This one is similar to (¢) but easier. We can reach the final state by reading
ab or ba, and in either cass we may iterste again. So (ad U da)* is the solution.

Homework 4 Deterministic Finite Automata 3

{e) Number the states 1,2,3,4,5,6 going right to left, top to bottom. The following
properties characterise each state: »
1: ¢ has been read.
2: zb has been read, for some z € (a U b)° not ending in b.
: zbb has been read, for some z € (a U b)°.
: za has been read, for some z € (a U b)* not ending in a.
: zaa has been read, for some z € (a U b)°.
: zbbay or zaaby has been read, for some z,y € (a U b)°.
Therefore the language is all strings containing bba or aad as a substring, i.e., (a U b)*(bba
aab)(a U b)°.

D oW

(a) L = {w € {a,0}* : each a in w is immediately preceded and immediately

followed by a b}.

" (A regular expression for L is (b°ba)(b*ba)*bs* U °, or, using *,

(b*a)*dt U b®. Notice the necessary distinction between strings with no a’s and those with
a’s. Why doesn’t the simpler §°(b*ad*)* work?)

This will need a machine with s deadstate because as soon as we see an a not preceded

or followed by a b, the string should be rejected and no matter what comes later, the string
is bad. Le., we will assume the string is ok until a specific occurence which tells us to reject
the string.

Clearly e € L since every a in ¢ has the property. Now for any longer string, the
machine only needs to remember what the last symbol was to determine if the string should

be rejected.

So we could make states with the properties:

1: e € L has been read.

2: za has been read, for some z € L not ending in g (the string so far is ok, but we'd better
see 3 b next since za ¢ L.)

3: zb € L has been read (the string so far is ok.)

4: z has been read, such that for no y is zy € L. (we know the string is bad - no matter
what comes later.)

You should be able to draw the machine now. Notice that s = 1, F = (1,3}.
(b) L = {w € {a,b}* : w has ababd as & substring}.
(A regular expression for L is easy: (a U b)*abab(a U b)°.)
Again we need to keep track only of the last part of the string, in this case the last 3
symbols. In this one we are looking for an occurence in the string which will make us accept

the string (compare to Problem (a).) Once there has been an occurence of abab, whatever
follows is irrelevant.

Lol Sl 4

Here are the relevant properties of the string as it is read in:

1: z has been read, for some z € (a Ub)" such that z € L and z does not end in a.

: za has been read, for some z € (a U)® such that z € L and z does not end in ab.

: zab has been read, for some z € (a U)* such that z ¢ L and z does not end in ab.
zaba has been read, for some z € (a U b)* such that 2 ¢ L and 2 does not end in ab.

: zababy has been read, for some z,y € (aUb)* such that = € L and z does not end in ab.

Homework 4 Deterministic Finite Automata

So a 5 state machine can do the trick. The start state is 1, because that’s the property
e has (¢ € (aUb)* and e does not end in a.) Any string with property 1 which is then
followed by b continues to have property 1, s0 §(1,5) = 1. Any string with property 1 which
is then followed by @ now has property 2, so §(1,a) = 2. And so on. Clearly 88,0) =5
since once abab has been seen, that fact cannot be changed - abab continues to have been
seen. Clearly a string has abab as a substring iff it has property 5, so F = {5}. Now you
draw the DFA.

(¢) L = {w € {a,b}" : w has neither aa nor bb as a substring}.

(A regular expression for L is eUa(ba)* (bUe)Ub(abd)* (aUe). This distinguishes between
whether the string starts with a or b or is empty. Another one is (aU e)(ba)*(bUe), though
this is perhaps less obvious.)

Like Problem (a), we should assume the string is ok until we see a bad occurence (aa or
bd). To test this, we clearly only need to keep track of the last symbol read. So the relevant
properties are:

1: e has been read (and so a or b may follow.)

2: za has been read, for some za € L (so only b may follow.)
3: zb has been read. for some zb € L (so only a may follow.)
4: 2 has been read, forsome z ¢ L.

Clearly any string with property 1,2 or 3 isin L, so F = {1,2, 3}. The start state is 1.
Now you draw it.

(d) L = {w € {a,d}" : #(a, w) is odd and #(3, w) is even}.

I use the function #(e,) to mean “the number of occurences of symbol ¢ in string z.”
E.g., #(a,aba) = 2 and #(b,aaa) = 0.

Unlike the previous problems, there is no specific occurence we are looking for, either to
reject or accept the string. Instead, we need to continually monitor it. When the string is
all read in, its status will then determine whether it is accepted or rejected.

Clearly what we need to monitor is the parity (even or odd) of the number of a’s and
the number of b's. These are independent data, so there are 2 x 2 = 4 possible states or
properties:

(0,0): z has been read, where #(a, z) and #(b, z) both even.
(0.1): z has been read, where #(a,z) even and #(b, z) odd.
(1,0): z has been read, where #(a, z) odd and #(b, 2) even.
(1,1): z has been read, where #(a, z) and #(b, z) both odd.

Since #(c,¢) = 0, and 0 is even, the start state is (0,0). (A fair number of people
unnecessarily distinguish between 0 and other even numbers, producing machines with more
states than necessary.) The only final state is (1,0). § can be defined by §((m,n),a) =
(m+1 mod 2,n) and §((m, n),b) = (m,n + 1 mod 2).

This is a technique easily generalised. Finite automata cannot count to arbitrarily high
natural sumbers, but they ces count modulo s number (so-called “clock arithmetic”). The
DFA just given counts the number of a’s and the number of b’s modulo 2. (A number m is
even iff m is congruent to 0 mod 2, written z = 0 mod 2, eg,z=..,-2024,..) You
could design a DFA to accept all strings z with #(a,z) = 7 mod 12 and #(b,z2)EO0mod §
and and #(c,2) = 2 mod 3, i.e., #(a,2) = 7,19,26, ... and #(b, 2) is & multiple of 5 and

Homework 4 Deterministic Finite Automata

#(e,z) = 2,5,8,.... A minimum state DFA to accept this language uses 12 x 5 x 3 = 180
states. For notational convenience, I would call the states (i, j, k), where 0 < i < 12,
0 < j<5and 0 < k< 3. Then the final state would be (7,0,2). The start state is of course
(0,0,0).

What would you do if you wanted all strings z with #(a,z) = 2 or 3 mod 4, or #0,z)=
1 mod 37 (Hint: the states are constructed in the same manner; only the final conditions
are different.)

(e) L = {w € {a,b}" : w has both ab and ba as substrings}.

Here we are looking for not one occurence but two in the string. There are two subtleties.
Either event might occur first, so we must be prepared for the ab or the ba to be read
first. Also, the definition of L does not require the two substrings of ab anb ba to be
nonoverlapping: e.g.,aba € L.

1: e has been read (30 we have seen neither substring.)
: @™ has been read, for some m > 1 (30 we have seen neither substring.)
: a™b" has been read, for some m,n > 1 (so we have seen ab.)
: b™ has been read, for some m > 1 (30 we have seen neither substring.)
: ™a™ has been read, for some m,n 2 1 (so we have seen ba.)
: a™b"az or b™a"bz has been read, for some m,n > 1 and z € (a U b)* (so we have seen
ab and ba.)

N N b W N

Clearly, 1 is the start state and {6} is the set of final states. You should be able to draw
the DFA now.

4. (@

(b)

Homework 4 Deterministic Finite Automata

(©)

b Q a
ab
oS W oI
6. (aa)* (bb* [bb*a(aa)*) = (aa)*b’(e O a(aq)*) = al strings of a's and b's consisting of an even number of
as, followed by at least one b, followed by zero or an odd number of as.

8. (a) (byedal (al by* (b O aa)

7.

Homework 4 Deterministic Finite Automata

9.(a)

(b) (¢ O ab O aabb Daaabbb Casaabbbb)

Homework 4 Deterministic Finite Automata

