CS 341

Dr. Baker

Fall 2007

For late-breaking information and news related to the class, see
http://www.cs.utexas.edu/users/dbaker/cs341/

Acknowledgements:

This material was assembled by Elaine Rich, who allowed meto use it wholesale. | am
greatly indebted to her for her efforts.

Table of Contents

|I. Lecture Notes

A. Overview and Introduction
1. The Three Hour Tour Through Automata Theory
2. What is a Language?

B. Regular Languages and Finite State Machines
3. Regular Languages
4. Finite State Machines
5. Nondeterministic Finite State Machines
6. Interpreters for Finite State Machines
7. Equivalence of Regular Languages and FSMs
8. Languages that Are and Are Not Regular
9. A Review of Equivalence Relations
10. State Minimization
11. Summary of Regular Languages and Finite State Machines

C. Context-Free Languages and Pushdown Automata
12. Context Free Grammars
13. Parse Trees
14. Pushdown Automata
15. Pushdown Automata and Context-Free Languages
16. Grammars and Normal Forms
17. Top Down Parsing
18. Bottom Up Parsing
19. Languages that Are and Are Not Context Free

D. Recursively Enumerable Languages, Turing Machines, and
Decidability
20. Turing Machines
21. Computing with Turing Machines
22. Recursively Enumerable and Recursive Languages
23. Turing Machine Extensions

24. Problem Encoding, Turing Machine Encoding, and the Universal Turing
Machine

25. Grammars and Turing Machines
26. Undecidability
27. Introduction to Complexity Theory

Il. Homework

A. Review
1. Basic Techniques

B. Regular Languages and Finite State Machines

Strings and Languages

Languages and Regular Expressions

Deterministic Finite Automata

Regular Expressions in UNIX

Nondeterministic Finite Automata

Review of Equivalence Relations

Finite Automata, Regular Expressions, and Regular Grammars
Languages that Are and Are Not Regular

State Minimization

© 0N oA N

=
o

C. Context-Free Languages and Pushdown Automata
11. Context Free Grammars
12. Parse Trees
13. Pushdown Automata
14. Pushdown Automata and Context-Free Grammars
15. Parsing
16. Languages that Are and Are Not Context-Free

D. Recursively Enumerable Languages, Turing Machines, and
Decidability
17. Turing Machines
18. Computing with Turing Machines
19. Turing Machine Extensions
20. Unrestricted Grammars
21. Undecidability

E. Review
22. Review

I1l. Supplementary Materials
» The Three Hour Tour through Automata Theory

= Review of Mathematical Concepts

» Regular Languages and Finite State Machines

= Context-Free Languages and Pushdown Automata

= Recursively Enumerable Languages, Turing Machines, and Decidability

|. Lecture Notes

The Three Hour Tour Through Automata Theory

Read Supplementary Materials. The Three Hour Tour Through Automata Theory
Read Supplementary Materials. Review of Mathematical Concepts

Read K & S Chapter 1

Do Homework 1.

Let'sLook at Some Problems
int alpha, beta;
alpha=3;
beta= (2 +5)/ 10;
(1) Lexical analysis: Scan the program and break it up into variable names, numbers, etc.
(2) Parsing: Create atree that corresponds to the sequence of operations that should be executed, e.g.,
/

ya +/\o
£\
(3) Optimization: Realize that we can skip the first assignment since the value is never used and that we can precompute the
arithmetic expression, since it contains only constants.

(4) Termination: Decide whether the program is guaranteed to halt.
(5) Interpretation: Figure out what (if anything) it does.

A Framework for Analyzing Problems
We need a single framework in which we can analyze a very diverse set of problems.
The framework we will use is L anguage Recognition

A language is a (possibly infinite) set of finite length strings over afinite al phabet.

L anguages
(1) 2={0,1,2,3,4,5,6,7,8,9}
L ={w O Z*: w represents an odd integer}
={w O z*: thelast character of wis1,3,5,7, or 9}
= (0010203040506070809)*
(103050709)
2 z={()}
L ={w O Z*: w has matched parentheses}
= the set of strings accepted by the grammar:
S~ (S)
S- SS
S-¢
(3) L ={w: wisasentence in English}
Examples: Mary hit the ball.
Colorless green ideas sleep furioudly.
The window needs fixed.
(4) L ={w: wisaC program that halts on all inputs}

Lecture Notes 1 The Three Hour Tour

Encoding Output in the Input String

(5) Encoding multiplication as asingle input string
L = {w of the form: <integer>x<integer>=<integer>, where <integer> is any well formed integer, and the third integer is
the product of the first two}
12x9=108 12=12 12x8=108
(6) Encoding prime decomposition
L ={w of the form: <integer1>/<integer2>,<integer3> ..., where integers 2 - n represent the prime decomposition of
integer 1.
15/3,5 2/2
M ore Languages

(7) Sorting as a language recognition task:
L ={w;#w,: [h=>1,
w, isof theforminty, int,, ... int,,
w, isof theformint,, int,, ... int,, and
W, contains the same objects as w; and w; is sorted}

Examples:
1,5,3,9,6#1,3,56,9 0 L
1,53,9,6#1,2,3,4,5,6,7 0L

(8) Database querying as a language recognition task:
L={d#q#a
d isan encoding of a database,
g isastring representing a query, and
aisthe correct result of applying qto d}
Example:
(name, age, phone), (John, 23, 567-1234) (Mary, 24, 234-9876)# (select name age=23) # (John) O L

The Traditional Problemsand their Language For mulations are Equivalent

By equivalent we mean:

If we have a machine to solve one, we can use it to build a machine to do the other using just the starting machine and other
functions that can be built using a machine of equal or lesser power.

Consider the multiplication example:
L ={w of the form:
<integer>x<integer>=<integer>, where
<integer> is any well formed integer, and
the third integer is the product of the first two}

Given amultiplication machine, we can build the language recognition machine;

Given the language recognition machine, we can build a multiplication machine;

Lecture Notes 1 The Three Hour Tour

A Framework for Describing Languages

Clearly, if we are going to work with languages, each one must have a finite description.

Finite Languages. Easy. Just list the elements of the language.
L ={June, July, August}

Infinite Languages. Need afinite description.
Grammars let us use recursion to do this.
Grammars1

(1) The Language of Matched Parentheses

(2) The Language of Odd Integers
S-1
S-3
S-5
S—>7
S-9
S-0S
S- 1S
S-2S
S-3S
S-4S
S-5S
S-6S
S-7S
S-8S
S-9S

Grammars3

(3) The Language of Simple Arithmetic Expressions

S - <exp>

<exp> - <number>

<exp> - (<exp>)

<exp> - - <exp>

<exp> — <exp> <op> <exp>

<op> - +|-[* |/

<number> - <digit>

<number> - <digit> <number>

<digit>-0|1]2|3]4]|5|6|7|8]9

Lecture Notes 1 The Three Hour Tour

Grammars?2

S-0
S-AO
A-AD
A-D
D—>O
D-E
O—>1
0-3
O—>5
0-7
0-9
E- O
E- 2
E- 4
E- 6
E- 8

Top Down Parsing

Bottom Up Parsing

Lecture Notes 1

Grammars as Generators and Acceptors

The Language Hierarchy

Recursively Enumerable
Languages

Recursive
Languages

Context-Free
Languages

Regular
Languages

The Three Hour Tour

Regular Grammars
Inaregular grammar, al rules must be of the form:
<one nonterminal> - <oneterminal> or ¢
or
<one nonterminal> - <one terminal><one nonterminal>

So, the following rules are okay:
So ¢
S-a
S- aS

But these are not:
S nd ab
S- SS
as s b
Regular Expressionsand L anguages

Regular expressions are formed from O and the charactersin the target alphabet, plus the operations of:
» Concatenation: a3 means a followed by 3

e Or (SetUnion): al meansa Or (Union) 3

» Kleene*: a* means 0 or more occurrences of a concatenated together.

+ AtLeast 1: a" means 1 or more occurrences of o concatenated together.

e (): used to group the other operators

Examples:

(1) Odd integers:
(0010203040506070809)*(103050709)

(2) Iderntifiers:
(A-Z)"((A-2) O(0-9))*

(3) Matched Parentheses
Context Free Grammars

(1) The Language of Matched Parentheses
S-(9S)
S SS
So ¢

(2) The Language of Simple Arithmetic Expressions
S - <exp>
<exp> - <number>
<exp> - (<exp>)
<exp> - - <exp>
<exp> — <exp> <Op> <exp>
<op> - +|-|*|/
<number> - <digit>
<number> - <digit> <number>
<digit> - 0]1]2|3]|4|5|6]7|8]9

Lecture Notes 1 The Three Hour Tour

Not All Languages are Context-Free

English: S - NP VP
NP - the NP1 |NP1
NP1 - ADJ NP1|N
N - boy | boys
VP -V |V NP
V - run|runs
What about “boys runs’

A much simpler example:

ab'c" n=1

Unrestricted Grammars

Example: A grammar to generate all strings of the form a'b’c", n>1

S - aBSc

S - aBc
Ba - aB
Bc - bc
Bb - bb

Lecture Notes 1

The Language Hierarchy

Recursively Enumerable
Languages

Recursive
Languages

Context-Free
Languages

Regular
Languages

The Three Hour Tour

A Machine Hierarchy

Finite State M achines 1

An FSM to accept odd integers:

1,3,5,7,9

1,3,5,7,9

0,2,4,6,8
0,2,4,6,8

Finite State M achines 2
An FSM to accept identifiers:

|etter

Q /—m letter or digit

blank, delirmiter () delimiter or blank
anything

or digit
Pushdown Automata

A PDA to accept strings with balanced parentheses:

¢ I
i ‘@

Example: (())()
Stack:

Pushdown Automaton 2

A PDA to accept strings of the form w#w*®:

alla alal .

#ll
q

b/l b/b/ .

Lecture Notes 1 The Three Hour Tour

A Nondeter ministic PDA

A PDA to accept strings of the form ww?

alla alal .
ell
N)

bl/b b/b/ '

PDA 3

A PDA to accept strings of the form a'b"c"

Turing Machines

A Turing Machine to accept strings of the form a’b"c"

di/R

b,f//IR \
a,b,ef//L
c/flL

ad,eQ

Q,ef//IR

ef/IR

Lecture Notes 1 The Three Hour Tour

A Two Tape Turing Machine
A Turing Machine to accept { w#w"}

|<>|EI alb alal# alalb aIEIlEIl

A Two Tape Turing Machine to do the same thing

Simulating k Tapeswith One
A multitrack tape:

Rl |olo

o|<c|ofe
ol|o|r|w
ol|o|o|o
o|v|o|w
olo|o|
e (=]
(N

Can be encoded on a single tape with an alphabet consisting of symbols corresponding to :

{{0,ab#,0} x{0,1} x
{0,ab#0} x{0,1}}

Example: 2nd square: (4,0,a,1))

Simulating a Turing M achine with a PDA with Two Stacks

olafblafa#lafaofa] | | [| | |

]

a #
a a
b a
a b
0 a

Lecture Notes 1 The Three Hour Tour

The Universal Turing Machine
Encoding States, Symbols, and Transitions

Suppose the input machine M has 5 states, 4 tape symbols, and atransition of the form:
(s,a,9,b), which can be read as:

in state s, reading an a, go to state g, and write b.

We encode this transition as:
g000,a00,q010,a01

A series of transitions that describe an entire machine will look like
g000,200,q010,a01#g010,a00,q000,a00

The Universal Turing Machine
a awb

| a00a00a01 |

| # # # |

| qo00 |

Church's Thesis
(Church-Turing Thesis)

An algorithm isaformal procedure that halts.

The Thesis: Anything that can be computed by any algorithm can be computed by a Turing machine.

Another way to stateit: All "reasonable" formal models of computation are equivalent to the Turing machine. Thisisn't aformal
statement, so we can't proveit. But many different computational models have been proposed and they all turn out to be
equivalent.

Example: unrestricted grammars
A Machine Hierarchy

PDAs

Turing Machines

Lecture Notes 1 The Three Hour Tour 10

Languages and M achines

Recursively Enumerable
Languages

Recursive
Languages

Context-Free
Languages

Turing Machines

Where Does a Particular Problem Go?

Showing what it is -- generally by construction of:

e A grammar, or amachine

Showing what it isn't -- generally by contradiction, using:

e Counting
Example: a'b"

» Closure properties

e Diagonalization

e Reduction

Regular Lanugages are Closed Under:
= Union

Concatenation

Kleene closure

Complementation

Reversa

Intersection

Context Free Languages are Closed Under:

= Union

= Concatenation

= Kleene Closure

» Reversal

* Intersection with regular languages
Etc.
Lecture Notes 1

Closure Properties

The Three Hour Tour

11

Using Closure Properties

Example:
L ={a'™c" nzm or m# p} is not deterministic context-free.

Two theorems welll prove later:

Theorem 3.7.1: The class of deterministic context-free languagesis closed under complement.

Theorem 3.5.2: Theintersection of acontext-free language with aregular language is a context-free language.

If L were adeterministic CFL, then the complement of L (L") would be a deterministic CFL.

ButL' n a*b*c* = {a"c"}, which we know is not context-free, much less deterministic context-free. Thus a contradiction.
Diagonalization

The power set of the integersis not countable.
Imagine that there were some enumeration:

1 2 3 4 5
Set 1 1
Set 2 1 1
Set 3 1 1
Set 4 1
Set 5 1 1 1 1 1
But then we could create a new set
[New Set | | | [1 | |

But this new set must necessarily be different from all the other setsin the supposedly complete enumeration. Yet it should be
included. Thus a contradiction.

More on Cantor

Of coursg, if were going to enumerate, we probably want to do it very systematically, e.g.,

1 2 3 4 5 6 7

Setl 1

Set2 1

Set 3 1 1

Set4 1

Set5 1 1

Set 6 1 1

Set7 1 1 1

Read the rows as bit vectors, but read them backwards. So Set 4is 100. Notice that thisisthe binary encoding of 4.
This enumeration will generate al finite sets of integers, and in fact the set of all finite sets of integersis countable.
But when will it generate the set that contains all the integers except 1?

Lecture Notes 1 The Three Hour Tour 12

The Unsolvability of the Halting Problem

Suppose we could implement
HALTS(M ,x)
M: string representing a Turing Machine
X: string representing the input for M
If M(x) haltsthen True

else False
Then we could define
TROUBLE(x)
X: string
If HALTS(x,x) then loop forever
else halt

So now what happens if we invoke TROUBLE(TROUBLE), which invokes
HALTS(TROUBLE, TROUBLE)

If HALTS saysthat TROUBLE halts on itself then TROUBLE loops. |FHALTS saysthat TROUBLE loops, then TROUBLE
halts.

Viewing the Halting Problem as Diagonalization

First we need an enumeration of the set of all Turing Machines. We'l just use lexicographic order of the encodings we used as
inputs to the Universal Turing Machine. So now, what we claimisthat HALTS can compute the following table, where 1 means
the machine halts on the input:

11 12 13 TROUBLE 15
Machine 1 1
Machine 2 1 1
Machine 3
TROUBLE 1 1
Machine 5 1 1 1 1

But we've defined TROUBLE so that it will actually behave as:

| TROUBLE | | I 1 | 1 |

Or maybe HALT said that TROUBLE(TROUBLE) would halt. But then TROUBLE would loop.

Lecture Notes 1 The Three Hour Tour 13

Decidability

Recursively Enumerable
Languages

Recursive
Languages

Context-Free
Languages

Regular
Languages

Can always say yes or no

Can enumerale e grammar.
say yes by enumerating and checki

Let's Revisit Some Problems

int alpha, beta;
alpha=3;
beta= (2 + 5) / 10;

(1) Lexical analysis: Scan the program and break it up into variable names, numbers, etc.
(2) Parsing: Create atree that corresponds to the sequence of operations that should be executed, e.g.,
/

N

T 10

N

2 5

(3) Optimization: Realize that we can skip the first assignment since the value is never used and that we can precompute the
arithmetic expression, since it contains only constants.

(4) Termination: Decide whether the program is guaranteed to halt.

(5) Interpretation: Figure out what (if anything) useful it does.

Lecture Notes 1 The Three Hour Tour

14

So What's L eft?
Formalize and Prove Things

Regular Languages and Finite State Machines
« FSMs
* Nondeterminism
e State minimization
e Implementation
» Equivalence of regular expressions and FSMs
* Properties of Regular Languages
Context-Free Languages and PDAS
« Equivalence of CFGs and nondeterministic PDAs
» Properties of context-free languages
e Parsing and determinism
Turing Machines and Computability
e Recursive and recursively enumerable languages
» Extensions of Turing Machines
e Undecidable problems for Turing Machines and unrestricted grammars

Lecture Notes 1 The Three Hour Tour

15

What Is a Language?
Do Homework 2.

Grammars, Languages, and M achines

Language
L
Accepts
Machine
Strings: the Building Blocks of Languages
An alphabet isafinite set of symbols: English alphabet: {A,B,C, ...

Binary alphabet: {0, 1}
A string over an alphabet is afinite sequence of symbols drawn from the al phabet.

English string: happynewyear
binary string: 1001101

We will generally omit “ " from strings unless doing so would lead to confusion.

The set of all possible strings over an alphabet X iswritten Z*.
binary string: 1001101 0 {0,1} *

The shortest string contains no characters. It is called the empty string and is written
The set of all possible strings over an alphabet X iswritten >*.
Moreon Strings

The length of a string is the number of symbolsin it.

le|=0
[1001101| =7
A string aisasubstring of astring b if aoccurs contiguously as part of b.
aaa isasubstring of aaabbbaaa
aaaaaa isnot asubstring of aaabbbaaa

Every string is a substring (although not a proper substring) of itself.

€ isasubstring of every string. Alternatively, we can match € anywhere.

Notice the analogy with sets here.

Lecture Notes 2 What is a Language?

2}

“" or g (epsilon).

Operationson Strings

Concatenation: The concatenation of two strings x and y iswritten x || y, X4/, or xy and is the string formed by appending the
string y to the string x.

Iyl = Ix| + Iyl

If x=¢andy="food”, then xy =
If x="good” andy = “bye", then |xy| =

Note: x[8=¢elX =x for al strings x.

Replication: For each string w and each natural number i, the string W is defined recursively as
0

W =¢

w=wtw foreachi > 1
Like exponentiation, the replication operator has a high precedence.

Examples:

a=

(bye)* =

a0b3 —

String Rever sal

An inductive definition:
(1) If w|=0thenw®=w=¢
(2) If w|=1then Dal>: w=ula
(aisthe last character of w)
and
wR = am®
Example:
(abe)"” =
Moreon String Rever sal
Theorem: If w, x are strings, then (WX)® = x?m”
Example: (dogcat)® = (cat)(dog)" = tacgod
Proof (by induction on [x]):
Basis: [x| = 0. Thenx = ¢, and (WX)® = (WE)R = (W)" = el = eFR = X
Induction Hypothesis: If [x| < n, then ()R = xRW®

Induction Step: Let [x] = n+ 1. Then x = u afor some character aand |u| = n

W) = (w(u@)"

= (wm)@*° associativity
= al(wm)® definition of reversal
= an"mR induction hypothesis
= (Lé@)zw2 definition of reversal
=X W
dogcat
-

X
u

Q1

Lecture Notes 2 What is a Language? 2

Defining a Language
A languageisa (finite or infinite) set of finite length strings over afinite alphabet >.
Example: Let 2 ={a, b}
Some languages over >: [1, {€}, {a b}, {&, a, aa, asa, asaa, asaaa}
The language Z* contains an infinite number of strings, including: €, a, b, ab, ababaaa

Example L anguage Definitions
L={x0O{a b}*:al asprecede all b's}

L={x:0yO{a b}*:x=ya}

L={d,n=0}

L =a" (If we say nothing about the range of n, we will assumethat it is drawn from N, i.e., n>0.)

L ={x#y: x,y 0 {0-9}* and square(x) =y}

L={} =0 (the empty language—not to be confused with { €}, the language of the empty string)
Techniquesfor Defining L anguages

Languages are sets. Recall that, for sets, it makes sense to talk about enumerations and decision procedures. So, if we want
to provide a computationally effective definition of alanguage we could specify either a

» Language generator, which enumerates (lists) the elements of the language, or a
» Language recognizer, which decides whether or not a candidate string is in the language and returns True if it is and
Falseif it isn't.

Example: Thelogical definition: L ={x: 0Oy O{a, b}* : x =ya} can beturned into either alanguage generator or a
language recognizer.

How Large are Languages?

e Thesmalest language over any alphabet is . [d]=0
» Thelargest language over any alphabet is >*. [Z*|="7
-IfZ=0thenx* ={¢} and [2*|=1
- If Z # 0 then |2*| is countably infinite because its elements can be enumerated in 1 to 1 correspondence with the
integers as follows:
1. Enumerate all strings of length O, then length 1, then length 2, and so forth.
2. Within the strings of a given length, enumerate them lexicographically. E.g., aa, ab, ba, bb

» Soall languages are either finite or countably infinite. Alternatively, all languages are countable.

Operationson Languages 1

Normal set operations: union, inter section, difference, complement...
Examples: 2 ={a, b} L, = strings with an even number of as

L, = stringswith no b's
Ll O L2:
Ll al L2 =
|_2 - Ll =
(Lz-Ly=

Lecture Notes 2 What is a Language?

Operations on Languages 2
Concatenation: (based on the definition of concatenation of strings)

If L, and L, are languages over Z, their concatenation L =L L,, sometimesL,(,, is
{wOX*:w=xyforsomexOL;andy 0Ly}

Examples:

L, = {cat, dog} L, ={apple, pear} L, L, ={catapple, catpear, dogapple, dogpear}
L1={an:n21} L2={a”:ns3} LiL,=

I dentities:

LO=0L=0 0L (anaogousto multiplication by 0)
L{e}={e}L =L 0OL (analogousto multiplication by 1)

Replicated concatenation:
L"=LOMO... M (ntimes)
L'=L
L°={¢g}
Example:
L ={dog, cat, fish}
LO={g}
L' ={dog, cat, fish}
L? = { dogdog, dogcat, dogfish, catdog, catcat, catfish, fishdog, fishcat, fishfish}
Concatenating L anguages Defined Using Variables

L,=a" ={d":n=0} L,=b"={b":n>0}
Lil,={a":n=0}{b":n=20} ={ a"b™:nm=0} (commonmistake:) Zab" ={ a'b":n=0}

Note: The scope of any variable used in an expression that invokes replication will be taken to be the entire expression.
L=1"2"
L =ah"d"
Operationson Languages 3
Kleene Star (or Kleeneclosure): L* ={w O X* : w=w; W, ... wy for some k = 0 and some wy, Wy, ... w, 0L}
Alternative definition: L* =L°O L' OL*0 L3O ...
Note: 0L, e O L*
Example:
L ={dog, cat, fish}
* ={¢, dog, cat, fish, dogdog, dogcat, fishcatfish, fishdogdogfishcat, ...}
Another useful definition: L*=L L* (L" isthe closure of L under concatenation)
Alternatively, L*= L' 0 L20 L3O ...
L"=L*-{g} if e0L

L"=L* if e0OL

Lecture Notes 2 What is a Language?

Regular Languages

Read Supplementary Materials. Regular Languages and Finite State Machines: Regular Languages
Do Homework 3.

Regular Grammars, L anguages, and M achines

Regular
Language

Regular Expression
or
Regular Grammar

Finite
State
M achine

“Pure” Regular Expressions

Theregular expressions over an aphabet Z are all strings over the alphabet ~ 00 {“(*,)", O, O, *} that can be obtained as
follows:

1. 0 and each member of X isaregular expression.
2. 1f a, B areregular expressions, then so is aff
3.1f a, B areregular expressions, then soisal .
4. If a isaregular expression, then soisa*.

5. If a isaregular expression, then so is (a).

6. Nothing else isaregular expression.

If ~ ={ab} thenthese are regular expressions: O, a, bab, allb, (aldb)*a*b*
So far, regular expressions are just (finite) strings over some alphabet, > 00 {“(*,)", O, O, *}.
Regular Expressions Define Languages

Regular expressions define languages via a semantic inter pretation function we'll call L:
1.L(O)=0andL(a)={a} foreachal >
2.1f a, B areregular expressions, then

L(ap) = L(o)@(B)

= al strings that can be formed by concatenating to some string from L (o) some string from L([3).

Note that if either a or B is 0, then itslanguage is [1, so there is nothing to concatenate and the result is (1.
3.1f a, B areregular expressions, then L(al) =L(a) O L(B)
4. If a isaregular expression, then L(a*) = L(a)*
5.L((0)) =L(a)

A languageisregular if and only if it can be described by aregular expression.

A regular expression is always finite, but it may describe a (countably) infinite language.

Lecture Notes 3 Regular Languages

Regular Languages
An equivalent definition of the class of regular languages over an alphabet 3
The closure of the languages

{a} Dalx and O [1]
with respect to the functions:
e concatenation, 2]
e union, and [3]
e Kleene star. [4]

In other words, the class of regular languages is the smallest set that includes all elements of [1] and that is closed under [2],
[3], and [4].

“Closure” and “ Closed”
Informally, a set can be defined in terms of a (usually small) starting set and a group of functions over elements from the set.
The functions are applied to members of the set, and if anything new arises, it’'s added to the set. The resulting set is called
the closure over the initial set and the functions. Note that the functions(s) may only be applied afinite number of times.

Examples:
The set of natural numbers N can be defined as the closure over {0} and the successor (succ(n) = n+1) function.
Regular languages can be defined asthe closure of {a} DalX and [0 and the functions of concatenation, union, and
Kleene star.

We say aset isclosed over afunction if applying the function to arbitrary elementsin the set does not yield any new elements.

Examples:
The set of natural numbers N is closed under multiplication.
Regular languages are closed under intersection.

See Supplementary Material s—Review of Mathematical Concepts for more formal definitions of these terms.

Examples of Regular Languages
L(a*b*)=
L((a0b))=
L((a0b)*)=
L((aOb)*a*b*) =
L ={wO{ab}* : w|iseven}
L ={w O {ab}* : w contains an odd number of a's}

Augmenting Our Notation
It would be really useful to be able to write € in aregular expression.
Example: (a0 €) b (Optiona afollowed by b)

But we'd also like aminimal definition of what constitutes aregular expression. Why?

Observe that
0°={¢€} (since 0 occurrences of the elements of any set generates the empty string), so
O ={¢}

So, without changing the set of languages that can be defined, we can add € to our notation for regular expressions if we
specify that
L(e) ={&}
We're essentially treating € the same way that we treat the charactersin the alphabet.
Having done this, you'll probably find that you rarely need [0 in any regular expression.

Lecture Notes 3 Regular Languages 2

More Regular Expression Examples

L((aa)O¢e)=

L(@O¢g*)=

L ={ wO{ab}* : thereisno more than one b}

L ={ wO{ab}* : notwo consecutive letters are the same}

Further Notational Extensions of Regular Expressions

« A fixed number of concatenations: a" means aoaa ...a (n times).

+ AtlLeast 1: a" means 1 or more occurrences of a concatenated together.

» Shorthands for denoting sets, such as ranges, e.g., (A-Z) or (letter-letter)
Example: L = (A-Z2)"((A-Z2)0(0-9))*

« A replicated regular expression a", where n is a constant.
Example: L = (0 0 1)®

e Intersection: anf (we'll prove later that regular languages are closed under intersection)
Example: L = (&)* n (&)*

Operator Precedencein Regular Expressions

Regular expressions are strings in the language of regular expressions. Thus to interpret them we need to:

1. Parsethestring

2. Assign ameaning to the parse tree

Parsing regular expressionsisalot like parsing arithmetic expressions. To do it, we must assign precedence to the operators:

Regular Arithmetic
Expressions Expressions
Highest Kleene star exponentiation
concatenation
. . multiplication
intersection
L owest union addition
ab* O cd* Xy?+ij?

Regular Expressionsand Grammars
Recall that grammars are language generators. A grammar isarecipe for creating stringsin alanguage.
Regular expressions are analogous to grammars, but with two special properties:

1. Thehavelimited power. They can be used to define only regular languages.
2. They don't look much like other kinds of grammars, which generally are composed of sets of production rules.

But we can write more "standard" grammars to define exactly the same languages that regular expressions can define.
Specifically, any such grammar must be composed of rules that:

e havealeft hand side that is a single nonterminal
* havearight hand side that is€, or asingle terminal, or asingle terminal followed by a single nonterminal.

Lecture Notes 3 Regular Languages

Regular Grammar Example
L={w O {a b}* : jw|iseven}

((@a@) O (ab) O (ba) O (bb))* Notice how these rules correspond naturally to a FSM:
So¢ ~ ab
S afl /
L 1
T-a
T-b ab
T aS
T - bS

Generators and Recognizers

Generator Recognizer

\ Language /

Regular Languages

_—— “‘-\\\~

Regular Expressions
Regular Grammars ?

Lecture Notes 3 Regular Languages

Finite State Machines

Read K & S2.1
Do Homeworks 4 & 5.
Finite State M achines 1

A DFSM to accept odd integers:

Definition of a Deterministic Finite State M achine (DFSM)

M= (K, %, 9, s, F), where K isafinite set of states
2 isan alphabet
sO K istheinitial state
F O K isthe set of final states, and
o isthetransition function. It isfunction from (K x) to K
i.e., each element of & maps from: a state, input symbol pair to a new state.

Informally, M acceptsastring w if M winds up in some state that is an element of F when it has finished reading w (if not, it
re ectsw).

The language accepted by M, denoted L (M), isthe set of all strings accepted by M.
Determinigtic finite state machines (DFSMs) are also called deterministic finite state automata (DFSAs or DFAS).
Computations Using FSM s

A computation of A FSM is a sequence of configurations, where a configuration is any element of K x2*.
Theyieldsrelation |-y:
(@ w) Fm (d, w) iff
e w=aw' for somesymbol all 2, and
- 0(@a=q
(Theyieldsrelation effectively runs M one step.)

[-w * isthereflexive, transitive closure of |-y.
(The [-»* relation runs M any number of steps.)

Formally, aFSM M acceptsastring w iff
(s w) [w * (q, €), for someq O F.

An Example Computation

A DFSM to accept odd integers:
On input 235, the configurations are:
(90, 235) i (90, 35)
I
I

Thus (90, 235) |-u+ (g1, €). (What does this mean?)

Lecture Notes 4 Finite State Machines

Finite State M achines 2

A DFSM to accept $.50 in change:

M ore Examples

((28) 0 (ab) O (ba) T (bb))*

(b O €)(ab)*(all €)

M ore Examples
L1={wO{a b}* : every aisimmediately followed a b}

A regular expression for L1:

A DFSM for L1:

L2={w O{a, b}* : every a has a matching b somewhere before it}

A regular expression for L2:

A DFSM for L2:

Lecture Notes 4 Finite State Machines

Another Example: Socket-based Network Communication

Client Server > ={Open, Req, Reply, Close}
open socket
send request
send reply L = Open (Req Reply)* (Reg [€) Close
send request
send reply
M=
close socket

Definition of a Deterministic Finite State Transducer (DFST)

M=(K, Z, 0,9, s, F), where
K isafinite set of states
2 isaninput alphabet
Oisan output al phabet
sOK istheinitial state
F O K isthe set of final states, and
disthetransition function. It isfunction from

(K x 2) to (K x O*)

i.e., each element of d mapsfrom: astate, input symbol pair
to: anew state and zero or more output symbols (an output string)

M computes a function M (w) if, when it reads w, it outputs M(w).

Theorem: The output language of a deterministic finite state transducer (on final state) isregular.
A Simple Finite State Transducer

Convert 1'sto O'sand O'sto 1's (thisisn't just a finite state task -- it's a one state task)

1/0

0/1
An Odd Parity Generator

After every three bits, output afourth bit such that each group of four bits has odd parity.

Lecture Notes 4 Finite State Machines

Nondeterministic Finite State Machines

ReadK & S2.2,2.3

Read Supplementary Materials. Regular Languages and Finite State Machines: Proof of the Equivalence of Nondeterministic
and Deterministic FSAs.

Do Homework 6.

Definition of a Nondeter ministic Finite State M achine (NDFSM/NFA)
M=(K, Z, A, s F), where

K isafinite set of states
> isan alphabet
sOK istheinitia state
F O K isthe set of final states, and
A isthetransitionrelation. Itisafinite subset of

(Kx(zD{e})) xK

i.e., each element of A contains:
aconfiguration (state, input symbol or €), and anew state.

M accepts a string w if there exists some path along which w drives M to some element of F.

The language accepted by M, denoted L (M), isthe set of all strings accepted by M, where computation is defined analogously to
DFSMs.

A Nondeterministic FSA
L={w : thereisasymbol gX not appearing in w}

Theideaisto guess (nondeterministically) which character will be the one that doesn't appear.

Another Nondeter ministic FSA
L,={w: aaoccursin w}

L,={x : bboccursinx}
L3={y :dLyor L2}

Ty ®Y

Lecture Notes 5 Nondeterministic Finite State Machines

Analyzing Nondeter ministic FSAs

Does this FSA accept: baaba
Remember: we just have to find one accepting path.

Nondeter ministic and Deter ministic FSAs
Clearly, { Languages accepted by a DFSA} [{ Languages accepted by a NDFSA}
(Just treat d as)
More interestingly, Theorem: For each NDFSA, thereis an equivalent DFSA.
Proof: By construction

b,c

a,cC

ab

Another Nondeter ministic Example
b* (b(alc)cOb(@db)(cOeg))*b

Lecture Notes 5 Nondeterministic Finite State Machines

A “Real” Example

* Found by enemy

Hide
—J Coast clear

ound by enemy

Brother
kills gnemy

Kill enemy

Dealing with € Transitions

E(Q ={pOK:(qw) [*m (p, w}. E(q) istheclosure of {g} under therelation {(p,r): thereisatransition (p, €, r) O A}

An algorithm to compute E(q):

Defining the Deterministic FSA

GivenaNDFSA M =(K, %, A, s, F),
weconstruct M'=(K', Z, &, s, F), where
Kl - 2K

S =E(9)
F={QUK:Qn Fz0O}
0 (Qa=0{E():p0IKand(q,ap) DA
for some q O Q}
Example: computing &' for the missing letter machine
s= {d0,q, g2 g3}
o= { ({d0, 1, 92, g3}, & {92, q3}),
({90, 91, 92, 3}, b, {q1, q3}),
({90, g1, 92, g3}, ¢, {q1, g2}),
({al, 92}, a {g2}), {91, g2}, b, {q1}), ({dl, 92}, c,{ql, g2})
(g1, g3}, & {g3}), {aL, g3}, b, {g1, g3}), ({al, g3}, c, {ql})
({92, g3}, & {g2,g3}), {92, g3}, b, {g3}), ({02, g3}, c, {g2})
({a1}, b, {a1}), (a1}, c, {ql})
({92}, a {g2}), {92}, c. {g2})
(a3}, a {a3}), (a3}, b, {a3}) }

Lecture Notes 5

b,c

ac
q0 €
7/

Nondeterministic Finite State Machines

An Algorithm for Constructing the Deterministic FSA
Compute the E(g)s:
Compute s = E(s)
3. Compute d"
0'(Q,a) =0{E(p):pdKand (g, a p) O A for someq O Q}
Compute K' = a subset of 2
5. ComputeF={QOK':QnF£0}

NP

e

An Example - The Or Machine
L,={w: aaoccursinw}
L,={x : bboccursinx}
Le={y :0OLjorL,}

b b ab

OO G

a
Another Example

b* (b(al c)cOb(@db)(cOe))*b

Lecture Notes 5 Nondeterministic Finite State Machines

Sometimes the Number of States Grows Exponentially

Example: The missing letter machine, with [Z|=n
No. of states after O chars: 1 > a
n

No. of new states after 1 char: (n_J =n

ac
: a0 g /D
No. of new states after 2 chars: n—2 =n(n-1)/2 -

n

b,c

No. of new states after 3 chars: (n J =n(n-1)(n-2)/6 ab

-3
Total number of states after n chars; 2" &

What If The Original FSA is Deterministic?

Compute the E(g)s:

s =E(qO0) =

3. Compute &
({q0}, odd, {q1})
({q0}, even, {q0})
({1}, odd, {q1})
({ g1}, even, {q0})

4. K'={{q0}, {ql}}

5. F={{q1}}

M'=M

NP

135,79

Thereal meaning of “determinism”
A FSA isdeterministic if, for each input and state, there is at most one possible transition.
DFSAs are always deterministic. Why?

NFSAs can be deterministic (even with e-transitions and implicit dead states), but the formalism allows nondeterminism,
in general.

Determinism implies uniquely defined machine behavior.

Lecture Notes 5 Nondeterministic Finite State Machines 5

Interpreters for Finite State Machines

Deterministic FSAsas Algorithms

Example: No more than oneb S s := get-next-symbol;
if s= end-of-file then accept;
elseif s=athengoto S

a ab elseif s=bthengoto T;
b b T: S:= get-next-symbol;
@ 3 @ U if s= end-of-file then accept;
U elseif s=athengoto T;

elseif s=bthengoto U;

Length of Program: |K| x (|Z| + 2) etc.
Time required to analyze string w: O(jw| x [Z])

We have to write new code for every new FSM.

Until accept or reject do:
A Deterministic FSA Interpreter

TosimulaeM = (K, Z, 3, s, F): Simulate the no more than one b machine on input: aabaa

ST =5,
Repeat
i := get-next-symbol;
if i # end-of-string then
ST :=&(ST, i)
Until i = end-of-string;
If ST O F then accept else regject

Nondeter ministic FSAs as Algorithms
Real computers are deterministic, so we have three choices if we want to execute a nondeterministic FSA:

1. Convert the NDFSA to adeterministic one:
« Conversion can take time and space 2<.
e Timeto analyze string w: O(|w])

2. Simulate the behavior of the nondeterministic one by constructing sets of states"on the fly" during execution
* No conversion cost
« Timeto analyze string w: O(jw| x K?)

3. Do adepth-first search of all paths through the nondeterministic machine.

Lecture Notes 6 Interpreters for Finite State Machines 1

A Nondeter ministic FSA Interpreter
TosimulateM = (K, Z, A, s, F):

SET ST;
ST :=E(s);
Repeat
i := get-next-symbol;
if i #end-of-string then
ST1:=0
For all g O ST do
For all r 0 A(q, i) do
ST1:=ST10E(n);
ST :=ST1,;

Until i = end-of-string;
If ST n F# O then accept else reject

A Deterministic Finite State Transducer Interpreter

TosimulaeM = (K, Z, O, §, s, F), given that:
Oy(state, symbol) returns a single new state
(i.e., M isdeterministic), and
O,(state, symbol) returns an element of O*, the
string to be output.

ST =5,
Repesat:
i ;= get-next-symbol;
if i# end-of-string then
write((ST, i));
ST := 3(ST, i)
Until i = end-of-string;
If ST O F then accept elsereject

Lecture Notes 6 Interpreters for Finite State Machines

Equivalence of Regular Languages and FSMs

ReadK & S2.4
Read Supplementary Materials. Regular Languages and Finite State Machines: Generating Regular Expressions from Finite
State Machines.

Do Homework 8.
Equivalence of Regular Languagesand FSMs

Theorem: The set of languages expressible using regular expressions (the regular languages) equals the class of languages
recognizable by finite state machines. Alternatively, alanguageisregular if and only if it is accepted by afinite state machine.

Proof Strategies
Possible Proof Strategies for showing that two sets, a and b are equal (also for iff):

1. Start with a and apply valid transformation operators until b is produced.

Example:
Prove:
An(BOC=(AnB)OANC
An(BOC) =BOC)NnA commutativity

=(BnA)O(CnA) distributivity
=(AnB)O(ANCQC) commutativity

2. Do two separate proofs: (1) a= b, and (2) b =a, possibly using totally different techniques. In this case, we show first (by
construction) that for every regular expression there is a corresponding FSM. Then we show, by induction on the number of
states, that for every FSM, there is a corresponding regular expression.

For Every Regular Expression Thereisa Corresponding FSM

Well show this by construction.

Example:

a*(b O g)a

Review - Regular Expressions

The regular expressions over an aphabet >* are all strings over the alphabet > [0 {(,), O, [, *} that can be obtained as follows:
1. 0 and each member of X isaregular expression.
2.1f a, B areregular expressions, then so is af.
3.1f a, B areregular expressions, thensoisap .
4. If a isaregular expression, then soisa*.
5. If a isaregular expression, then so is (a).
6. Nothing elseis aregular expression.

We also allow € and o™, etc. but these are just shorthands for 0* and aa*, etc. so they do not need to be considered for
completeness.

Lecture Notes 7 Equivalence of Regular Languages and FSMs

For Every Regular Expression Thereisa Corresponding FSM

Formalizing the Construction: The class of regular languages is the smallest class of languages that contains [0 and each of the
singleton strings drawn from Z, and that is closed under

e Union

» Concatenation, and

* Kleenestar

Clearly we can construct an FSM for any finite language, and thus for O and all the singleton strings. If we could show that the
class of languages accepted by FSMsis also closed under the operations of union, concatenation, and Kleene star, then we could
recursively construct, for any regular expression, the corresponding FSM, starting with the singleton strings and building up the
machine as required by the operations used to express the regular expression.

FSMsfor Primitive Regular Expressions

AnFSM for O; An FSM for € (O*):

An FSM for asingle element of

Closure of FSMsUnder Union

To create a FSM that accepts the union of the languages accepted by machines M1 and M2:
1. Create anew start state, and, from it, add e-transitions to the start states of M1 and M2.

Closure of FSM s Under Concatenation

To create a FSM that accepts the concatenation of the languages accepted by machines M1 and M2:
1. StatwithM1.

2. Fromevery final state of M1, create an e-transition to the start state of M2.

3. Thefinal states are the final states of M2.

Lecture Notes 7 Equivalence of Regular Languages and FSMs

Closure of FSMsUnder Kleene Star

To create an FSM that accepts the Kleene star of the language accepted by machine M1:
Start with M1.

Create a new start state SO and make it afinal state (so that we can accept €).
Create an e-transition from SO to the start state of M 1.

Create e-transitions from all of M1'sfinal states back to its start state.

Make all of M1'sfinal statesfinal.

SAE I A

Note: we need a new start state, SO, because the start state of the new machine must be afinal state, and this may not be true of
M1's start state.

Closure of FSMs Under Complementation
To create an FSM that accepts the complement of the language accepted by machine M 1.

1. Make M1 deterministic.
2. Reversefina and nonfinal states.

A Complementation Example

il X(@®@

Closure of FSM s Under |nter section

L1nL2= .

Write thisin terms of operations we have already proved closure for:

e Union
» Concatenation
e Kleenestar
e Complementation
An Example

(b O ab*a)*ab*

Lecture Notes 7 Equivalence of Regular Languages and FSMs

For Every FSM Thereisa Corresponding Regular Expression

Pr oof:

(1) Thereisatrivial regular expression that describes the strings that can be recognized in going from one state to itself ({€} plus
any other single characters for which there are loops) or from one state to another directly (i.e., without passing through any other
states), namely all the single characters for which there are transitions.

(2) Using (1) asthe base case, we can build up aregular expression for an entire FSM by induction on the number assigned to
possible intermediate states we can pass through. By adding them in only one at atime, we always get simple regular
expressions, which can then be combined using union, concatenation, and Kleene star.

Key ldeasin the Proof

Idea 1: Number the states and, at each induction step, increase by one the states that can serve as intermediate states.

Idea 2: To get from state | to state J without passing through any intermediate state numbered greater than K, a machine may

either:

1. Gofrom to Jwithout passing through any state numbered greater than K-1 (which we'll take as the induction hypothesis), or

2. Gofroml to K, then from K to K any number of times, then from K to J, in each case without passing through any
intermediate states numbered greater than K-1 (the induction hypothesis, again).

So well start with no intermediate states allowed, then add them in one at atime, each time building up the regular expression

with operations under which regular languages are closed.

The Formula

Adding in state k as an intermediate state we can use to go fromii to j, described using paths that don't use k:

(O—(—O

R@,j, k) =R(i,j,k-1) /* what you could do without k

R(, k, k-1) - /* go from i to the new intermediate state without using k or higher

R(k, k, k-1)* /* then go from the new intermediate state back to itself as many times as you want
R(k, j, k-1) /* then go from the new intermediate state to j without using k or higher

Solution: [J R(s,q,N) OqOF

Lecture Notes 7 Equivalence of Regular Languages and FSMs 4

An Example of the Induction

g

a a a

O—O0—0—0
_/ A/

Going through no intermediate states:

(1,1,0) =¢ (1,20 =a (1,3,00=0 (2,30 =a (330)=¢0b (34,0)=a
Allow 1 as an intermediate state:

Allow 2 as an intermediate state:
(1,3,2=(4,3,1)0(1,2 12,2, D)*(2,3,1)
= 0O O a e* a
= aa
Allow 3 as an intermediate state:
(1,3,3)=(4,3,2 0(1,3,2)(3,3,2*(3, 3,2
aa 0O a (¢0b* (¢0Ob)
aab*
(14,4,20(1,3,2)(3,3,2*3,4,2
0 a (0b* a

(1,4,3)

O
:
Q

An Easier Way - See Packet

Lecture Notes 7 Equivalence of Regular Languages and FSMs

(2) Remove states and arcs and replace with arcs labelled with larger and larger regular expressions. States can be removed in
any order, but don’t remove either the start or final state.

(Notice that the removal of state 3 resulted in two new paths because there were two incoming paths to 3 from another state and 1
outgoing path to another state, so 2x1 =2.) Thetwo pathsfrom 2 to 1 should be coalesced by unioning their regular expressions

(not shown).
Ncl) € IabDaaa*bDba*b

(ab O aaa*b O ba*b)*(a O €)
RO O

Thus, the equivalent regular expression is:
(ab O aaa*b O ba*b)*(a O €)

Using Regular Expressionsin the Real World (PERL)
M atching floating point numbers:

-2 ([0-9]+(\.[0-9]*)? | \.[0-9]+)

Matching | P addr esses:

([0-9]+ (\. [0-9]+) {3})

Finding doubled words:

\< ([A-ZaZ]+) \s+\1\>

From Friedl, J., Mastering Regular Expressions, O’ Reilly,1997.

Note that some of these constructs are more powerful than regular expressions.
Lecture Notes 7 Equivalence of Regular Languages and FSMs 6

Regular Grammar s and Nondeter ministic FSAs

Any regular language can be defined by aregular grammar, in which all rules
* havealeft hand side that is a single nonterminal

e havearight hand side that is €, asingle terminal, a single nonterminal, or a single terminal followed by a single nonterminal .
Example: L={w O {a, b}* : |w|iseven}

((28) 0 (ab) 0 (ba) U (bb))*

S- ¢ T-a
S arl T-b
S bT T > aS

: ab I
ab

An Algorithm to Generate the NDFSM from a Regular Grammar

1. Create anonterminal for each state in the NDFSM.
2. sisthe start state.
3. |If thereareany rules of theform X — w, for somew(X , then create an additional state labeled #.
4. For eachrule of theform X - w'Y, add atransition from X to Y labeledw (w0 X [€).
5. For eachrule of theform X — w, add atransition from X to # labeled w (w O).
6. For eachrule of theform X - ¢, mark state X final.
7. Mark state # final.
Example 1 - Even Length Strings
S-¢ T a
S ar T->b
S- bT T aS
Example 2 - One Character Missing
So¢ A - bA C-aC
S- aB A 5 CcA C - bC
S aC A - ¢ Coe
S - bA B - aB
S - bC B - cB
S~ cCcA B¢
S-cB

Lecture Notes 7 Equivalence of Regular Languages and FSMs 7

An Algorithm to Generate a Regular Grammar from an NDFSM

1. Create anonterminal for each state in the NDFSM.

2. The start state becomes the starting nonterminal

3. For eachtransition &(T, a) = U, make arule of theform T - aU.
4. For eachfinal state T, makearule of theform T - «.

Example:

Conversion Algorithms between Regular Language For malisms

Regular
Grammar

|

NFSM

(NFA)
Regular /

Expression

DFSM
(DFA)

Lecture Notes 7 Equivalence of Regular Languages and FSMs

Languages That Are and Are Not Regular

ReadL & S25,2.6
Read Supplementary Materials. Regular Languages and Finite State Machines: The Pumping Lemma for Regular Languages.
Do Homework 9.

Deciding Whether a L anguage is Regular

Theorem: There exist languages that are not regular.
Lemma: There are an uncountable number of languages.
Proof of Lemma:

Let: 3 beafinite, nonempty alphabet, e.g., {a b, c}.

Then Z* contains all finite strings over X.
eg., {€& a b, c, aa ab, bc, abc, bba, bbaa, bbbaac}

>* iscountably infinite, because its elements can be enumerated one at atime, shortest first.

Any language L over X isasubset of 2*, eg., L1={a aa, asa, asaa, aaaaa, ...}
L2 = {ab, abb, abbb, abbbb, abbbbb, ...}
The set of all possible languages is thus the power set of *.

The power set of any countably infinite set is not countable. So there are an uncountable number of languages over >*.

Some L anguages Are Not Regular
Theorem: There exist languages that are not regular.
Proof:
(1) There are a countably infinite number of regular languages. This true because every description of aregular language is of
finite length, so there is a countably infinite number of such descriptions.
(2) There are an uncountable number of languages.

Thus there are more languages than there are regular languages. So there must exist some language that is not regular.
Showing That a L anguage is Regular

Techniques for showing that alanguage L isregular:

Show that L has afinite number of elements.

Exhibit aregular expression for L.

Exhibit a FSA for L.

Exhibit aregular grammar for L.

Describe L as afunction of one or more other regular languages and the operators 1[I, n, *, -, =. We use here the fact that
the regular languages are closed under all these operations.

Define additional operators and prove that the regular languages are closed under them. Then use these operators asin 5.

arwONE

o

Example
Let>={0,1,2, ... 9}
Let L O X* bethe set of decimal representations for nonnegative integers (with no leading 0's) divisible by 2 or 3.

L, = decimal representations of nonnegative integers without leading 0's.
L;=00{1,2,...9}{0-9}*
So L, isregular.

L, = decimal representations of nonnegative integers without leading O's divisible by 2

L,=Lin 2*{0, 2 4,6, 8}
So L,isregular.

Lecture Notes 8 Languages That Are and Are Not Regular 1

Example, Continued
Ls=L;anddivisibleby 3

Recall that anumber isdivisible by 3 if and only if the sum of itsdigitsis divisible by 3. We can build a FSM to determine that
and accept the language L z,, Which is composed of strings of digits that sum to a multiple of 3.

L3:Llﬂ L3a

Flna“y, L=L,0Ls
Another Example

>={0-9}
L ={w: wisthe socia security number of aliving US resident}
Finiteness - Theoretical vs. Practical

Any finite language isregular. The size of the language doesn't matter.

Parity < Soc. Sec. >#
Checking Checking

But, from an implementation point of view, it very well may.
When isan FSA a good way to encode the facts about a language?
What are our alternatives?

FSA's are good at |ooking for repeating patterns. They don't bring much to the table when the language is just a set of unrelated
strings.

Showing that a Language is Not Regular
The argument, “I can't find aregular expression or aFSM”, won't fly. (But a proof that there cannot exist aFSM is ok.)
Instead, we need to use two fundamental properties shared by regular languages:

1. Wecanonly use afinite amount of memory to record essential properties.
Example:
a'b"is not regular

2. Theonly way to generate/accept an infinite language with a finite description is to use Kleene star (in regular expressions) or
cycles (in automata). This forces some kind of simple repetitive cycle within the strings.
Example:
ab*a generates aba, abba, abbba, abbbba, etc.
Example:
{d":n=1isaprime number} isnot regular.

Lecture Notes 8 Languages That Are and Are Not Regular 2

Exploiting the Repetitive Property

%)b%)aga>©b>(:>

If aFSM of n states accepts any string of length = n, how many strings does it accept?

L = bab*ab n

Xy*z must bein L.
So L includes: baab, babab, babbab, babbbbbbbbbbab
The Pumping Lemma for Regular Languages

If L isregular, then
ON = 1, such that
O stringsw O L, where jw| = N,
0x,y,z,suchthat w=xyz
and Xy|< N,
and yZ£E,
and O0g=0,xy%zisinL.

Example: L = a'b"

aaaaaaaaaabbbbbbbbbb
X y z
ON=1 CdlitN
O long strings w We pick one
0x,y, z Weshow nox, y, z

Example: a"'b" is not Regular
N is the number from the pumping lemma (or one more, if N is odd).

Choose w = aV2p/2

. (Sincethisiswhat it takes to be “long enough”: |w|= N)
1 2
aaaaaaaaaalbbbbbbbbbb

X y z

We show that thereis no x, y, z with the required properties:
yl<N,
Y #E,
O0g=0,xy%zisinL.

Three cases to consider:
« yfalsinregion1:

» yfalsacrossregions1and 2:

« yfalsinregion3:

Lecture Notes 8 Languages That Are and Are Not Regular

Example: a"b" is not Regular

Second try:
Choose w to be be a*b". (Since we get to choose any win L.)
1 2
aaaaaaaaaa|bbbbbbbbbb
X y | z

We show that thereis no x, y, z with the required properties:
xyl< N,
YZE,
0g=0,xy%isinL.

Since [xy] < N,y must beinregion 1. Soy = &’ for someg= 1. Pumpingin or out (any g but 1) will violate the constraint that the
number of @ s hasto equal the number of b's.

A Complete Proof Using the Pumping Lemma
Proof that L = {a""} is not regular:

Suppose L isregular. Since L isregular, we can apply the pumping lemmato L. Let N be the number from the pumping lemma
for L. Choosew = a"b". Notethat w 0 L and jw|= N. From the pumping lemma, there exists some x, y, z where xyz = w and
IXy|<N, y#e, and0g=0,xy%z OL. Becausexy|< N,y =a (yisal a's). Wechoose q =2 and xy%z = &"*¥b". Becausely|>
0, then xy?z 0 L (the string has more a'sthan b's). Thus for all possible x, y, z: xyz = w, [fy, xy% O L. Contradiction. [0 L is
not regular.

Note: the underlined parts of the above proof is“boilerplate” that can be reused. A complete proof should have this text or
something equivalent.

You get to choose w. Make it asingle string that depends only on N. Choose w so that it makes your proof easier.
Y ou may end up with various cases with different q values that reach a contradiction. Y ou have to show that all possible cases
lead to a contradiction.

Proof of the Pumping Lemma

Since L isregular it is accepted by some DFSA, M. Let N be the number of statesin M. Let w beastring in L of length N or
more.

N

aaaaaaaaaabbbbbbbbbb
Xy

Xy

Then, inthefirst N steps of the computation of M onw, M must visit N+1 states. But there are only N different states, so it must
have visited the same state more than once. Thusit must have looped at least once. Well call the portion of w that corresponds
totheloopy. Butif it can loop once, it can loop an infinite number of times. Thus:

» M can recognize xy% for all values of g = 0.

e y # ¢ (sincethere wasaloop of length at least one)

* |xy|< N (since we found y within the first N steps of the computation)

Lecture Notes 8 Languages That Are and Are Not Regular 4

Another Pumping Example
L = {w=ab": K > J} (moreb'sthan as)
Choosew = a'b™*"*
N

aaaaaaaaaabbbbbbbbbbb
X y 2

We are guaranteed to pump only as, since |xy| < N. So there exists a number of copies of y that will cause there to be more a's
than b's, thus violating the claim that the pumped string isin L.

A Slightly Different Example of Pumping
L = {w=ab" : J> K} (moreasthan b's)

Choosew = a¥pN

N
aaaaaaaaaabbbbbbbbbbb
X Yy z

We are guaranteed that y isa string of at least one a, since [xy| < N. But if we pump in a's we get even more asthan b's, resulting
instringsthat areinL.

What can we do?

Another Slightly Different Example of Pumping

L = {w=ab":J=K}

Choosew = a¥*pVN
N
aaaaaaaaaabbbbbbbbbbb
X y z

We are guaranteed that y isa string of at least one a, since [xy| < N. But if we pump in a's we get even more asthan b's, resulting
instringsthat arein L.

If we pump out, thenif y isjust athen we still have astringinL.

What can we do?

Lecture Notes 8 Languages That Are and Are Not Regular 5

Another Pumping Example

L = abad"
Choose w = aba“bM
N
a_b@aaaaaaaabbbbbbbbbbb
Xy z

What are the choices for (x, y):
(€, @)

(¢, ab)

(¢, aba")

(a b)

(a ba')

(aba*, a")

What if L isRegular?
Given alanguage L that is regular, pumping will work: L = (ab)* Choose w = (ab)"

There must exist an x, y, and z wherey is pumpable.

abababab ababab abababababab
X y z
Suppose y = ababab Then, foralq=0, xy%zOL

Note that this does not prove that L isregular. It just failsto prove that it is not.
Using Closure Properties

Once we have some languages that we can prove are not regular, such as a'b", we can use the closure properties of regular
languages to show that other languages are also not regular.

Example: > ={a b}
L ={w: w contains an equal humber of asand b's}
a*b* isregular. So, if L isregular, thenL; =L n a*b* isregular.
But L, isprecisely a'b". So L isnot regular.
Don’t Try to Use Closure Backwards

One Closure Theorem:
If Lyand L, areregular, thensois Lz=1L;n Ly
But what if L3z and L, are regular? What can we say about L,?

|_3 = Ll al L2.

A
Example: ab=abn a'b"

Lecture Notes 8 Languages That Are and Are Not Regular 6

A Harder Example of Pumping

z={a}
L ={w=a": K isaprime number} [X| + [z] is prime.
x| + ly| + |z| is prime.
N [X| + 2ly| + [z] is prime.
aaaaaaaaaaaaa [X| + 3ly|] + [z is prime, and so forth.
X y z

Distribution of [x| + qly| + |z|:
I I

Distribution of primes:
|1
I

But the Prime Number Theorem tells us that the primes " spread out”, i.e., that the number of primes not exceeding x is
asymptotic to x/In x.

Note that when q = [x| + [z], [xy%2| = (ly| + L)x(jx| + |z]), which is composite (non-prime) if both factors are > 1. If you're careful
about how you choose N in a pumping lemma proof, you can make this true for both factors.

Automata Theory is Just the Scaffolding

Our results so far give ustools to:
e Show alanguageisregular by:
e Showing that it has a finite number of elements,
» Providing aregular expression that definesit,
e Constructing a FSA that acceptsit, or
» Exploiting closure properties
e Show alanguage is not regular by:
» Using the pumping lemma, or
« Exploiting closure properties.

But to use these tools effectively, we may also need domain knowledge (e.g., the Prime Number Theorem).
M ore Examples

>={0,1,2,3,4,5,6,7}

L ={w =theoctal representation of a number that isdivisible by 7}

Example elements of L:
7,16 (14), 43 (35), 61 (49), 223 (147)

M ore Examples
Z={W,H,QE, S T, B (measure bar)}
L = {w = w represents a song written in 4/4 time}

Example element of L:
WBWBHHBHQQBHHBQEEQEEB

Lecture Notes 8 Languages That Are and Are Not Regular 7

M ore Examples
>={0-9}
L ={w =isaprime Fermat number}
The Fermat numbers are defined by
F = 22n+1, n=1,23, ..

Example elements of L:
F.=5,F,=17,F;= 257, F, = 65,537

Another Example
>={0-9* =}
L={w=a*b=c: a,b,c0{0-9}" and int(a) * int(b) = int(c)}

The Bottom Line
A languageisregular if:

OR
The Bottom Line (Examples)

* The set of decimal representations for nonnegative * Theset of strings over {a, b} that contain an equal

integers divisible by 2 or 3 number of asand b's.
e Thesocia security numbers of living US residents. e The octal representations of numbers that are divisible
» Parity checking by 7
. af‘b” * Thesongsin4/4time
« db*wherek>j * The set of prime Fermat numbers

« dwherekisprime

Decision Procedures

A decision procedureis an agorithm that answers a question (usually “yes’ or “no”) and terminates. The whole idea of a
decision procedure itself raises a new class of questions. In particular, we can now ask,

1. Isthere adecision procedure for question X?
2. What isthat procedure?
3. How efficient is the best such procedure?

Clearly, if we jump immediately to an answer to question 2, we have our answer to question 1. But sometimes it makes sense to
answer question 1 first. For onething, it tells us whether to bother looking for answers to questions 2 and 3.

Examples of Question 1:
Isthere a decision procedure, given aregular expression E and astring S, for determining whether Sisin L(E)?

Isthere a decision procedure, given a Turing machine T and an input string S, for determining whether T halts on S?

Lecture Notes 8 Languages That Are and Are Not Regular 8

Decision Proceduresfor Regular Languages
Let M be adeterministic FSA. Thereis a decision procedure to determine whether:

e wOL(M) for somefixed w
e L(M)isempty

« L(M)isfinite

e L(M)isinfinite

Let M, and M, be two deterministic FSAs. Thereis a decision procedure to determine whether M, and M, are equivalent. Let L,
and L, be the languages accepted by M; and M,. Then the language

L :(Llﬂ_'Lz)D(_'Llﬂ L2)
= (Li-L) O (L2-Ly)

must beregular. L isempty iff Ly = L,. Thereisadecision procedure to determine whether L is empty and thus whether L, = L,
and thus whether M, and M, are equivalent.

Lecture Notes 8 Languages That Are and Are Not Regular 9

A Review of Equivalence Relations

Do Homework 7.
A Review of Equivalence Relations
A relation R is an equivalence relation if it is: reflexive, symmetric, and transitive.
Example: R = the reflexive, symmetric, transitive closure of:
(Bob, Bill), (Bob, Butch), (Butch, Bud),

(Jim, Joe), (Joe, John), (Joe, Jared),
(Tim, Tom), (Tom, Tad)

An equivalence relation on anonempty set A creates a partition of A. We write the elements of the partition as[a], [&], ...

Example:

Another Equivalence Relation
Example: R = the reflexive, symmetric, transitive closure of:
(apple, pear), (pear, banana), (pear, peach),

(peas, mushrooms), (peas, onions), (peas, zucchini)
(bread, rice), (rice, potatoes), (rice, pasta)

Partition:

Lecture Notes 9 A Review of Equivalence Relations

State Minimization for DFAs

ReadK & S2.7
Do Homework 10.

State Minimization

Consider:

I's this a minimal machine?

State Minimization

Step (1): Get rid of unreachable states.

State 3 is unreachable.

Step (2): Get rid of redundant states.

States 2 and 3 are redundant.

Getting Rid of Unreachable States

We can't easily find the unreachable states directly. But we can find the reachable ones and determine the unreachable ones from
there. An algorithm for finding the reachable states:

2
@

a b

©

Lecture Notes 10 State Minimization 1

Getting Rid of Redundant States

Intuitively, two states are equivalent to each other (and thus one is redundant) if all stringsin 2* have the same fate, regardless of
which of the two states the machine isin. But how can wetell this?

The simple case:

b a
ab

Two states have identical sets of transitions out.

Getting Rid of Redundant States
The harder case:

The outcomes are the same, even though the states aren't.
Finding an Algorithm for Minimization
Capture the notion of equivalence classes of strings with respect to alanguage.
Capture the (weaker) notion of equivalence classes of strings with respect to alanguage and a particular FSA.
Prove that we can always find a deterministic FSA with a number of states equal to the number of equivalence classes of strings.
Describe an agorithm for finding that deterministic FSA.
Defining Equivalence for Strings

We want to capture the notion that two strings are equivalent with respect to alanguage L if, no matter what is tacked on to them
on theright, either they will both bein L or neither will. Why isthis the right notion? Because it corresponds naturally to what
the states of arecognizing FSM have to remember.
Example:

(1) a b b a b

(2 b a b a b

SupposeL ={w O {ab}* : w|iseven}. Are (1) and (2) equivalent?

Suppose L ={w O {ab}* : every aisimmediately followed by b}. Are (1) and (2) equivaent?

Lecture Notes 10 State Minimization 2

Defining Equivalence for Strings

If two strings are equivalent with respect to L, wewritex = y. Formally, x =_ y if, 0z 00 2*,
xzOLiffyzOL.
Notice that = is an equivalence relation.

Example:
Z={a b}
L ={wOZXZ* : every aisimmediately followed by b }
€ aa bbb
a bb baa
b aba
aab

The equivalence classes of = :

[z | isthe number of equivalence classes of =.

Another Example of =_

Z={a b}
L={wOZX*: |w|iseven}
€ bb aabb
a aba bbaa
b aab aabaa
aa bbb
baa

The equivalence classes of = :

Yet Another Example of =

z ={a b}

L = aab*a
€ ba aabb
a bb aabaa
b asa aabbba
aa aba aabbaa
ab aab

bab

The equivalence classes of = :

An Example of = Where All Elementsof L Are Not in the Same Equivalence Class

Z={a b}
L ={w O {a, b}* : no two adjacent characters are the same}
€ bb aabaa
a aba aabbba
b aab aabbaa
aa baa
aabb

The equivalence classes of = :

Lecture Notes 10 State Minimization

Is|= | Always Finite?

Z={ab}

L=4dab"
€ aa acaa
a aba acooa
b aca

The equivalence classes of = :
Bringing FSMsinto the Picture
=_isanidea relation.

What if we now consider what happens to strings when they are being processed by areal FSM?

()

> ={a b} L={wOZXZ*: jw|iseven}

Define ~y to relate pairs of strings that drive M from s to the same state.

Formally, if M isadeterministic FSM, then x ~y y if thereis some state qin M such that (s, x) |- ' (g, €) and (s, y) | w (q, €).

Noticethat M is an equivalence relation.

An Example of ~M

)

> ={a b} L={wOZX*: |w|iseven}

€ bb aabb
a aba bbaa
b aab aabaa
aa bbb

baa
The equivalence classes of ~: [~ml=

Lecture Notes 10 State Minimization

Z={a b}

3
a
b
aa

The equivalence classes of ~:

~. [e, aa bb, asbb, bbag]

L={w0OZx*:|w|]iseven}

o

Ancther Example of ~M

fwl

bb
aba

bbb

The Relationship Between = and ~y

iseven

[, b, aba, agb, bbb, baa, agbag] jw] is odd

~u, 3 State machine:
ql: [g, aa, bb, aabb, bbaa]
g2: [a, aba, baa, aabaa] (ab 0 ball aall bb)*a

q3: [b, agb, bbb]

~u, 2 State machine;
gl: [, aa, bb, aabb, bbaa]
g2: [a, b, aba, aab, bbb, baa, aabaa] |w|is odd

= [even length]

I

(3 state)

M [even length]

[

i

seven

=0

|~ml =

(ab 0 ba aa] bb)*b

i

ina

seven

~u isarefinement of =.

The Refinement

[odd length]

N\

odd endi ng:l

odd ending
inb

An equivalence relation R is a refinement of another one Siff

XRy - xSy

In other words, R makes all the same distinctions S does, plus possibly more.

IRI= S|

Lecture Notes 10

State Minimization

bbaa
aabaa

©)

R

~v isa Refinement of =.
Theorem: For any deterministic finite automaton M and any stringsx, y [0 2*, if X ~y y, then x = y.
Proof: If x ~y y, then x and y drive m to the same state g. From @, any continuation string w will drive M to some stater. Thus
xw and yw both drive M tor. Either risafinal state, in which case they both accept, or it is not, in which case they both reject.
But thisis exactly the definition of = .

Corallary: v |2 =L |-

Going the Other Way
When is this true?

If X = mythenx —yy.
Finding the Minimal FSM for L
What's the smallest number of states we can get away with in a machine to accept L?
Example: L={wOZXZ*: jw|iseven}

The equivalence classes of = :

Minimal number of statesfor M(L) =
Thisfollows directly from the theorem that says that, for any machine M that acceptsL, |~y| must be at least aslarge as =, |.
Can we aways find a machine with this minimal number of states?

The Myhill-Nerode Theorem

Theorem: Let L be aregular language. Then thereis a deterministic FSA that accepts L and that has precisely |z | states.
Proof: (by construction)
M= K states, corresponding to the equivalence classes of =, .

s=[g], the equivalence class of € under =,.

F={[x]:xOL}

O([x], a) = [xal

For this construction to prove the theorem, we must show:

1. Kisfinite
2. diswell defined, i.e., 8([X], @ = [xd] isindependent of x.
3. L=L(M)

Lecture Notes 10 State Minimization 6

The Proof
(1) K isfinite.
Since L isregular, there must exist amachine M, with |~y| finite. We know that
Il Z =
Thus |=_ | isfinite.
(2) diswell defined.
Thisisassured by the definition of =_, which groups together precisely those strings that have the same fate with respect to L.

The Proof, Continued
) L=L(M)
Suppose we knew that ([x], y) Fu* ([xy], €).
Now let [X] be[€] and let sbeastringin >*.
Then

(€], o) [u* ([S], €)

M will accept sif [g] O F.
By the definition of F, [s] O Fiff al stringsin[s] areinL.
So M accepts precisely the stringsin L.

The Proof, Continued

Lemma: ([x], y) Fv* ([xy], €)
By induction on |y|:
Trivia if ly]=0.
Suppose true for ly| = n.
Show truefor |y| = n+1
Lety =y'a, for some character a. Then,

lyl=n
(X1, ya) Im* ([xy], & (induction hypothesis)
(Ixy'] @ Fv* ([xy'd, €) (definition of &)
(€1, y'a) Fw* ([xy'dl, €) (trans. of |w*)
(X1, y) Fw* ([xy], €) (definition of y)

Another Version of the Myhill-Nerode Theorem

Theorem: A language isregular iff |= | isfinite.

Example:
Consider: L=ab"
a, aa, ada, adaa, asaaa . ..
Equivalence classes:
Pr oof:

Regular - |+ | isfinite: If L isregular, then there exists an accepting machine M with afinite number of statesN. We know that
N = [z |. Thus|=_|isfinite.

|= | isfinite - regular: If |z |isfinite, then the standard DFSA M, acceptsL. Since L isaccepted by aFSA, itisregular.

Lecture Notes 10 State Minimization 7

Constructing the Minimal DFA from =_

z={ab}
L ={w O {a b}* : no two adjacent characters are the same}

The equivalence classes of = :

1: [€] €

2: [a, ba, aba, baba, ababa, ...] (big)(ab)*a
3: [b, ab, bab, abab, ...] (ad)(ba)*b
4: [bb, aa, bba, bbb, ...] the rest

» Equivalence classes become states
o Start stateis[e]
e Fina dtatesare al equivalence classesin L

© 0([x], @) =[xd]

Using Myhill-Nerode to Prove that L isnot Regular
L={a": nisprime}

Consider: €
a

aa
aaa
acaa

Equivalence classes:

So Where Do We Stand?
1. Weknow that for any regular language L there exists a minimal accepting machine M, .
2. Weknow that |K| of M equals [=|.
3. Weknow how to construct M, from=,.
But is this good enough?

Consider:

Lecture Notes 10 State Minimization

Constructing a Minimal FSA Without Knowing =_
We want to take as input any DFSA M' that accepts L, and output a minimal, equivalent DFSA M.

What we need is adefinition for "equivalent”, i.e., mergeable states.

Define g = p iff for al stringsw O 2*, either w drives M to an accepting state from both g and p or it drives M to arejecting state
from both g and p.

Example:
> ={a b} L={wOZx*: |w|]iseven}

Constructing = asthe Limit of a Sequence of Approximating Equivalence Relations =,

(Where nisthe length of the input strings that have been considered so far)

WEe'll consider input strings, starting with €, and increasing in length by 1 at each iteration. Well start by way overgrouping
states. Then we'll split them apart as it becomes apparent (with longer and longer strings) that their behavior is not identical.

Initially, =, has only two equivalence classes: [F] and [K - F], since on input €, there are only two possible outcomes, accept or
reject.

Next consider strings of length 1, i.e., each element of 2. Split any equivalence classes of =, that don't behave identically on all
inputs. Notethat in all cases, =, isarefinement of = ;.

Continue, until no splitting occurs, computing =, from =,,5.
Constructing =, Continued
More precisely, for any two statespand q 0 K andany n= 1, q =, p iff:

1. q=,1p, AND
2. foradlalZ, d(p, a) =, 0(q, a

Lecture Notes 10 State Minimization 9

The Construction Algorithm
The equivalence classes of = are F and K-F.
Repeat forn=1,2,3 ...
For each equivalence class C of =, do
For each pair of elementsp and qin C do
For eachain X do
Seeif &(p, &) =n-13(q,)
If there are any differences in the behavior of p and g, then split them and create a new equivalence
class.
Until =, ==,,. =isthisanswer. Then use these equivalence classes to coal esce states.

An Example

Z={ab}
b A
O —©
b a
a bj
a a
4 b O e b 6

ab
S =
El =
==

Another Example

(a*b*)*

Minimal machine:

Lecture Notes 10 State Minimization 10

Another Example
Example: L={w O {a, b}* : |w|iseven}

((28) 0 (ab) O (ba) T (bb))*

S- ¢ T-a
S arl T-b
S bT T > aS

Anocther Example, Continued

Minimize:

ab

"(T

ab ab

Minima machine:

Lecture Notes 10 State Minimization 11

Summary of Regular Languages and Finite State Machines

Grammars, Languages, and M achines

Language

Accepts
Machine
Regular Grammars, L anguages, and M achines

Most interesting languages are infinite. So we can't write them down. But we can write down finite grammars and finite
machine specifications, and we can define algorithms for mapping between and among them.

Grammars M achines
Regular 4) Nondeterministic
Expressions FSAs

Deterministic
FSAs
Regular
Grammars
Minimal
DFSAs

What Does“Finite State” Really Mean?
There are two kinds of finite state problems:
e Thosein which:
e Some history matters.
* Only afinite amount of history matters. In particular, it's often the case that we don't care what order things

occurred in.
Examples:
e Parity

* Money in avending machine
* Seat belt buzzer
* Those that are characterized by patterns.

Examples:
e Switching circuits:
» Telephone
* Railroad

» Trafficlights
e Lexicd anaysis
° grep

Lecture Notes 11 Summary of Regular Languages and Finite State Machines

Context-Free Grammars

ReadK & S3.1

Read Supplementary Materials. Context-Free Languages and Pushdown Automata: Context-Free Grammars

Read Supplementary Materials. Context-Free Languages and Pushdown Automata: Designing Context-Free Grammars.
Do Homework 11.

Context-Free Grammar s, Languages, and Pushdown Automata

Context-Free
Language

Context-Free
Grammar

Accepts

Pushdown
Automaton

Grammar s Define L anguages
Think of grammars as either generators or acceptors.

Example: L ={w O{a b}* : |w|iseven}

Regular Expression Regular Grammar
S-¢
(aal &b O ba O bb)* S ar
T- a
T nd b
T - as
T - bS
Derivation choose aa S
(Generate) choose ab a '(
yields £
4T
b
aaahb a aab
Parse (Accept) use corresponding FSM

Lecture Notes 12 Context-Free Grammars

Derivation is Not Necessarily Unique

Example: L ={w O{a, b}* : thereisat least one a}

Regular Expression Regular Grammar
(ad by*a(al b)* S-a
S - bS
choose afrom (a O b) S- aS
choose afrom (a O b) S ar
choose a T-a
T — b
choose a T ar
choose afrom (a O b) T - bT
choose afrom (a O b)
S S
is a1
s AT
a a

M or e Powerful Grammars
Regular grammars must always produce strings one character at atime, moving left to right.
But sometimes it's more natural to describe generation more flexibly.

Example 1: L = ab*a

S .. aBa S_.aB
B¢ VS. B - a

Example2: L =ab*d"

S-B

S - aSa

B¢

B - bB
Key distinction: Example 1 has no recursion on the nonregular rule.

Context-Free Grammars
Remove all restrictions on the form of the right hand sides.
S - abDeFGab

Keep requirement for single non-terminal on left hand side.

S-

butnot ASB -~ or aSbh - or ab -

Examples: balanced parentheses an"
S-¢ S - aSh
S SS So ¢
S-(9

Lecture Notes 12 Context-Free Grammars

Context-Free Grammars

A context-free grammar G isaquadruple (V, Z, R, S), where:

eV istherule alphabet, which contains nonterminals (symbols that are used in the grammar but that do not appear in stringsin
the language) and terminals,

e 2 (theset of terminals) isasubset of V,
e R (theset of rules) isafinite subset of (V - Z) x V*,
e S(thestart symbol) isan element of V - X.

X =g Y isabinary relation where x, y 0 V* such that x = aAB and y = ax3 for somerule A X inR.
Any sequence of the form
Wop =g W1 =>cWo =g ... =Wy

eg., (9= (S9=((99
iscalled aderivation in G. Eachw; iscalled asentingl form.

Thelanguage generated by Gis {w O Z* : S=g* w}
A language L iscontext freeif L = L(G) for some context-free grammar G.

Example Derivations

G=(W, 2, R,S), where

W={S 05,
={a b},
R= {S-a
S . aS,
S . ash}
S S
a_ _S a S b
&S b &5 b
a a s
/Sib s
a a

Another Example - Unequal a'sand b's

L={a™: n#m} S- A [* more asthan b's
S-B /* more b'sthan a's
G=(W, Z,R,S), where A-a
W={ab,S A, B}, A - aA
z={a b}, A - aAb
R= B-b
B - Bb
B - aBb

Lecture Notes 12 Context-Free Grammars 3

English

S - NP VP the boys run

NP - the NP1 |NP1 big boys run

NP1 - ADJ NP1|N the youngest boy runs

ADJ - big | youngest | oldest

N - boy | boys the youngest oldest boy runs
VP -V |V NP the boy run

V - run|runs i : .
Who did you say Bill saw coming out of the hotel?

Arithmetic Expressions
The Language of Simple Arithmetic Expressions

G=(V,Z, R, E), where
V={+%*IidT,F E},

> ={+*,id},
R={ E-id
E-E+E
E-E*E}
E E
E + E /E|\ * E
||d E/’I‘\E E + E ||d
| | | |
id id id id
id + (id * id) (id + id) * id

Arithmetic Expressions -- A Better Way

The Language of Simple Arithmetic Expressions

G=(V, Z, R, E), where Examples:
V={+%*¢),id T, FE},
={+"*()id}, id+id*id
R={ E-E+T
E-T
T-T*F
T.F id*id*id
F- (B
F - id }

Lecture Notes 12 Context-Free Grammars

BNF
Backus-Naur Form (BNF) is used to define the syntax of programming languages using context-free grammars.
Main idea: give descriptive names to nonterminals and put them in angle brackets.

Example: arithmetic expressions:
(expression)y — {expression) + (term)
(expressiony - (term)
(term)y — (term) * (factor)
(term) - (factor)
(factor) — ({expression))
(factor) - (id)

The Language of Boolean L ogic

{ E-E=EL
E_ElL
El - E1OE2
El - E2
E2 - E2JE3
E2 - E3
E3 - - E4
E3 - E4
E4 - (E)
E4 - id }

Boolean Logicisn't Regular

Suppose it were regular. Then thereisan N as specified in the pumping theorem.
Let w be astring of length 2N + 1 + 2|id| of the form:

w= (_(_(_(’\](_(id)))))):id

Xy
y = (“for somek > 0 because [xy| < N.

Then the string that isidentical to w except that it has k additional ('s at the beginning would also be in the language. But it can't
be because the parentheses would be mismatched. So the language is not regular.

Lecture Notes 12 Context-Free Grammars 5

All Regular Languages Are Context Free

(1) Every regular language can be described by aregular grammar. We know this because we can derive aregular grammar from
any FSM (aswell asvice versa). Regular grammars are special cases of context-free grammars.

ab

ab
(2) The context-free languages are precisely the languages accepted by NDPDAs. But every FSM isa PDA that doesn't bother
with the stack. So every regular language can be accepted by a NDPDA and is thus context-free.

(3) Context-free languages are closed under union, concatenation, and Kleene *, and € and each single character in X are clearly
context free.

Lecture Notes 12 Context-Free Grammars 6

Read K & S3.2

Parse Trees

Read Supplementary Materials. Context-Free Languages and Pushdown Automata: Derivations and Parse Trees.

Do Homework 12.

Regular languages:

Parse Trees

We care about recognizing patterns and taking appropriate actions.

Example: A parity checker

Context free languages:

We care about structure.

E - id
E-E+E
E-E*E

Structure

— T,

id E * E
id id
id + (id * id)

Par se Trees Capture Essential Structure

E + E /I\ * E
id E * E E + E id
id id id id
id + (id * id) (id + id) * id

Lecture Notes 13 Parse Trees

Parse Treesare Just Trees
/o «
\ height
nodes —p K /C\
)) i / e
| |

yield

r oot

Leaves are all labeled with terminals or €.

Other nodes are labeled with nonterminals.

A path is asequence of nodes, starting at the root, ending at a leaf, and following branches in the tree.
The length of the yield of any tree T with height H and branching factor (fanout) B is<

Derivations
To capture structure, we must capture the path we took through the grammar. Derivations do that.
So ¢
S SS
S-(9
1 2 3 4 5 6
S=S85=(95=((9)S= (0)S= (NS = (0)0
S=S85= (5= ((9)S= ((9)(9 = (NS = ()0
1 2 3 5 4 6
S
/\
S S
— [T — T
(S) (S)
/I\ |
(?) £
€
Alternative Derivations
So ¢
S- SS
S- (9

S=S5=(9S=((9)S= (0)S= (0)S = (D))
S=S5=S55= S(9S= ((9))S= S(()S= S(O)S) = HA0)0= (10

S S
(S) (S) S S (S)
T | | I\ |
(|S) 3 e (|S) €
€ (S)
's

Lecture Notes 13 Parse Trees

Ordering Derivations
Consider two derivations:

1 2 3 4 5 6 7
S=S5=(9S=((9)S= (0)s= (XS = (D)0

S=S5=(95=((9)S= (NS = (XS = (N0

1 2 3 4 5 6 7

We can write these, or any, derivation as We say that D, precedes D,, written D;1< Dy, if:
Di=Xi 2> X =2>X3=> ... = Xy e D;and D, arethe samelength > 1, and
D=Xi = X' =X = ... =X, e Thereissomeinteger k, 1 <k <n, such that:

o forali#k, x=x
* Xg1=Xk1=UAVBwW:u,v,wdV*,
andA,BOV-Z
* Xc=uyvBw,whereA - yOR
e X =UAvzw whereB - zOR
* X1 = X1 = UyVZW
Comparing Several Derivations
Consider three derivations:
1 2 3 4 5 6 7
(D) S=S5=(9S=((9)S= S =S =(0)0

(2)S=S5=(9S=((ONS=((NO) = ((zs) =(0)0
(3)S=S5=(9S=((9)S=((NO) = (N0 =(0)0

D1<D2
D2<D3
But D1 does not precede D3.
All three seem similar though. We can define similarity:
D, issimilar to D, iff the pair (D1, D,) isin the reflexive, symmetric, transitive closure of <.
Note: similar is an equivalence class.
In other words, two derivations are similar if one can be transformed into another by a sequence of switchings in the order of rule
applications.
Par se Trees Capture Similarity
1 2 3 4 5 6 7
(1) S=55=(9s=(9)s= ([0S =S =(D0

(2) S=S5=(9S=((9)S= (OO 3((23) =00
(3) S=S5=(9S= ((9)S= (NS =((5N0 =(0)0

D1<D2
D2< D3

All three derivations are similar to each other. This parse tree describes this equivalence class of the similarity relation:

S
/\
S S
_— [_— [
(S) ()
/I\ |
(?) €

Lecture Notes 13 Parse Trees 3

The Maximal Element of <

e S —

There's one derivation in this equivalence class that precedes all othersin the class.
We call thisthe leftmost derivation. Thereis a corresponding rightmost derivation.

The leftmost (rightmost) derivation can be used to construct the parse tree and the parse tree can be used to construct the leftmost
(rightmost) derivation.

Another Example
E-id
E-E+E
E-E*E

(1) E= E+E = E+E*E = E+E*id = E+id*id = id+id*id
(2 E= E*E = E*id = E+E*id = E+id*id = id+id*id

E E

/l\ /I\
E + E E * E
| PN SN |
id E * E E + E id

| | | |

id id id id
id + [id * id] [id + id] * id

Ambiguity

A grammar G for alanguage L isambiguousif there exist stringsin L for which G can generate more than one parse tree (note
that we don't care about the number of derivations).

The following grammar for arithmetic expressions is ambiguous:
E-id
E-E+E
E-E*E

Often, when this happens, we can find a different, unambiguous grammar to describe L.

Lecture Notes 13 Parse Trees 4

Resolving Ambiguity in the Grammar

G=(V, Z, R, E), where Parse : id+id*id
V={+%*¢(),id T, F E},
z={+x () id},
R={ E-E+T
E-T
TT*F
T-F
F- (B
F-id }

Another Example
The following grammar for the language of matched parentheses is ambiguous:

S-¢
S - SS
S~ (9
S
(/,S\) (/'S\) S/\
N |
(S) €

Resolving the Ambiguity with a Different Grammar

One problem is the € production.

A different grammar for the language of balanced parentheses:

S-¢

S

S. S é

$5-5S% 1

SHE)SO Sl/\81
S -

()

Lecture Notes 13 Parse Trees

A General Techniquefor Eliminating &

If Gisany context-free grammar for alanguage L and € [0 L then we can construct an alternative grammar G' for L by:

1.

Find the set N of nullable variables:
A variable V isnullableif either:
thereisarule
@V ¢
or thereisarule
(2)V - PQR...suchthat P, Q, R, ... are all nullable
So begin with N containing all the variables that satisfy (1). Evaluate al other variables with respect to (2). Continue until
no new variables can be added to N.
For every rule of the form
P - aQp for someQinN, add arule

P-aB
Delete dl rules of the form
V - ¢
Sometimes Eliminating Ambiguity Isn't Possible
S - NP VP The boys hit the ball with the bat.

NP - the NP1|NP1|NP2
NP1 - ADJ NP1|N
NP2 - NP1 PP
ADJ - big|youngest | oldest .)
N - boy | boys|ball | bat | autograph The boys hit the ball with the autograph.
VP -V |V NP
VP - VPPP
V - hit| hits
PP — with NP
Why It's Not Possible
We could write an unambiguous grammar to describe L but it wouldn't always get the parses we want. Any grammar that is
capable of getting all the parses will be ambiguous because the facts required to choose a derivation cannot be captured in
the context-free framework.
Example: Our simple English grammar
[[The boys] [hit [the ball] [with [the bat]]]]
[[The boyg] [hit [the ball] [with [the autograph]]]]
There is no grammar that describes L that is not ambiguous.
Example: L ={a'b"c™ O {db"c™}

S~ SIS

S, - Sic|A Now consider the strings a'b"c"

A - aAb|e

S, - aS)B They have two distinct derivations
B - bBc|e

Inherent Ambiguity of CFLs

A context free language with the property that all grammars that generate it are ambiguous is inher ently ambiguous.

L ={a'"c"} O {ah™c™} isinherently ambiguous.

Other languages that appear ambiguous given one grammar, turn out not to be inherently ambiguous because we can find an
unambiguous grammar.

Examples: Arithmetic Expressions
Balanced Parentheses

Whenever we design practical languages, it isimportant that they not be inherently ambiguous.

Lecture Notes 13 Parse Trees 6

Pushdown Automata

Read K & S3.3.

Read Supplementary Materials. Context-Free Languages and Pushdown Automata: Designing Pushdown Automata.
Do Homework 13.

Recognizing Context-Free L anguages

Two notions of recognition:
(1) Say yesor no, just like with FSMs
(2) Say yesor no, AND
if yes, describe the structure

Just Recognizing
We need adevice similar to an FSM except that it needs more power.

Theinsight: Precisely what it needsis a stack, which givesit an unlimited amount of memory with arestricted structure.
[T qqODDD [T OD

t

(' Finite
(| State
(Controller
T (
(

Definition of a Pushdown Automaton

M=(K,Z,T,A,s F),where
K isafinite set of states
> istheinput aphabet
I" isthe stack alphabet
sOK istheinitial state
F O K isthe set of final states, and
Aisthetransition relation. It isafinite subset of

(K x (Z0O{g}) x r*) X (K x T)
state inputor € string of symbolsto pop State string of symbolsto
I from top of stack I I push on top of stack I

M accepts astring w iff
(s W, €) [v* (p,g,g) forsomestatep OF

Lecture Notes 14 Pushdown Automata

A PDA for Balanced Brackets

b i) U
e ‘@

M=(K,Z T, A, s F), where:
K={s} the states
Z={[.1} the input al phabet
r={[} the stack alphabet
F={s}

A contains:

(s[.8).(s[))
(s1.0). (s¢)

I mportant:
This does not mean that the stack is empty.

An Example of Accepting
. v

A contains:
(1] (s [.€). (s)
[2] ((s1.1) (s 8)
input="[[[1[11]
trans dtate unread input stack
s [CLI01]] €
1 S [[1011] [
1 s [1011] ([
1 S 11111 [[[
2 s [11] [[
1 s 111 ([
2 s 11 [l
2 s] [
2 S € €
An Example of Rejecting
W [
W ‘@
A contains:
(1] (s [.€). (s)
(2] (s 1.1) (s ¢)
input="[[]1]]
trans state unread input stack
s [[11] €
1 s [111] [
1 s 111 ([
2 s 1] [
2 S] €
none! S] €

Werein s, afina state, but we cannot accept because the input string is not empty. So we reject.

Lecture Notes 14 Pushdown Automata

A PDA for a™b"

First we notice:

« Well usethe stack to count the as.

e Thistime, al stringsin L have two regions. So we need two states so that a's can't follow b's. Note the similarity to the
regular language a*b*.

A PDA for wewR

A PDA to accept strings of the form wew"™:

alla alal .
c//
N >

bi/lb b/b/ .

M=(K,Z,T,A,s F),where

K={sf} the states
>={ab,c} the input al phabet
r={a b} the stack alphabet
F={f} the final states

A contains:

((sa¢)(sa)
((s,b,€), (s b))
((s,ce), (f, €)
((f, a a), (f, €)
((f, b, b), (f,)
An Example of Accepting

§a alal .
b//b b/b/ '
A contains:

[1] (s ac¢),(sa)
[2] ((s b, €), (s b))
3] (s c.e), (f, €)
[4] ((f, a a), (f,)
(9] ((f, b, b), (f, &)

input= bacab

trans state unread input stack
S bacab €
2 S acab b

1 S cab ab

3 f ab ab
5 f b b
6 f € €

Lecture Notes 14 Pushdown Automata

L =ww

A Nondeter ministic PDA

S-¢
S . aSa
S - bSb

A PDA to accept strings of the form ww":

alla

bi/b

M=(K,ZTI,A, s F), where:

(1]
(2]
(3]

trans

none

trans

A DDOOTWNPREBE

K={sf}

Z={abc}

r={ab}

F={f}

A contains:
(s aeg),(sa)
((s, b, €), (s b))
((s & ¢), (f, €)
((f, & a), (f, &)
((f, b, b), (f,)

alla

bi/lb

(s a¢),(sa)
((s b, €), (s b))
(s &9, (f,€)

w

ell }

b/b/ .

the states

the input al phabet
the stack alphabet
thefinal states

An Example of Accepting

e

ell }

b/b/ '

[4]
(5]

input: aabbaa

State
S

s
f
f

State

—~ = = =) N N

Lecture Notes 14

unread input stack
aabbaa €
abbaa a
abbaa a
bbaa €
unread input stack
aabbaa €
abbaa a
bbaa aa
baa baa
baa baa
aa aa
a a
3 €
Pushdown Automata

((f. a a), (f, &)
((f, b, b), (f, €))

L={a"™": m<n}
A context-free grammar for L:
So ¢
S- Sb /* more b's
S nd a&)
A PDA to accept L:

o
f b/a/ b/s/
@ b/e/

y Q

—1
N

Accepting Mismatches

L ={ad""m# n; m, n>0}

o
f b/al A
1 '

e |f stack and input are empty, halt and reject.

e If input isempty but stack is not (m > n) (accept):

elal
elal
U

e |f stack isempty but input is not (m < n) (accept):

blal \ elal
" 2

g
)

b/al

v

Lecture Notes 14 Pushdown Automata

Eliminating Nondeter minism

A PDA isdeterminigtic if, for each input and state, there is at most one possible transition. Determinism implies uniquely
defined machine behavior.

b/a/Q elal
blal \ glal
" 2

bl/
b/l
e Jumping to the input clearing state 4:

Need to detect bottom of stack, so push Z onto the stack before we start.

alla s/a/
ellz
elzl
b/z/

b/l

e Jumping to the stack clearing state 3:
Need to detect end of input. To do that, we actually need to modify the definition of L to add a termination character

(e.g. 9
L ={a""c’: nm,p=0and (n# mor m# p)}

S - NC /* n# m, then arbitrary c's C-¢g|cC /* add any number of c's
S- QP /* arbitrary as, thenp# m P- B /* moreb'sthan c's
N - A /* more asthan b's P-C [* more c'sthan b's
N - B /* more b'sthan a's B'-b
Ao a B' - bB'
A - aA B' - bB'c
A - aAb C - c|Cc
B-b C - Cc
B - Bb C' - bCc
B - aBb Q- ¢elaQ /* prefix with any number of a's

L ={a"h"c’: nm,p=0and (n#mor m#p)}

b,c
clear and accept

Lecture Notes 14 Pushdown Automata

Another Deterministic CFL
L={a'""} O{b"a}

A CFG for L: A NDPDA for L:

A DPDA for L:

Moreon PDAs
What about a PDA to accept strings of the form ww?
Every FSM is(Trivially) a PDA

GivenanFSM M = (K, Z, A, s, F)
and elements of A of the form

(P, i q)
old state, input, new state

We construct aPDA M'= (K, Z, T, A, s, F)
wherel =0 /* stack alphabet
and
each transition (p,i,q) becomes

(C P i €) (a €))
old state, input, don't look at stack new state don't push on stack

In other words, we just don't use the stack.

Alternative (but Equivalent) Definitions of a NDPDA
Example: Accept by final state at end of string (i.e., we don't care about the stack being empty)
We can easily convert from one of our machines to one of these:
1. Addanew state at the beginning that pushes # onto the stack.

2. Addanew fina state and atransition to it that can be taken if the input string is empty and the top of the stack is #.
Converting the balanced parentheses machine:

" ((\@
e ©:

The new machine is nondeterministic:

() ()
0

The stack will be: #

&

Lecture Notes 14 Pushdown Automata

E_E+T
E-T
ToT*F
T-F
F- (B
F - id

What About PDA'sfor Interesting L anguages?

Arithmetic Expressions

“ elelE @

S

—
1) (2&E), (2 E+T)
(2 (2.¢E),@2T)
(B) (2&T), (2T
4 (2&T),(2F)
®) (2&F). (2 (F)
(6) (2.&F) (2id)
(7) (2.id,id), (2,€)
® (2(()(2e
©) (2).)). 29
(10) (2, +, +), (2.)
(11 (2% 7). (28

Example:
atb*c

But what we really want to do with languages like thisisto extract structure.

Regular Languages

e regular expressions
- Or -

e regular grammars

* recognize

+ =DFSAs

Lecture Notes 14

Comparing Regular and Context-Free L anguages

Context-Free Languages

» context-free grammars

e pase
« =NDPDAs
Pushdown Automata

Pushdown Automata and Context-Free Grammars

gg guf;‘plsai:ﬁtary Materials. Context-Free Languages and Pushdown Automata: Context-Free Languages and PDAS.
Do Homework 14.
PDAs and Context-Free Grammars
Theorem: The class of languages accepted by PDAs is exactly the class of context-free languages.
Recall: context-free languages are languages that can be defined with context-free grammars.
Restate theorem: Can describe with context-free grammar = Can accept by PDA

Going One Way

L emma: Each context-free language is accepted by some PDA.
Proof (by construction by “top-down parse” conversion agorithm):

Theidea: Let the stack do the work.

Example: Arithmetic expressions

E-E+T
E-T
T-T*F & elelE
O ©
F- (B)
F-id -/
Q) (2,‘8,E),75+T) (7) (2,id,id), (2,¢€)
(@ (2¢E),(2T) ® 2(()(29
) (2, T), (2, T*F) © (2)))29
4 (2,¢,T),2F (10) (2, +, 4), (2, ¢)
) (2.¢F),(2 () (11) (2,*,%), (2,¢)

6) (2,¢ F), (2,id)
The Top-down Parse Conversion Algorithm

GivenG=(V,Z,R,9)
Construct M such that L(M) = L(G)

M=({p, g}, %V, A p, {q}), where A contains:

(D) ((p. & €), (0, 9)
push the start symbol on the stack

(2 (9, &, A), (g, x)) for each rule A — xinR
replace left hand side with right hand side

(3) ((9, & a), (g, €)) foreacha O >
read an input character and pop it from the stack

The resulting machine can execute a leftmost derivation of an input string in a top-down fashion.

Lecture Notes 15 Pushdown Automata and Context-Free Languages

Example of the Algorithm

L ={adb*ad}

L
(2
3
(4)
©)

WImnLwOnm
Ll
2"

oM wWNPERO

!

o ™M

- bB
input =aabbaa 7
trans state unread input
aabbaa
aabbaa
aabbaa
abbaa
abbaa
bbaa
bbaa
bbaa
baa
baa
aa
aa
a
€

OO0OOPRNOINOINOOWO WO
D 00000000000 00T

Another Example
L={adb"c’d": m+n=p+q}

0
(@D} S - axd 1
(2 S-T 2
©)] S- U 3
(4) T - alc 4
(5) TV 5
(6) U - bud 6
@) Uu-V 7
(8) V - bVe 8
9 V o€ 9
10
11
input=aabcdd 12
13

(P& €), (a5

(0, & 9),(a, €

(0, & S), (a, B)

(0, & S), (g, aS9)

(0, & B), (a, €

(a, € B), (g, bB)

(9,2 a),(q,€)

(0, b, b), (a, €)

stack

€
S
aSa
Sa
aSaa
Saa
Baa
bBaa
Baa
bBaa
Baa
aa
a
€

(P, & €), (@S

(0, & S), (g, asd)

(0, & 9), (a,T)

(0, & S), (qU)

(0, & T), (g, arc)

(A& T),(q,V)

(a, & V), (g, bud)

(a,& V), (q,V)

(a,&, V), (q,bVe

(0, & V), (g, €)

(9, & a), (g, €)

(q, b, b), (a, &)

(0, ¢,0),(a ¢

(g, d, d), (a, €

The Other Way—Build a PDA Directly

L={db"c’d": m+n=p+q}

1) S - axd (6)
2 S-T (7
©) S-u 8
(4) T - alc (9
(5) TV

bila

C/B/‘ dial
al dial

input=aabcdd

Lecture Notes 15

U - bud
Uu-V
V - bVc
V - ¢

b//a c/
elel elel ': : elel '

Pushdown Automata and Context-Free Languages

Notice Nondeter minism

Machines constructed with the algorithm are often nondeterministic, even when they needn't be. This happens even with trivial
languages.
Example: L =ab"

A grammar for L is: A machine M for L is:
0) ((p.&). (a,)

[1]S - aSb (1) ((9,¢,S), (g, aSh))

[21S - ¢ 2 (a,¢,9),(q,8)

() ((a,a a), (q, €))
4) ((9, b, b), (g, €))
But transitions 1 and 2 make M nondeterministic.

A nondeterministic transition group is a set of two or more transitions out of the same state that can fire on the same
configuration. A PDA isnondeter ministicif it has any nondeterministic transition groups.

A directly constructed machine for L:

Going The Other Way
Lemma: If alanguage is accepted by a pushdown automaton, it is a context-free language (i.e., it can be described by a context-
free grammar).
Proof (by construction)

Example: L = {wew®:w O {a, b}*}

A contains:
/ alal . (s a¢),(sa)
cll) @ (s b, ¢), (s b))
s ((s ¢ 9, (f,¢€)
((f, a a), (f, €))
bi/b bib/ ((f, b, b), (f, €))

M=({s f},{a b c},{a b}, A s{f}) where:

First Step: MakeM Simple
A PDA M issimpleiff:
1. thereare no transitions into the start state, and

2. whenever ((g, X, B), (p, y) isatransition of M and g is not the start state, then3 O T, and |y| < 2.

Step 1. Add s and f":

alela alal
@s/s/; ol £1Z/
ble/b bib/

Step 2:
Q) Assurethat |B| < 1.

2 Assurethat |y| < 2.
(©)] Assurethat |B| = 1.

Lecture Notes 15 Pushdown Automata and Context-Free Languages 3

Making M Simple

alela alal
@8/8/; ol 0
ble/ bib/

M=({sf,s,f}, {ab,c} {ab Z}, A ss{f}), A=
(s, & €), (s 2)
(s a¢),(sa) (s & 2), (s a2)
((s & a), (s, a)
((s & b), (s an))
((s b, €), (s b)) (s b, 2), (s, bZ))
((s b, a), (s, ba))
((s, b, b), (s, bb))
(s c 9, (f,¢) ((sc 2),(f,2)
((sca),(f,a)
((s,c,b), (f, b))
((f, & a), (f, €) ((f,a a), (f, €)
((f, b, b), (f, €)) ((f, b, b), (f, €))
((f,&,2), (', &)

Second Step - Creating the Productions

The basic idea -- simulate a leftmost derivation of M on any input string.

Example: abcba
S[1]
I
<s, Z,>][2]
a <s, g f>[4] <f, Z,1>[g]
/
b <s b, f>[5] <f, a, > [6] 5 \<f‘,s,f‘> [10]
/\ [
c <f, b, f>[7] a <f g >[9] €
I
b <f, g >[9] €

€

If the nonterminal <s;, X, s,> =* w, then the PDA startsin state s, with (at least) X on the stack and after consuming w and
popping the X off the stack, it ends up in state s,.

Start with the rule:
S - <s, Z, "> where sisthe start state, f’ isthe (introduced) final state and Z is the stack bottom symbol.

Transitions ((sy, & X), (S, Y X)) become a set of rules:
<s, X, 0> - a<s, Y, r><r, X,g> foradX O {e},OqrdK

Transitions ((sy, & X), (S, Y)) becomes a set of rules:
<s, X, > > a<s, Y,q> foraOzO{e},0gOK

Transitions ((s1, & X), (S, €)) become arule:
<s, X,s> - a foraldZO{e}

Lecture Notes 15 Pushdown Automata and Context-Free Languages

Creating Productions from Transitions

S <sZf> (1]
((s.&). (s 2)
((s, & 2), (s, a2)) <s Z,f> 5 a<s, g f><f, Z, > [2]
<s, Z,s> > a<s a f><f, Z, s> [x]
<s Z,f> 5 a<s,a, s<s,Z, > [x]
<§,Z,8> > a<s, a,$<s,Z,f> [x]
<s, Z,8> - a<s,a f><f, Z, s> [x]

((s & a), (s ad) <s g f> - a<s g f><f, af> (3]
((s & b), (s ab))

((s, b, 2), (s, b2))

((s, b, a), (s, ba)) <s a f> - b<s b, f><f, a > [4]
((s, b, b), (s, bb))

((s.c 2. (f, 2)

((Sr Cv a)! (f, a)) <S, a, f> - C <f, a‘l f>

((s, c, b), (f, b)) <s b, f> - c<f, b, f> [5]

((f, a, a), (f, €)) <f,a f> - a<f, ¢ > [6]

((f, b, b), (f, €)) <f, b, f> - b<f, ¢ > [7]

((f, &, 2), (f', &) <f,Z,f> 5 e<f' g "> [8]
<f, g, f> - ¢ [9]
<f'g, > ¢ [10]

Comparing Regular and Context-Free L anguages

Regular Languages Context-Free Languages

e regular exprs. » context-free grammars
e or

e regular grammars

e recognize s pase

e« =DFSAs e =NDPDAs

Lecture Notes 15 Pushdown Automata and Context-Free Languages

Grammars and Normal Forms

Read K & S3.7.
Recognizing Context-Free L anguages

Two notions of recognition:

(1) Say yesor no, just like with FSMs

(2) Say yesor no, AND

if yes, describe the structure

a + b * c
Now it's time to worry about extracting structure (and doing so efficiently).
Optimizing Context-Free Languages

For regular languages:
Computation = operation of FSMs. So,
Optimization = Operations on FSMs:
Conversion to deterministic FSM s
Minimization of FSMs
For context-free languages:
Computation = operation of parsers. So,
Optimization = Operationson languages
Operations on grammars
Parser design

Before We Start: Operationson Grammars

There are lots of ways to transform grammars so that they are more useful for a particular purpose.

the basic idea:

1. Apply transformation 1 to G to get of undesirable property 1. Show that the language generated by G is unchanged.
2. Apply transformation 2 to G to get rid of undesirable property 2. Show that the language generated by G is unchanged AND

that undesirable property 1 has not been reintroduced.
3. Continue until the grammar isin the desired form.

Examples:

e Getting rid of € rules (nullable rules)

e Getting rid of sets of rules with acommon initial terminal, e.g.,
° A—>aB,A—>aCbeC0meA—>aD,D—>B|C

» Conversion to normal forms

Lecture Notes 16 Grammars and Normal Forms

Normal Forms

If you want to design algorithms, it is often useful to have alimited number of input forms that you have to deal with.
Normal forms are designed to do just that. Various ones have been developed for various purposes.
Examples:
» Clauseform for logical expressions to be used in resolution theorem proving
« Disunctive normal form for database queries so that they can be entered in a query by example grid.
* Various normal formsfor grammars to support specific parsing techniques.

Clause Form for Logical Expressions
[x : [Roman(x) Oknow(x, Marcus)] — [hate(x, Caesar) O (Oy : [: hate(y, z) - thinkcrazy(x, y))]

becomes

= Roman(x) 00 -know(x, Marcus) [1 hate(x, Caesar) (1 - hate(y, z) Othinkcrazy(x, z)

Digunctive Normal Form for Queries

(category = fruit or category = vegetable)
and
(supplier = A or supplier = B)

becomes
(category = fruit and supplier = A) or
(category = fruit and supplier = B) or
(category = vegetable and supplier = A) or

(category = vegetable and supplier = B)

Category Supplier Price
fruit A
fruit B
vegetable A
vegetable B

Normal Formsfor Grammars

Two of the most common are:

e Chomsky Normal Form, in which all rules are of one of the following two forms:
e X - awherealdZ, or
e X - BC,whereB and C are nonterminasin G

* Greibach Normal Form, in which all rules are of the following form:
e X - af,whereal Z and 3 isa(possibly empty) string of nonterminals

If L isacontext-free language that does not contain €, then if G isagrammar for L, G can be rewritten into both of these normal
forms.

Lecture Notes 16 Grammars and Normal Forms

What Are Normal Forms Good For?
Examples:
e Chomsky Normal Form:
X - awherealZ, or
e X - BC,whereB and C are nonterminalsin G
¢ The branching factor is precisely 2. Tree building algorithms can take advantage of that.

* Greibach Normal Form
e X - af,whereal Z and 3 isa(possibly empty) string of nonterminals
¢ Precisely one nonterminal is generated for each rule application. This means that we can put a bound on the number of rule
applications in any successful derivation.
Conversion to Chomsky Normal Form

Let G be agrammar for the context-free language L wheree O L.
We construct G', an equivalent grammar in Chomsky Normal Form by:

0. Initialy, let G' = G.
1 Remove from G' all € productions:
1.1 If thereisarule A — aBp and B isnullable, add therule A - aff and deletetheruleB - e.
Example:
S nd aA
A - B|CD
B¢
B - a
C - BD
D b b
D-c¢
Conversion to Chomsky Normal Form
2. Remove from G' al unit productions (rules of the form A — B, where B is a nonterminal):
2.1. Remove from G' all unit productions of theform A - A.

2.2 For al nonterminals A, find all nonterminals B such that A =* B, A # B.
2.3. Create G" and add to it all rulesin G' that are not unit productions.
24. For all A and B satisfying 3.2, add to G"
A - yl|y2]|...whereB - yl]|y2]isinG".
25. Set G'to G".
Example: Ao a
A-B
A - EF
B-A
B - CD
B-C
C nd ab
At this point, al rules whose right hand sides have length 1 are in Chomsky Normal Form.

Lecture Notes 16 Grammars and Normal Forms

Conversion to Chomsky Normal Form

3. Remove from G' al productions P whose right hand sides have length greater than 1 and include aterminal (e.g., A -
aB or A - BaC):
3.1 Create a new nonterminal T, for each terminal ain .
3.2. Modify each production P by substituting T, for each terminal a.
3.3. Addto G, for each T, therule T, - a

Example:
A - aB
A - BaC
A - BbC

Ta- a
Tp- b
Conversion to Chomsky Normal Form

4. Remove from G' al productions P whose right hand sides have length greater than 2 (e.g., A - BCDE)
4.1. For each P of theform A — N;N5N3N4...N,,, n > 2, create new nonterminals M,, M3, ... M1
4.2, Replace Pwith therule A - N;M,.
4.3. Add therules Ms > NoMs, M3 — N3My, ... M1 —» NN,

Example:
A - BCDE (n=4)

A - BM,

M, — C M,
M — DE

Lecture Notes 16 Grammars and Normal Forms

Top Down Parsing

Read K & S3.8.
Read Supplementary Materials. Context-Free Languages and Pushdown Automata: Parsing, Sections 1 and 2.
Do Homework 15.

Parsing
Two basic approaches:
Top Down
E = E = E
E/I+\T I/!u\ T

|

id
Bottom Up

E

/\

E

|

T T

| |

F F F
o | | |
id+id = id + id = id + id
A Simple Parsing Example

A simple top-down parser for arithmetic expressions, given the grammar
[1] E-E+T
[2] E-T
[3] T-T*F
[4] T-F
(5] F- (B
[6] F-id
[7] F - id(E)
A PDA that does a top down parse;
0) (1, &¢), (26 (7) (2,¢F), (2,id(E)
(1) (2,&E), (2 E+T) (8) (2,id,id), (2, &)
(2 (2&E),(2T) 9 @G(()2e
Q) (2¢&T1),(2TF (10)(2,).)). (2 ¢)
4 (2,¢,T),2F (11) (2, +,4), (2,¢)
(5) (2’ g, F)! (21 (E)) (12) (2, *, *), (2, S)

(6) (2. F), (2id)

Lecture Notes 17 Top Down Parsing

Example: id+id* id(id)

Stack:

The leftmost derivation of the string. Why?

EDE+T=>T+ToF+T=2id+T>

How Does It Work?

What Does It Produce?

id+T*F=id+F*F=id+id*F=

id+id* id(E) = id +id * id(T) =
id+id* id(F) = id +id * id(id)

T———m

o

0) (L&), (2E)
(1) (2,&E), (2, E+T)
(2 (2.&E),(@2T)
() (2,&,T),(2, T*F)
(4) (2,&T).(2F) —
) (2.&F), 2 (E)]
(6) (2.¢F), (2id)
(7) (2, F), (2,id(E)
(8) (2.id,id), (2,¢)
9 @G()(@e
(10) (2,),)). (2. ¢)
(11) (2, +,4), (2,¢)
(12) 2,%,%). (2. ¢)

Lecture Notes 17

But the Process Isn't Deterministic

nondeterministic

nondeterministic

nondeterministic

Top Down Parsing

Is Nondeter minism A Problem?
Yes.

In the case of regular languages, we could cope with nondeterminism in either of two ways:

e Create an equivaent deterministic recognizer (FSM)

e Simulate the nondeterministic FSM in a number of steps that was till linear in the length of the input string.

For context-free languages, however,

« Thebest straightforward general agorithm for recognizing a string is O(n®) and the best (very complicated) algorithm is
based on a reduction to matrix multiplication, which may get close to O(n?).

Wed really like to find a deterministic parsing algorithm that could run in time proportional to the length of the input string.

Islt Possibleto Eliminate Nondeter minism?
Inthiscase: Yes
In genera: No

Some definitions:

« A PDA M isdeterministicif it has no two transitions such that for some (state, input, stack sequence) the two transitions
could both be taken.

* AlanguagelL isdeterministic context-freeif L$ = L(M) for some deterministic PDA M.
Theorem: The class of deterministic context-free languagesis a proper subset of the class of context-free languages.

Proof: Later.
Adding a Terminator to the Language

We define the class of deterministic context-free languages with respect to aterminator ($) because we want that class to be as
large as possible.

Theorem: Every deterministic CFL (asjust defined) is a context-free language.

Pr oof:

Without the terminator ($), many seemingly deterministic cflsaren't. Example:
a J{ab":n>0}

Possible Solutions to the Nondeter minism Problem

1) M odify the language

. Add aterminator $
2) Change the parsing algorithm
3) M odify the grammar

Lecture Notes 17 Top Down Parsing

M odifying the Parsing Algorithm
What if we add the ability to look one character ahead in the input string?
Example: id+id* id(id)
N

EDE+T=>T+ToF+T=2id+T>
id+T*F=id+F*F=id+id*F

Considering transitions:

) (2&F) (2 (F)
6) (2.¢&F), (2 id)

(7) (2,&,F), (2,id(E))

If we add to the state an indication of what character is next, we have:

®) (&R 2 ()
(6) (2.id,& P), (2 id)

(7) (2,id, &, F), (2,id(E))
M odifying the L anguage

So we've solved part of the problem. But what do we do when we come to the end of the input? What will be the state indicator
then?

The solution is to modify the language. Instead of building a machine to accept L, we will build a machine to accept L$.

Using L ookahead

(0) (1, &,¢), (2, E)) _
[1] E-E+T (1) (2, €, E), (2, E+T)
[2] E-T) (2,¢,E), (2, T)
[3] T.T*F () (2,&T),2,TFH ~ |
[4] T-F 4 (2,5, 71), (2P
(5] F - (E) G2 (&R, @E) —)
6] F-id (6) (2,id, ¢, F), (2, id)
[7] F — id(E) (7) (2,id, &, F),(2, id(E))

®) (2,id,id), 2,6)
@ E(()2¢
(10)(2,),)). (2 &)
(11) (2, +, 4), (2, €)
(12) (2,%,%),(2,¢)

For now, we'll ignore the issue of when we read the lookahead character and the fact that we only care about it if the top symbol
on the stack isF.
Possible Solutions to the Nondeter minism Problem

1) M odify the language

. Add aterminator $
2) Change the parsing algorithm

. Add one character look ahead
3) M odify the grammar

Lecture Notes 17 Top Down Parsing

M odifying the Grammar

Getting rid of identical first symbols:

[6] F-id (6) (2,id, €, F),(2, id)
[7] F - id(E) (7) (2,id, €, F),(2, id(E))
Replace with:

[6] F-idA (6) (2,id, &, F), (2,id A)
[7] Ao e (™ 2,2 & A), (2¢)
(8] A - (B (8) (2 (& A) (2 (B)

The general rule for left factoring:

Whenever A - of;
A - GBZ
A - aBn
areruleswith a # € and n = 2, then replace them by the rules:
A > aA’
A" - By
A S B
A~ Bn

M odifying the Grammar

Getting rid of left recursion:

[1] E-E+T D) (2, E), (2, E+T)
[2] E-T (@ (2,¢E),2T)
The problem:

E

E + T
Replace with:
[1] E-TE 1) (2,¢,E),2TE)
[2] E-+TFE 2 (2, E),(2,+TE)
[3] E'-c¢ (3) (2,& E),(2¢)

Lecture Notes 17 Top Down Parsing

Getting Rid of Left Recursion

The general rule for eliminating left recursion:

If G contains the following rules: Replace them with:
A - Aoy A S oA
A - Aa, ... A S 0A L.
A - Aoz A' S A
A - Aq, A' S 0A
A - ¢
A - B1 (whereB'sdo not start with Aa) A S BA
A~ B A - BA
A - Bm A S BA'
and n> 0, then

Possible Solutions to the Nondeter minism Problem

l. M odify the language

A. Add aterminator $
. Change the parsing algorithm

A. Add one character look ahead
[I. M odify the grammar

A. Left factor

B. Get rid of left recursion

LL (k) Languages
We have just offered heuristic rules for getting rid of some nondeterminism.
We know that not all context-free languages are deterministic, so there are some languages for which these rules won't work.

We define agrammar to be LL (k) if it is possible to decide what production to apply by looking ahead at most k symbols in the
input string.

Specifically, agrammar GisLL (1) iff, whenever

A - a|pBaetworulesinG:

1. For noterminal ado a and 3 derive strings beginning with a.

2. Atmost oneof a | B can derivee.

3. If B =* &, then a does not derive any strings beginning with aterminal in FOLLOW(A), defined to be the set of terminals
that can immediately follow A in some sentential form.

We define alanguage to be L L (k) if there exists an LL (k) grammar for it.

Lecture Notes 17 Top Down Parsing

Implementing an LL (1) Parser

If alanguage L hasan LL (1) grammar, then we can build a deterministic LL (1) parser for it. Such a parser scansthe input L eft to
right and builds a L eftmost derivation.

The heart of an LL(1) parser isthe parsing table, which tellsit which production to apply at each step.
For example, here is the parsing table for our revised grammar of arithmetic expressions without function cals:

V\Z id + * () $
E E-TE E-TE
E' E-+TE' E-e¢ E'-¢
T T FT T FT'
T T ¢ T S *FT T € T €
F F-id F-(E)
Giveninput id +id * id, the first few moves of this parser will be:
E id+id* id$
E-TE TE' id+id*id$
T-FT FT'E id+id* id$
F-id idT'E' id+id*id$
TE +id* id$
T-¢ E +id* id$

But What If We Need a Language That Isn't LL(1)?
Example:

ST - if Cthen ST else ST
ST - if Cthen ST

We can apply left factoring to yield:
ST - ifCthenST S
S - else ST |¢

Now we've procrastinated the decision. But the language is still ambiguous. What if the input is

if C, thenif C,then ST, else ST,

Which bracketing (rule) should we choose?
A common practice is to choose S o elseST
We can force thisif we create the parsing table by hand.
Possible Solutionsto the Nondeter minism Problem

l. M odify the language

A. Add aterminator $
. Change the parsing algorithm

A. Add one character look ahead

B. Use a parsing table

C. Tailor parsing table entries by hand
[I. M odify the grammar

A. Left factor

B. Get rid of left recursion

Lecture Notes 17 Top Down Parsing 7

Old Grammar
[1] E_E+T

2 E-T

8] T-T*F
4 T-F

(5] F - (E)
6] F-id
[71 F-idE)

input =id+id+id

id A
|
€

Regular Languages

e regular exprs.
or
e regular grammars
« =DFSAs
e recognize
e minimize FSAs

Lecture Notes 17

The Price We Pay

New Grammar

E- TE
E - +TE
E - ¢
T FT'
T - *FT"
T > ¢
F- (B
F - idA
Ao e
A~ (B
E
e L
+ T E'
F T + T E'
id A € F T €
| PN |
€ id A 3

Comparing Regular and Context-Free L anguages
Context-Free Languages

e context-free grammars
« =NDPDAs
* pase

e find deterministic grammars
» find efficient parsers

Top Down Parsing

Bottom Up Parsing
Read Supplementary Materials. Context-Free Languages and Pushdown Automata: Parsing, Section 3.

Bottom Up Parsing

An Example:

[1] E-E+T

[2] E-T

[3] T-T*F

[4] T-F

(5] F- (B

[6] F-id

id + id * id $

Creating a Bottom Up PDA
There are two basic actions:
1. Shift an input symbol onto the stack
2. Reduce astring of stack symbolsto a nonterminal

; $/s/ }

So, to construct M from agrammar G, we need the following transitions:

M will be:

(1) The shift transitions:
((p, & €), (p, @), foreacha O =

(2) The reduce transitions:
((p, &, 0©), (p, A)), for eachrule A — ainG.

(3) The finish up transition (accept):
((r. $,9), (.)

(Thisisthe “bottom-up” CFG to PDA conversion agorithm.)

Lecture Notes 18 Bottom Up Parsing

M for Expressions

0 (p, & €), (p,a foreachalx

1 (p, &, T+E), (p, E)

2 (p. & T), (p. E)

3 (P&, F*T), (p,T)

4 (. & F), (p, T)

5 (&, “)"E"("). (P, F)

6 (p. & id), (p, F)

7 (. $.E), (0, 8)

trans (action) state unread input stack

p id+id* id$ €

0 (shift) p +id* id$ id
6 (reduce F - id) p +id* id$ F
4 (reduceT - F) p +id* id$ T
2 (reduceE - T) p +id* id$ E
0 (shift) p id* id$ +E
0 (shift) p *id$ id+E
6 (reduce F - id) p * id$ F+E
4 (reduceT - F) p * id$ T+E (could also reduce)
0 (shift) p id$ *T+E
0 (shift) p $ id*T+E
6 (reduce F - id) p $ F*T+E (could also reduce T - F)
3(reduceT - T*F) p $ T+E
1(reduceE - E+T) p $ E
7 (accept) q $ €

TheParse Tree

| — | T
| |
¥ i‘d .

Producing the Rightmost Derivation

We can reconstruct the derivation that we found by reading the results of the parse bottom to top, producing:

E= E+ id* id>
E+ T> T+ id*id=>
E+ T* F= F+ id*id=
E+ T*ide id+ id*id
E+ Fid=>

Thisis exactly the rightmost derivation of the input string.

Lecture Notes 18 Bottom Up Parsing

Possible Solutions to the Nondeter minism Problem

1) M odify the language
. Add aterminator $

2) Change the parsing algorithm

. Add one character ook ahead
. Use a parsing table
. Tailor parsing table entries by hand
. Switch to a bottom-up par ser
3) M odify the grammar
. Left factor
. Get rid of left recursion

Solving the Shift vs. Reduce Ambiguity With a Precedence Relation
Let's return to the problem of deciding when to shift and when to reduce (asin our example).
We chosg, correctly, to shift * onto the stack, instead of reducing T+E to E.
This corresponds to knowing that “+” has low precedence, so if there are any other operations, we need to do them first.
Solution:

1. Add aone character lookahead capability.
2. Define the precedence relation

PO (V x {0 %})
top next
stack input
symbol symbol

If (a,b) isin P, we reduce (without consuming the input) . Otherwise we shift (consuming the input).
How Does |t Work?

We're reconstructing rightmost derivations backwards. So suppose arightmost derivation contains
Byabx
I 4—— correspondingtoarule A — yaand not somerule X — ab
BAbx
ﬂ*
S

We want to undo rule A. Soif the top of the stack is
a
Y and the next input character is b, we reduce

now, before we put the b on the stack.

To make this happen, we put (a, b) in P. That meanswe'll try to reduce if ais on top of the stack and b is the next character. We
will actually succeed if the next part of the stack isy.

Lecture Notes 18 Bottom Up Parsing 3

Example

TﬂF 4— correspondingtoarule T - T*F
-TI{* Input: id*id* id
E
We want to undo rule T. So if the top of the stack is
’[‘: and the next input character is anything legal, we reduce.
T

The precedence relation for expressions:

V\> () id + *
(
) L] L] L]
|d ° . .
+
E
T . .
F ° . °

A Different Example
E+T
f* 4—— correspondingto arule E - E+T
E

We want to undo rule E if the input is E+T$
or E+T+id
but not E+T*id
Thetop of the stack is
T
+
E
The precedence relation for expressions:
V\Z () id + *
(
) L] L] L]
|d . ° .
+
*
E
T . .
F ° ° °

Lecture Notes 18 Bottom Up Parsing

What About If Then Else?

ST - if Cthen ST else ST
ST - if Cthen ST

What if theinput is

Which bracketing (rule) should we choose?

We don't put (ST, else) in the precedence relation, so we will not reduce at 1. At 2, we reduce:

ST2 2
ese
STl 1
then
Cc2
if
then
(o4}
if

Resolving Reduce vs. Reduce Ambiguities

0 (p, & €), (p,a foreachalx

1 (p, &, T+E), (p, E)

2 (p. & T), (p. E)

3 (P&, F*T), (p,T)

4 (P& F), (p, T)

5 (P& ") E (") (0, F)

6 (p. & id), (p, F)

7 (P, $,E), (g, ¢)

trans (action) state unread input stack

p id+id* id$ €

0 (shift) p +id* id$ id
6 (reduce F - id) p +id* id$ F
4 (reduceT - F) p +id* id$ T
2 (reduceE - T) p +id* id$ E
0 (shift) p id* id$ +E
0 (shift) p *id$ id+E
6 (reduce F - id) p * id$ F+E
4 (reduceT - F) p * id$ T+E (could also reduce)
0 (shift) p id$ *T+E
0 (shift) p $ id*T+E
6 (reduce F - id) p $ F*T+E (could also reduce T - F)
3(reduceT - T*F) p $ T+E
1(reduceE - E+T) p $ E
7 (accept) q $ €

Lecture Notes 18 Bottom Up Parsing

TheLongest Prefix Heuristic
A simple to implement heuristic rule, when faced with competing reductions, is:

Choose the longest possible stack string to reduce.
Example:

*|= -

Supposethestackhas F* T + E
U
T

We call grammars that become unambiguous with the addition of a precedence relation and the longest string reduction heuristic
weak precedence grammars.

Possible Solutionsto the Nondeter minism Problem in a Bottom Up Par ser

1) M odify the language
. Add aterminator $

2) Change the parsing algorithm

. Add one character lookahead
. Use a precedence table
. Add the longest first heuristic for reduction
. Usean LR parser
3) M odify the grammar

LR Parsers

LR parsers scan each input L eft to right and build a Rightmost derivation. They operate bottom up and deterministically using a
parsing table derived from a grammar for the language to be recognized.

A grammar that can be parsed by an LR parser examining up to k input symbols on each move isan L R(k) grammar. Practical
LR parsersset k to 1.

AnLALR (or Look Ahead LR) parser is a specific kind of LR parser that has two desirable properties:
e Theparsing tableis not huge.
* Most useful languages can be parsed.

Another big reason to use an LALR parser:
There are automatic tools that will construct the required parsing table from a grammar and some optional additional
information.

Wewill beusing such atool: yacc

Lecture Notes 18 Bottom Up Parsing 6

How an LR Parser Works

Input String
state
state
state
Output Token
Stack

Parsing Table

In simple cases, think of the "states' on the stack as corresponding to either terminal or nonterminal characters.

In more complicated cases, the states contain more information: they encode both the top stack symbol and some facts about
lower objectsin the stack. Thisinformation is used to determine which action to take in situations that would otherwise be
ambiguous.

The Actionsthe Parser Can Take

At each step of its operation, an LR parser does the following two things:

1) Based on its current state, it decides whether it needs alookahead token. If it does, it gets one.
2) Based on its current state and the lookahead token if there is one, it chooses one of four possible actions:
. Shift the lookahead token onto the stack and clear the lookahead token.
. Reduce the top elements of the stack according to some rule of the grammar.
. Detect the end of the input and accept the input string.
. Detect an error in the input.

Lecture Notes 18 Bottom Up Parsing

0: S - rhyme $end ;

1: rhyme - sound place ;
2:sound — DING DONG ;
3: place - DELL

state 0 (empty)

A Simple Example

O therule this came from

error ettt .

State 3

push state 2

state 2 (sound)
rhyme : sound_place
DELL shifth
. error
place goto 4
state 3 (DING)

sound : DING_DONG

DONG shift6
. error ’
state 4 (place)

rhyme : sound place (1)

[1] <stmt> - procname (<paramlist>)

[2] <stmt> - <exp> = <exp>

.. . byrU|el

state 5 (DELL)

current position of input
if none of the others match

if we see EOF, accept

place: DELL_ (3)

. reduce 3
state 6 (DONG)

sound : DING DONG_ (2)

. reduce 2

[3] <paramlist> - <paramlist>, <param> | <param>

[4] <param> - id

[5] <exp> — arrayname (<subscriptlist>)

[6] <subscriptlist> - <subscriptlist>, <sub> | <sub>

[7] <sub> - id
Example:

procname (id)

Should we reduce id by rule 4 or rule 7?

The parsing table can get complicated as we incorporate more stack history into the states.

Lecture Notes 18

Bottom Up Parsing

When the States Are Morethan Just Stack Symbols

id

procname

The Language I nter pretation Problem:
Input: -(17 * 83.56) + 72/ 12
Output: -1414.52
The Language I nter pretation Problem:

Input: -(17 * 83.56) + 72/ 12

Compute the answer

-

Output: -1414.52

The Language I nter pretation Problem:

Input: -(17 * 83.56) + 72/ 12

-

Parse the input *2

A tree of actions, whose structure corresponds to the structure of the input.

Compute the answer

Output: -1414.52

Lecture Notes 18 Bottom Up Parsing

The Language I nter pretation Problem:

Input: (17 * 83.56) + 72/ 12

Lexical analysis of the input *1

A string of input tokens, corresponding to the primitive objects of which the input is composed:
-(id* id) + id / id

+

Parse the input *2

A tree of actions, whose structure corresponds to the structure of the input.

Compute the answer

Output: -1414.52

yacc and lex

Lexical analysis of the input *1

Parse the input *2

Where do the procedures to do these things come from?

regular expressions that describe patterns

v

lex

lexical analyzer *1

grammar rules and other facts about the language

-

yacc

-

parser *2

Lecture Notes 18 Bottom Up Parsing

Theinput to lex: definitions
%%
rules
%%
user routines

All strings that are not matched by any rule are ssmply copied to the output.

Rules:

[\M]+; get rid of blanks and tabs
[A-Za-Z][A-Za-z0-9]* return(1D); find identifiers

[0-9]+ { sscanf(yytext, "%d", &yylva);

return (INTEGER); } return INTEGER and put the value in yylval
How Does lex Deal with Ambiguity in Rules?
lex invokes two disambiguating rules:

1. Thelongest match is prefered.
2. Among rules that matched the same number of characters, therule given first is preferred.

Example:
integer action 1
[az]+ action2
input: integers take action 2
integer take action 1
yacc

(Yet Another Compiler Compiler)
The input to yacc:

declarations

%%

rules

%%

#include "lex.yy.c"
any other programs

This structure means that lex.yy.c will be compiled as part of y.tab.c, so it will have access to the same token names.
Declarations:

%token namel name2 ...

Rules:
Vv rabc
V abc {action}
\% abc {$$=92} returns the value of b

Lecture Notes 18 Bottom Up Parsing

Example
Input to yacc:
%token DING DONG DELL
%%

rhyme : sound place ;
sound : DING DONG ;
place : DELL

%%
#include "lex.yy.c"

state 0 (empty) state 3 (DING)
$accept : _rhyme $end sound : DING_DONG
DING shift 3 DONG shift 6
. error . error
rhyme goto 1 state 4 (place)
sound goto 2 rhyme : sound place (1)
state 1 (rhyme) . reduce 1
$accept : rhyme $end state 5 (DELL)
$end accept place: DELL_ (3)
. error . reduce 3
state 2 (sound) state 6 (DONG)
rhyme : sound_place sound : DING DONG_ (2)
DELL shifts . reduce 2
. error
place goto 4

How Does yacc Deal with Ambiguity in Grammars?

The parser table that yacc creates represents some decision about what to do if there is ambiguity in the input grammar rules.

How does yacc make those decisions? By default, yacc invokes two disambiguating rules:
1. Inthe case of ashift/reduce conflict, shift.

2. Inthe case of areduce/reduce conflict, reduce by the earlier grammar rule.

yacc tells you when it has had to invoke these rules.

Shift/Reduce Conflicts - If Then Else

ST - if Cthen ST else ST
ST - if Cthen ST

What if the input is

if C, then if C, then ST; €dse ST,

! i

Which bracketing (rule) should we choose?

yacc will choose to shift rather than reduce.

ST2 2
else
ST1 1
then
c2
if
then
Cc1
if

Lecture Notes 18 Bottom Up Parsing

12

Shift/Reduce Conflicts - L eft Associativity

We know that we can force left associativity by writing it into our grammars.

Example:
E-E+T =
E_T T
T - id E\ T
E T
T
|Jd + id + id

What does the shift rather than reduce heuristic if we instead write:
E-E+E id + id + id
E-id
Shift/Reduce Conflicts - Operator Precedence
Recall the problem: input: id+id*id

T Should we reduce or shift on* ?

+

E

The "always shift" rule solves this problem.

But what about: id*id+id
T Should we reduce or shift on + ?
E Thistime, if we shift, we'll fail.

One solution was the precedence table, derived from an unambiguous grammar, which can be encoded into the parsing table of an
LR parser, since it tells us what to do for each top-of-stack, input character combination.

Operator Precedence

We know that we can write an unambiguous grammar for arithmetic expressions that gets the precedence right. But it turns out
that we can build afaster parser if we instead write:

E_ E+E|E*E|(E)|id

And, in addition, we specify operator precedence. In yacc, we specify associativity (since we might not always want left) and
precedence using statements in the declaration section of our grammar:

%left '+ -
Yoleft ** /'

Operators on the first line have lower precedence than operators on the second line, and so forth.

Lecture Notes 18 Bottom Up Parsing 13

Reduce/Reduce Conflicts

Recall:

2.

This can easily be used to simulate the longest prefix heuristic, " Choose the longest possible stack string to reduce.

(4]
(2]
(3]
[4]
(5]
(6]

In the case of areduce/reduce conflict, reduce by the earlier grammar rule.

E_E+T
E-T
ToT*F
T-F
F- (B
F - id

Generating an Executable System

Step 1: Create the input to lex and the input to yacc.

Step 2:

$ lex ourlex.| creates lex.yy.c
$ yacc ouryacc.y createsy.tab.c
$ cc-oourprogy.tab.c -ly -l actually compilesy.tab.c and lex.yy.c, which isincluded.

-ly links the yacc library, which includes main and yyerror.
-l links the lex library

Step 3: Run the program

$ ourprog
Runtime Communication Between lex and yacc-Generated M odules
Parser read the value of the token
ask return
for a a
token token
Lexica Analyer
set the value of the token
Summary

Efficient parsers for languages with the complexity of atypical programming language or command line interface:

Make use of special purpose constructs, like precedence, that are very important in the target languages.
May need complex transition functions to capture all the relevant history in the stack.

Use heuristic rules, like shift instead of reduce, that have been shown to work most of the time.

Would be very difficult to construct by hand (as aresult of all of the above).

Can easily be built using atool like yacc.

Lecture Notes 18 Bottom Up Parsing

14

Languages That Are and Are Not Context-Free
Read K & S3.5,3.6,3.7.
Read Supplementary Materials. Context-Free Languages and Pushdown Automata: Closure Properties of Context-Free
Languages
Read Supplementary Materials. Context-Free Languages and Pushdown Automata: The Context-Free Pumping Lemma.
Do Homework 16.
Deciding Whether a Language is Context-Free
Theorem: There exist languages that are not context-free.
Pr oof:
(1) There are a countably infinite number of context-free languages. This true because every description of a context-free
language is of finite length, so there are a countably infinite number of such descriptions.
(2) There are an uncountable number of languages.
Thus there are more languages than there are context-free languages.

So there must exist some languages that are not context-free.

Example: {a'b"c"}
Showing that a Languageis Context-Free

Techniques for showing that alanguage L is context-free:

1. Exhibit a context-free grammar for L.

2. Exhibit aPDA for L.

3. Usethe closure properties of context-free languages.
Unfortunately, these are weaker than they are for regular languages.

The Context-Free Languages are Closed Under Union

Let Gl = (Vl! Zl! Rl1 Sl) and
G,=(V2 25, R, S))

Assume that G; and G, have digoint sets of nonterminals, not including S.
LetL =L(Gy) O L(Gy)

We can show that L is context-free by exhibiting a CFG for it:

The Context-Free L anguages are Closed Under Concatenation

Let Gl = (Vll zlv R11 Sl) and
GZ = (V21 22! RZ! SZ)

Assume that G; and G, have digoint sets of nonterminals, not including S.
LetL =L(Gy) L(Gp)

We can show that L is context-free by exhibiting a CFG for it:

Lecture Notes 19 Languages That Are and Are Not Context Free

The Context-Free Languages are Closed Under Kleene Star
Let G1=(Vy, 23, Ry, S))
Assume that G, does not have the nonterminal S.
Let L = L(Gy)*

We can show that L is context-free by exhibiting a CFG for it:

What About I ntersection and Complement?

We know that they share afate, since

Linl, =L, 0L,

But what fate?

We proved closure for regular languages two different ways. Can we use either of them here:

1. Given adeterministic automaton for L, construct an automaton for its complement. Argue that, if closed under complement
and union, must be closed under intersection.

2. Givenautomatafor L; and L,, construct a new automaton for L; n L, by simulating the parallel operation of the two original
machines, using states that are the Cartesian product of the sets of states of the two original machines.

More on this later.

TheIntersection of a Context-Free Language and a Regular Languageis Context-Free

L =L(My),aPDA = (Ky, Z, Iy, Ay, 51, F1)
R=L(My), adeterministic FSA = (K3, Z, d, s, F»)

We construct a new PDA, M3, that acceptsL n R by simulating the parallel execution of M; and M.
M= (K XKy Z,T1, A (81, %), FL X F)

Insert into A:

For eachrule ((as, apB), (P Y)inAy

and each rule (0, a, p2) ind,

(1, 92, & B), (P2, P2, Y)

For eachrule ((q, & B), (P, y) inA,,
and each state q, inKy,

(1, A2, &, B), (P, G2). V)

Thisworks because: we can get away with only one stack.

Lecture Notes 19 Languages That Are and Are Not Context Free 2

Example

L= &b n (aa)* (bb)*

a//a b/al

(A, a8, (A &)
((A, b, a), (B, €)

((B,b,a), (B, €)) (2,a1)
(3, b, 4)
(4, b, 3)
A PDA for L:

Don’t Try to Use Closure Backwards

One Closure Theorem:
If L, and L, are context freg, then sois

|_3 = E O L2.
But what if L3 and L, are context free? What can we say about L,?

L3: L1D L2.

T A
Example:

a'b’c* = d'b"cr O d'p"c"

The Context-Free Pumping Lemma
This time we use parse trees, not automata as the basis for our argument.

S

r u T v T x 'y T z 1

If L isacontext-free language, and if wisastring in L where jw| > K, for some value of K, then w can be rewritten as uvxyz,
where jvy| > 0 and [vxy| < M, for some value of M.

UXZ, UVXYZ, UVVXYYZ, UVWVXYYYZ, etc. (i.e., uv"xy"z, for n > 0) areall in L.

Lecture Notes 19 Languages That Are and Are Not Context Free

Some Tree Basics

O < root
N
o O o/\oI . e
yield

Theorem: The length of the yield of any tree T with height H and branching factor (fanout) B is< B".

Proof: By inductiononH. If His 1, thenjust asinglerule applies. By definition of fanout, the longest yield is B.
Assumetruefor H = n.

Consider atreewithH =n+ 1. It consists of aroot, and some number of subtrees, each of which is of height < n (so induction
hypothesis holds) and yield < B". The number of subtrees< B. So the yield must be< B(B") or B™*.

What IsK?

—
-

u v ! x oy bz

Let T be the number of nonterminalsin G.

If thereisatree of height > T, then some nonterminal occurs more than once on some path. If it does, we can pump itsyield.
Since atree of height = T can produce only strings of length < BT, any string of length > BT must have a repeated nonterminal and
thus be pumpable.

So K =BT, where T isthe number of nonterminalsin G and B is the branching factor (fanout).

What isM?

—

u v X y Iz !

Assume that we are considering the bottom most two occurrences of some nonterminal. Then the yield of the upper oneis at
most B™** (since only one nonterminal repeats).

SoM =B™,

Lecture Notes 19 Languages That Are and Are Not Context Free 4

The Context-Free Pumping Lemma

Theorem: Let G=(V, Z, R, S) be a context-free grammar with T nonterminal symbols and fanout B. Then any stringw [L(G)
where jw| > K (BT) can be rewritten asw = uvxyz in such away that:

* |wl>0

o |vxy]< M (B™), (making this the "strong" form),

o foreveryn=0, u"xy"zisinL(G).

Proof:

Let w be such astring and let T be the parse tree with root labeled S and with yield w that has the smallest number of |eaves
among all parse trees with the sameroot and yield. T has a path of length at least T+1, with a bottommost repeated nonterminal,
which well call A. Clearly v and y can be repeated any number of times (including 0). If [vy| = 0, then there would be a tree with
root S and yield w with fewer leavesthan T. Finally, jvxy|< B™™.

An Example of Pumping
L ={a"c": n=0}
Choose w = db'c' wherei >[K/3] (making jw| > K)

S

A

N\

r u LY, I X I y 1 Z 1

Unfortunately, we don't know wherev and y fall. But there are two possibilities:

1. If vy contains al three symbols, then at least one of v or y must contain two of them. But then uvvxyyz contains at |east one
out of order symbol.

2. If vy contains only one or two of the symbols, then uvvxyyz must contain unequal numbers of the symbols.

Using the Strong Pumping Lemma for Context Free Languages
If L is context free, then

Thereexist K and M (with M = K) such that
For all stringsw, where jw|> K,
(Sincetruefor all such w, it must be true for any paricular one, so you pick w)
(Hint: describe w in terms of K or M)

there exist u, v, X, y, z such that w = uvxyz and Ivy| >0, and
vxy|< M, and
forall n=0, uv"xy"zisinL.

We need to pick w, then show that there are no values for uvxyz that satisfy all the above criteria. To do that, we just need to

focus on possible values for v and y, the pumpable parts. So we show that all possible picksfor v and y violate at least one of
thecriteria.

Write out asingle string, w (interms of K or M) Dividew into regions.

For each possibility for v and y (described in terms of the regions defined above), find some value n such that uv"xy"zisnot in L.
Almost always, the easiest values are 0 (pumping out) or 2 (pumping in). Your value for n may differ for different cases.

Lecture Notes 19 Languages That Are and Are Not Context Free 5

v y n why theresulting stringisnot in L

(4]
(2]
(3]
[4]
(5]
(6]
[7]
(8]
(9]
[10]

Convincethereader that thereareno other cases.
Q.E.D.

A Pumping Lemma Proof in Full Detail
Proof that L = {a'b"c" : n> 0} isnot context free.

Suppose L is context free. The context free pumping lemma appliesto L. Let M be the number from the pumping lemma.
Choosew = a"b"c™. Noww O L and jw|>M = K. From the pumping lemma, for all strings w, where [w| > K, there exist u, v, x,
y, z such that w = uvxyz and [vy| > 0, and [vxy| < M, and for all n> 0, uv"xy"zisin L. There are two main cases:
1. Either v or y contains two or more different types of symbols (“a’, “b” or “c”). In this case, uv®xy?z is not of the form
a*b*c* and hence uvxy?z L.
2. Neither v nor y contains two or more different types of symbols. In this case, vy may contain at most two types of
symbols. The string uvxy°z will decrease the count of one or two types of symbols, but not the third, so uv®xy°z OL
Cases 1 and 2 cover all the possibilities. Therefore, regardless of how w is partitioned, there is some uv"xy"z that isnot in L.
Contradiction. ThereforeL is not context free.

Note: the underlined parts of the above proof is“boilerplate” that can be reused. A complete proof should have this text or
something equivalent.

Context-Free Languages Over a Single-L etter Alphabet

Theorem: Any context-free language over a single-letter alphabet is regular.

Examples:

L ={d'b"

L' ={d'd}
={a")
={wO{a* : w|iseven}

L ={ww®:wO{a b}*}

L’ ={ww?:w O {a*}
={ww: w O {a}*}
={wO{a* : w|iseven}

L ={db™:n,m=0and n# m}

L’ ={d'a":n,m=0andn#m}

Proof: See Parikh's Theorem

Lecture Notes 19 Languages That Are and Are Not Context Free 6

Another Language That IsNot Context Free
L={d":nx1lisprime}
Two waysto prove that L is not context free:
1. Usethe pumping lemma:
Choose astring w = &' such that nis prime and n > K.
W = a8388808080800000858588.
u v x y z
Let vy =& and uxz = d. Thenr + kp must be prime for all values of k. This can't be true, as we argued to show that L was not
regular.

2. |z |=1. Soif L were context free, it would also be regular. But we know that it isnot. So it isnot context free either.

Using Pumping and Closure
L={wO{a b, c}*: whasan equa number of as, b's, and c's}

L is not context free.
Try pumping: Letw = ab*c®

Now what?

Using Inter section with a Regular L anguage to M ake Pumping Tractable
L={tt:tO{a b}*}

Let'stry pumping: |w|>K

t | t
u Y, X y z
What if u is ¢,
v is w,
X is g,
y is w, and
zZ is ¢

Then all pumping tellsusisthat t"t" isinL.

Lecture Notes 19 Languages That Are and Are Not Context Free

L ={tt:tO{a b}*}
What if we let w| > M, i.e. choose to pump the string d"ba"b:
Now v and y can't bet, since jvxy|< M:

t | t
u v X y z

Suppose v| = ly]. Now we have to show that repeating them makes the two copies of t different. But we can't.
L={tt:t0{a b}*}
But let'sconsider L' =L n a*b*a*b*
Thistime, we let jw| > 2M, and the number of both a@sand b'sinw >M:
1 2 3 4
aaasasaaaabbbbbbbbbbasasasaaaabbbbbbbbbb

t | t
u vV XV Z

Now we use pumping to show that L' is not context free.
First, notice that if either v or y contains both as and b's, then we immediately violate the rules for L' when we pump.
So now we know that v and y must each fall completely in one of the four marked regions.
L'={tt:tO{a b}*} n a*b*a*b*
jw| > 2M, and the number of both asand b'sin w >M:
1 2 3 4
aaasasaaaabbbbbbbbbbasasasaaaabbbbbbbbbb

t | t
u vV XV Z

Consider the combinations of (v, y):

(L.1)
(22)
(33
(4.4)
(1.2)
(23
(34)
(1.3
(24)
(1.4)

Lecture Notes 19 Languages That Are and Are Not Context Free

The Context-Free Languages Are Not Closed Under I ntersection
Proof: (by counterexample)
Consider L ={a'b"c™ n= 0}
L isnot context-free.

Let L, ={adb"'¢™ n,m=0} /*equal dsandb's
L,={a""c": n,m=0} /*equal b'sandc's

Both L, and L, are context-free.

ButL =L;n Ly

So, if the context-free languages were closed under intersection, L would have to be context-free. But it isn't.
The Context-Free Languages Are Not Closed Under Complementation

Proof: (by contradiction)

By definition:

Llﬂ L2:L1DL2

Since the context-free languages are closed under union, if they were also closed under complementation, they would necessarily
be closed under intersection. But we just showed that they are not. Thus they are not closed under complementation.

The Deter ministic Context-Free Languages Are Closed Under Complement
Proof:

Let L be alanguage such that L$ is accepted by the deterministic PDA M. We construct a deterministic PDA M' to accept (the
complement of L)$, just aswe did for FSMs:

Initialy, let M' =M.
M' is aready deterministic.
Make M' simple. Why?
Complete M' by adding a dead state, if necessary, and adding all required transitions into it, including:
e Transitionsthat are required to assure that for al input, stack combinations some transition can be followed.
» |f some state q has atransition on (g, €) and if it does not later lead to a state that does consume something then
make atransiton on (g, €) to the dead state.
Swap final and nonfinal states.
6. Noticethat M' isstill deterministic.

AWONPE

o

Lecture Notes 19 Languages That Are and Are Not Context Free 9

An Example of the Construction

L=ab" M acceptsL$ (and is deterministic):

a//a
9 b/al ‘

Set M =M'. Make M simple.
alalaa

alZlaz b/al .

s/s/Z b/al $/Z/
(IO O Om.©

A

$/z/
The Construction, Continued

Add dead state(s) and swap final and nonfinal states:

alalaa
alZlaz b/al
‘S/S/Z b/a/ @ $/z/ °

all, $lal, biz/

al,bll, $ll, elal, €2/
Issues: 1) Never having the machine die
2)-(L9) 2 (-L)$
3) Keeping the machine deterministic
Deter ministic vs. Nondeter ministic Context-Free Languages
Theorem: The class of deterministic context-free languagesis a proper subset of the class of context-free languages.
Proof: Consider L ={a'b™c®: mznorm#p} L iscontext free (we have shown a grammar for it).
But L isnot deterministic. If it were, then its complement L; would be deterministic context free, and thus certainly context free.
But then
L, =L, n ab*c* (aregular language)
would be context free. But
L, ={ab"c": n>0}, whichweknow is not context free.

Thus there exists at least one context-free language that is not deterministic context free.

Note that deterministic context-free languages are not closed under union, intersection, or difference.

Lecture Notes 19 Languages That Are and Are Not Context Free 10

Decision Procedures for CFLs & PDAs

Decision Proceduresfor CFLs

There are decision procedures for the following (G is a CFG):
» Deciding whether w O L(G).
e Deciding whether L(G) = 0.
» Deciding whether L(G) is finite/infinite.

Such decision procedures usually involve conversions to Chomsky Normal Form or Greibach Normal Form. Why?
Theorem: For any context free grammar G, there exists a number n such that:
1. If L(G) # O, then there existsaw O L(G) such that jw| < n.
2. If L(G)isinfinite, then there existsw O L(G) such that n< jw| < 2n.
There are not decision procedures for the following:
e Deciding whether L(G) = Z*.
» Deciding whether L(G;) = L(Gy).

If we could decide these problems, we could decide the halting problem. (More later.)

Decision Proceduresfor PDA’s

There are decision procedures for the following (M isa PDA):

» Deciding whether w O L(M).

» Deciding whether L(M) = .

e Deciding whether L(M) isfinite/infinite.
Convert M to its equivalent PDA and use the corresponding CFG decision procedure. Why avoid using PDA’s directly?
There are not decision procedures for the following:

» Deciding whether L(M) = Z*.

» Deciding whether L(M1) = L(M)).

If we could decide these problems, we could decide the halting problem. (More later.)

Lecture Notes 19 Languages That Are and Are Not Context Free

11

Regular Languages

e regular exprs.
e or
e regular grammars
* recognize
» =DFSAs
* recognize
* minimize FSAs

» closed under:
0 concatenation
00 union
O Kleene star
0 complement
O intersection
* pumping lemma
e deterministic = nondeterministic

Lecture Notes 19

Comparing Regular and Context-Free L anguages

Context-Free Languages

. context-free grammars

s pase
« =NDPDAs
e pase

e find deterministic grammars
» find efficient parsers
» closed under:

0 concatenation

0 union

0 Kleenestar

e intersection w/ reg. langs

* pumping lemma
e deterministic # nondeterministic

Languages and M achines

Recursively Enumerable
Languages
Recursive

Context-Fre€

Languages That Are and Are Not Context Free 12

Turing Machines

Read K & S4.1.
Do Homework 17.

Grammars, Recursively Enumer able L anguages, and Turing M achines

Recursively
»(Enumerable
Language

Unrestricted
Grammar

Turing
M achine

Turing Machines

Can we come up with anew kind of automaton that has two properties:
» powerful enough to describe all computable things
unlike FSMs and PDAs
» simple enough that we can reason formally about it
like FSMs and PDAs
unlike real computers
Turing M achines

M| % a a b b a M| M| a

T

At each step, the machine may:

e gotoanew state, and Finite State Control
e @ther
e write on the current square, or S, S .. g, o

* move left or right

A Formal Definition
A Turing machineisaquintuple (K, Z, §, s, H):
K isafinite set of states;
> isan alphabet, containing at least 1 and ¢, but not - or —;
sOK istheinitia state;
H 0O K isthe set of halting states;
o isafunction from:

(K-H) x ¥ to K x E0{-, <}
non-halting state x input symbol state X action (write or move)
such that

(a) if the input symbol is 9, the actionis -, and
(b) ¢ can never be written .

Lecture Notes 20 Turing Machines

Notes on the Definition

1. Theinput tapeisinfinite to theright (and full of Q), but has awall to the left. Some definitions allow infinite tape in both
directions, but it doesn't matter.

2. disafunction, not arelation. So thisisadefinition for deterministic Turing machines.
3. 0 must be defined for all state, input pairs unless the state is a halt state.
4. Turing machines do not necessarily halt (unlike FSM's). Why? To halt, they must enter a halt state. Otherwise they loop.
5. Turing machines generate output so they can actually compute functions.
A Simple Example

A Turing Machine Odd Parity Machine:

d O d 0 1 1 0 d d d
2=0,1,0,Q ?
S=
H=
o=

Formalizing the Operation

O a a b b a a a (1)
O a a a b b a a a 2

?

A configuration of a Turing machine
M = (K, Z, 9, s, H) isamember of

K x Oz* x EEZ-{Q))oe
state input up input after
to scanned scanned square
square

Theinput after the scanned square may be empty, but it may not end with ablank. We assume the entire tape to the right of the
input isfilled with blanks.

«y (9, Gaab, b)
2 (h ¢Qasbb, €)

(g, Vaabb)
(h, 0Qaabb) ahalting configuration

Lecture Notes 20 Turing Machines 2

Yields
(O, Wiagly) |-m (O, Wosblp), &y anda 0%, iff ObO>0O{ <, -}, 0(q:, &) = (gx, b) and either:

DbOZ, wy=w, u;=Uy,anda =b (rewrite without moving the head)

| Wy | & | u |

[o |9 | a [a [b [b | 0 [0 [0 | 0Qaabb
?

| Wp | & | U |

o | | a | a | a [b [0 [0 |O| 0Qaaab

(2) b= —, w; =w,a, and either
(@ u=aguy, ifayzQoru #¢,

|<> | O | a | a | a | b | Q | Q | Q | 0Qaaab
I Wa | & | T Uy I
|<> = | a | a | a b | Q | Q | Q | 0Qaaab
?
or (b)u,=¢,ifggy=0andu;=¢
| Wy | & |u1|
[o | [a [a |[a | b [0 [0 |OQ | ©¢Qaab
| Wy | & |U1|T
[o | [a [a [a | b |0 [Q |O | ¢Qamb

If we scan left off the first square of the blank region, then drop that square from the configuration.
Yields, Continued

(3) b=, Wo = W1ay, and either

(@) U = &y
| Wy | . Ui |
[o [0 | a [a | a b [0 [o [Q | 00«
| W, T 2 | W |
[o] | a [a | a b | o [o | o | (Qaab
?
or b)uy=uw,=canda =0
| W1 | (= |u1|
o |9 | a |a |a |b [0 [0 |0 | 0Qaaab
| Wo ? | & |u)
o | Q | a | a Ja [b |O [Q | QO | ¢Daad

?

If we scan right onto the first square of the blank region, then a new blank appears in the configuration.

Lecture Notes 20 Turing Machines

Yields, Continued
For any Turing machine M, let |-\,* be the reflexive, transitive closure of |-y.

Configuration C, yields configuration C, if
Ci v* C

A computation by M is a sequence of configurations Cy, Cy, ..., C, for some n = 0 such that
Colm Cilm Cobm -ov I Cin
We say that the computation is of length n or that it has n steps, and we write
C0 |'Mn Cn
A Context-Free Example

M takes a tape of asthen b's, possibly with more a's, and adds b's as required to make the number of b's equal the number of a's.

% a a a a b Q Q Q

?

K={0,1,2345,6,7,8, 9}
>=ab 0,912

H={9) 5=

S=
Q/-
al, 2/q
al -
@,)
EI/2
o

@—'M O,
8
o/ -

all

O

An Example Computation

|a|a|a b|EI|E||E|

(0, 0Qaaab) |-y
(1, 0Qaaab) |-y
(2, 0Q1a8b) |-y
(3, 00128b) |-y
(3, 001a8b) |-y
(3, 001aab) |-y
(4, 001a82) |-y

Lecture Notes 20 Turing Machines 4

Notes on Programming
The machine has a strong procedural feel.

It's very common to have state pairs, in which the first writes on the tape and the second move. Some definitions allow both
actions at once, and those machines will have fewer states.

There are common idioms, like scan left until you find a blank.
Even avery simple machine is a nuisance to write.

A Notation for Turing Machines
(1) Define some basic machines

e Symbol writing machines
Foreacha X - {0}, define M, written just a, = ({s, h}, Z, §, s, {h}),
foreachb O X - {0}, &(s, b) = (h, @)
(s, 0) = (s, ~)
Example:
awritesana

e Head moving machines
Foreacha{ —, -}, defineM,, written R(-)andL(<):
foreachb O X - {0}, &(s, b) = (h, @)
(s, 0) = (s ~)
Examples:
R moves one square to the right
aR writes an a and then moves one square to the right.

A Notation for Turing Machines, Cont'd

(2) The rules for combining machines: aswith FSMs
>%] a ' M,
M3

e Startinthe start state of M.

e Compute until M, reaches a halt state.

» Examine the tape and take the appropriate transition.

» Startinthe start state of the next machine, etc.

» Haltif any component reaches a halt state and has no place to go.

« |f any component fails to halt, then the entire machine may fail to halt.

Lecture Notes 20 Turing Machines

M, al elemsof > >M2 becomes M,

MM

M, al elemsof X

except a

eg., > xz0O

Lecture Notes 20

Shorthands

M, becomes M; ab l M,

M2

#’

MM,

becomes M?

N M, becomes M, x#a M,

=2

and x takes on the value of the current square

}Mz becomes M; x=ab 'Mz

and x takes on the value of the current square

M X?y | M,

if x =y then take the transition

if the current squareis not blank, go right and copy it.
Some Useful Machines
find the first blank square to the right of the current square
find the first blank square to the left of the current square

find the first nonblank square to the right of the current square

find the first nonblank sgquare to the left of the current square

Turing Machines

M or e Useful M achines
L, find the first occurrence of ato the left of the current square
Rap find the first occurrence of a or b to the right of the current square

Lap a ' M, find the first occurrence of a or b to the left of the current square, then go to M if the detected
character is a; go to M, if the detected character isb

M,
Lx=apb find the first occurrence of a or b to the left of the current square and set x to the value found
Lx=apRX find the first occurrence of a or b to the left of the current square, set x to the value found, move one
sguare to the right, and write x (a or b)
An Example
Input: oQw wO{1}*
Output: oaw?
Example; ¢ 0111000000000000a
o
>R, 1 | H#R HRHL
Q

#’1

O
I{_I_

A Shifting Machine S_

Input: acwd

Output: awl

Example: Q0abbal0000000000OAN0O
- I

>L, R x#Q ’DLXR

=

L

Lecture Notes 20 Turing Machines 7

Computing with Turing Machines

Read K & S4.2.
Do Homework 18.

Turing M achines as L anguage Recognizers

Convention: We will write the input on the tape as:
oQwQd , w contains no Qs
Theinitia configuration of M will then be:
(s, 0Qw)
A recognizing Turing machine M must have two halting states: y and n
Any configuration of M whose stateis:
y is an accepting configuration
nisarejecting configuration
Let 2, the input al phabet, be a subset of Z-{Q,0}
Then M decidesalanguage L [0 2y* iff for any string
w O Zp*it istrue that:
if w L then M acceptsw, and
if wL then M regjectsw.
A language L isrecursiveif thereisaTuring machine M that decidesit.

A Recognition Example
L={ab'c":n=0}

Example: 0Qaabbcc00000000

Example: ¢Qaacch00000000

Lecture Notes 21 Computing with Turing Machines

Anocther Recognition Example
L ={wew:wO{a b}*}

Example: 0QabbcabblQ

Example: 0Qacabbddd

(Y ?X) Ry=—s

b/?x
y #LD_/

Do Turing M achines Stop?

FSMs Always halt after n steps, where n is the length of the input. At that point, they either accept or reject.
PDAs Don't always halt, but there is an algorithm to convert any PDA into one that does halt.
Turing machines Can do one of three things:

(1) Halt and accept

(2) Halt and reject

(3) Not halt
And now there is no algorithm to determine whether a given machine always halts.

Computing Functions

LetZ, O -{0,Q} andletw O Zo*
Convention: We will writetheinput on thetapeas. ¢Qwd
Theinitia configuration of M will then be; (s, 0Qw)
Define M(w) =y iff:
* M haltsif started in the input configuration,
» thetape of M when it haltsis 0QyQ, and
c yUX"
Let f be any function from Z4* to >o*.

We say that M computesf if, for all w 0 Zg*, M(w) = f(w)

A function f isrecursiveif thereisa Turing machine M that computesit.

Lecture Notes 21 Computing with Turing Machines

Example of Computing a Function

f(w) = ww
Input: 0QwlA00d Output: 0QwwU
Define the copy machine C: oQwaaQ > oQwaw

Remember the S_ machine:

OQwwQ > OQww
- |
>L, R x#0Q | ULxR
<
L

Then the machine to computefisjust >CSL,.
Computing Numeric Functions
We say that a Turing machine M computes a function f from N¥ to N provided that
num(M (ng;n,;...nK)) = f(num(ny), ... num(ny))
Example: Succ(n)=n+1
We will represent ninbinary. SondJ 0 0 1{0,1}*

Input: 0QNAQ0Q0AA Output: 0Qn+14
0011110000 Output; ¢Q10000Q

Why Are We Working with Our Hands Tied Behind Our Backs?

Turing machines are more powerful than any of the other formalisms we have studied so far.

Turing machines are alot harder to work with than all the real computers we have available.

Why bother?

The very simplicity that makesit hard to program Turing machines makes it possible to reason formally about what they can do.
If we can, once, show that anything areal computer can do can be done (albeit clumsily) on a Turing machine, then we have a

way to reason about what real computers can do.

Lecture Notes 21 Computing with Turing Machines

Recursively Enumerable and Recursive Languages

Read K & S4.5.
Recursively Enumer able L anguages

Let 2, the input a phabet to a Turing machine M, be a subset of %, - {Q, ¢}
Let L O 5.

M semidecides L iff
for any string w [0 2¢*,

wiL= M halts on input w
wiL = M does not halt on input w
M(w) =1

L isrecursively enumerable iff there is a Turing machine that semidecidesit.
Examples of Recursively Enumerable L anguages

L={wO{a b}* :wcontainsat least onea}

1)
>R

Qb bbbbblddadad

4

L={wO{ab,(,)}* :wcontainsat least one set of balanced parentheses}

v 1o
E'ia) Pl
T
OQbbbbbb)aaodQ
—
{—

Recursively Enumerable Languagesthat Aren't Also Recursive

A Real Life Example:
L ={w O {friends} :w will answer the message you've just sent out}

Theoretical Examples

L ={Turing machines that halt on a blank input tape}
Theorems with valid proofs.

Lecture Notes 22 Recursively Enumerable and Recursive Languages

Why Are They Called Recursively Enumerable L anguages?
Enumerate means list.

We say that Turing machine M enumer ates the language L iff, for some fixed state g of M,
L ={w: (s 0Q) [v* (g, 0Qw)}

A language is Turing-enumer able iff there is a Turing machine that enumeratesiit.
Note that g is not a halting state. It merely signals that the current contents of the tape should be viewed as a member of L.
Recur sively Enumerable and Turing Enumerable

Theorem: A language isrecursively enumerableiff it is Turing-enumerable.

Proof that Turing-enumerableimplies RE: Let M be the Turing machine that enumerates L. We convert M to a machine M' that
semidecidesL:

1. Saveinputw.

2. Beginenumerating L. Each time an element of L is enumerated, compare it tow. If they match, accept.

=w? }—Pp halt

; W3, W, W1

The Other Way

Proof that RE implies Turing-enumerable;
If L O X* isarecursively enumerable language, then thereisa Turing machine M that semidecidesL.
A procedure to enumerate all elementsof L:
Enumerate all w O Z* lexicographically.

eg., € a b, aa ab, ba bb, ...
As each string w; is enumerated:
1. Start up acopy of M with w; asitsinput.
2. Execute one step of each M; initiated so far, excluding only those that have previously halted.
3. Whenever an M; halts, output w;.

e[1]

e[2] a [1]

e[3] a [2] b [1]

e[4] a [3] b [2] aa [1]

e[9] a [4] b [3] aa [2] ab [1]

€ [6] a [5] aa [3] ab [2] ba [1]

Lecture Notes 22 Recursively Enumerable and Recursive Languages 2

Every Recursive Languageis Recursively Enumerable
If L isrecursive, then there is a Turing machine that decidesit.
From M, we can build a new Turing machine M' that semidecides L:
1. Letnbethergect (and halt) state of M.

2. Thenaddto o'
((n, @), (n, @) foralad =

3 »@)
® ®

What about the other way around?
Not true. There are recursively enumerable languages that are not recursive.

/Da/a

The Recursive Languages Are Closed Under Complement
Proof: (by construction) If L isrecursive, then thereisa Turing machine M that decides L.

We construct amachine M' to decide L by taking M and swapping the roles of the two halting statesy and n.
M: M

¥ O >
0 O 0

This works because, by definition, M is
e deterministic
e complete

b 4

Arethe Recursively Enumerable L anguages Closed Under Complement?

M: M":

’Qﬁg

Lemma: There exists at least one language L that is recursively enumerable but not recursive.

Proof that M" doesn't exist: Suppose that the RE languages were closed under complement. Thenif L isRE, L would be RE. If

that were true, then L would also be recursive because we could construct M to decideit:

1. Let T, bethe Turing machine that semidecidesL.

2. Let T, be the Turing machine that semidecides L.

3. Givenastring w, fireup both T, and T, onw. Since any stringin 2* must bein either L or L, one of the two machines will
eventually halt. If it's T4, accept; if it's T, reject.

But we know that there is at least one RE language that is not recursive. Contradiction.

Lecture Notes 22 Recursively Enumerable and Recursive Languages 3

Recursive and RE Languages
Theorem: A languageis recursive iff both it and its complement are recursively enumerable.

Proof:

* LrecursiveimpliesL and -L are RE: Clearly L isRE. And, since the recursive languages are closed under complement,
=L isrecursive and thus also RE.

e Land-L areREimpliesL recursive: SupposelL issemidecided by M1 and - L is semidecided by M2. We construct M to
decide L by using two tapes and simultaneously executing M1 and M2. One (but not both) must eventually halt. If itsM1,
we accept; if it's M2 we regject.

L exicographic Enumeration

We say that M lexicographically enumerates L if M enumerates the elements of L in lexicographic order. A languagelL is
lexicographically Turing-enumerable iff there is a Turing machine that lexicographically enumeratesit.

Example: L ={ab"c"}

L exicographic enumeration:
Pr oof

Theorem: A languageis recursive iff it islexicographically Turing-enumerable.
Proof that recursive implies lexicographically Turing enumerable: Let M be a Turing machine that decidesL. Then M’

lexicographically generates the stringsin >* and tests each using M. It outputs those that are accepted by M. Thus M'
lexicographically enumerates L.

yes —1——» %,
no

Z*31 Z*21 Z*l —’ DL?

vV Vv

Proof, Continued
Proof that lexicographically Turing enumerable impliesrecursive: Let M be a Turing machine that |exicographically enumerates

L. Then, oninput w, M' startsup M and waits until either M generates w (so M' accepts), M generates a string that comes after w
(so M' rejects), or M halts (so M' rgjects). Thus M' decidesL.

L

=wW? ——» yes
> L3 Lo Ly
>SW?—1p Nno
M
nomoreLiS?———— 1 » no

Lecture Notes 22 Recursively Enumerable and Recursive Languages 4

Partially Recursive Functions

L anguages Functions
Tm aways halts recursive recursive
Tm hdtsif yes recursively ?
enumer able
{;\‘ K
domain range

Suppose we have a function that is not defined for all elements of its domain.
Example: f: N - N, f(n) =n/2

Partially Recursive Functions

ST

domain range

One solution: Redefine the domain to be exactly those elements for which f is defined:

) \
domain 7
range

But what if we don't know? What if the domain isnot arecursive set (but it is recursively enumerable)? Then we want to define
the domain as some larger, recursive set and say that the function is partially recursive. There exists a Turing machine that halts
if given an element of the domain but does not halt otherwise.

Lecture Notes 22 Recursively Enumerable and Recursive Languages 5

Language
Summary

IN

Semidecidable
Enumerable
Unrestricted grammar

Recursively
Enumerable

Decision procedure Recursive
Lexicicographically enumerable

Complement isrecursively enumer.

CF grammar Context Free
PDA

Closure

Regular expression
FSM
Closure

Lecture Notes 22 Recursively Enumerable and Recursive Languages

ouT

Diagonalization
Reduction

Pumping
Closure

Pumping
Closure

Turing Machine Extensions

Read K & S4.3.1, 4.4.
Do Homework 19.

Turing M achine Definitions

An alternative definition of a Turing machine:
(K, Z, T, 98, s H):

I" isafinite set of allowable tape symbols. One of theseisQ.
2 isasubset of I' not including 4, the input symbals.

o isafunction from:

KxT o Kx (T-{Q)x{, -}
state, tapesymbol, L or R
a a a b b a a a a

“

Example transition: ((s, a), (s, b, -))

Do these Differences M atter ?
Remember the goal:

Define adevicethat is:
» powerful enough to describe all computable things,
» simple enough that we can reason formally about it

Both definitions are simple enough to work with, although details may make specific arguments easier or harder.
But, do they differ in their power?
Answer: No.

Consider the differences:
« Oneway or two way infinite tape: we're about to show that we can simulate two way infinite with ours.
* Rewrite and move at the same time: just affects (linearly) the number of movesit takes to solve a problem.

Turing M achine Extensions

In fact, there are lots of extensions we can make to our basic Turing machine model. They may make it easier to write Turing
machine programs, but none of them increase the power of the Turing machine because:

We can show that every extended machine has an equivalent basic machine.

We can also place a bound on any change in the complexity of a solution when we go from an extended machine to a basic
machine.

Some possible extensions:

e Multiple tapes

* Two-way infinite tape

e Multiple read heads

e Twodimensiona “sheet” instead of atape
* Random access machine

* Nondeterministic machine

Lecture Notes 23 Turing Machine Extensions

Multiple Tapes

a a a b b a a a
a b a b b a a a
»
a a 1 2 2 1 a a
-~
The transition function for a k-tape Turing machine:
(K-H) , 2z, to (K, 2 0{, >}
122 122'['{*1—'}
2 vZeO0{ <, -})

Input: input as before on tape 1, others blank
Output: output as before on tape 1, others ignored

An Example of a Two Tape Machine
Copying a string

a| Q| a b b a a | AQ
+ »
|D|EI|EI|EI|EI|EI EIlEI
+
a| Q| a b b a a | AQ
+
| Q| a b b a a | Q
¢ <~
| Q| a b b a a | Q
+
| Q| a b b a a | Q
4+)

Lecture Notes 23 Turing Machine Extensions

Anocther Two Tape Example - Addition

lo [1 Jo [2] [1]1 [0 [a
+

aQ | (a | | ;7 o | a9 (a 1|14
+

o | o [o [o] o 1] 1[0 |a

y— >

a (1 (o | 1 | | | | a |49

y— ~

Adding Tapes Adds No Power

Theorem: Let M be ak-tape Turing machine for somek = 1. Then thereis astandard Turing machine M' where X (0 %', and such

that:

For any input string x, M on input x halts with output y on the first tape iff M' on input x halts at the same halting state and
with the same output on its tape.
If, oninput X, M halts after t steps, then M" halts after a number of steps which is O(t C{|x| + t)).

Proof: By construction

O a a b a a a
¢ 0 0 1 0 0 0 0 a a
O a b b a b a
0 1 0 0 0 0 0
Alphabet (=) of M'= 2 O (= x {0, 1})
eg., ¢,(,0,90,0,(@Q,0,a1
The Operation of M'
O Q a b a Q Q
O 0 0 1 0 0 0 0 Q Q
0 a b b a b a
0 1 0 0 0 0 0
1 Set up the multitrack tape:
1) Shift input one square to right, then set up each square appropriately.
2. Simulate the computation of M until (if) M would halt: (start each step to the right of the divided tape)
1) Scan left and store in the state the k-tuple of characters under the read heads. Move back right.
2) Scan left and update each track as required by the transitions of M. Move back right.
i) If necessary, subdivide a new sguare into tracks.
3. When M would halt, reformat the tape to throw away all but track 1, position the head correctly, then go to M's halt
State.
How Many Steps DoesM' Take?
Let: X be the input string, and
t be the number of stepsit takes M to execute.
Step 1 (initialization) O([x)
Step 2 (computation)
Number of passes=t
Work at each pass: 2.1 =2 (length of tape)
=2[x[+2+1)
22=20x|+2+1)
Total = O(t ({(|x| +1))
Step 3 (clean up) O(length of tape)

Total = O(t x| +1))

Lecture Notes 23 Turing Machine Extensions 3

Two-Way Infinite Tape
Our current definition:

o lalblcld o la
Proposed definition: +
o [a Jg [f e lalolf]ec|dal]a]
o +
Simulation:
Track 1 |<>|a|b|c|d|EIIEI

-

Track 2 | o [e | ¢+ | ¢ | o] o [

Simulating a PDA
The components of a PDA:
Finite state controller
Input tape
Stack
The simulation:
Finite state controller:

Input tape:
Stack:
Track 1 I O | a I a | a | b | b I a
(Input) +
Trackz\ | o | o] a|] a | o] a |o
-

Corresponding to

Simulating a Turing Machine with a PDA with Two Stacks

olafolalaf#fafalbla] | | | [[|

n

< | [T|o|w
L [T | | | &

Lecture Notes 23 Turing Machine Extensions

Random Access Turing M achines

A random access Turing machine has:
» afixed number of registers
« afinitelength program, composed of instructions with operators such as read, write, load, store, add, sub, jJump
* atape
e aprogram counter
Theorem: Standard Turing machines and random access Turing machines compute the same things. Furthermore, the number of
steps it takes a standard machine is bounded by a polynomial in the number of stepsit takes a random access machine.

Nondeter ministic Turing Machines

A nondeter ministic Turing machine is a quintuple (K,Z,A s H)
where K, Z, s, and H are as for standard Turing machines, and A isasubset of
(K-H)xX)x(Kx(ZO{~, -}))

0Qabab
0Qabab O0Qabab
0Qabab OUbbab

What does it mean for a nondeterministic Turing machine to compute something?
* Semidecides - at |east one halts.
* Decides - ?
« Computes - ?
Nondeter ministic Semideciding

Let M = (K, Z, A, s, H) be anondeterministic Turing machine. We say that M accepts an input
w O (Z - {0, Q})* iff
(s, 0Qw) yields aleast one accepting configuration.

We say that M semidecides alanguage
L O(Z-{0,Q})* iff
foralw O (Z-{0,Q})*:
w O L iff
(s, 0Qw) yields aleast one halting configuration.

An Example
L={wO{a b,c,d}* : therearetwo of at |east one letter}
_|d—>
a
0/ - al -
i 0) Q/- | 1 b/ -
v
c/ -
d/ -

Lecture Notes 23 Turing Machine Extensions 5

Nondeter ministic Deciding and Computing
M decides alanguage L if, for all w O (Z - {0, Q})* :
1. all of M's computations on w halt, and
2. w OL iff at least one of M's computations accepts.
M computesafunction f if, for all w O (Z - {0, Q})* :
1. all of M's computations halt, and
2. all of M's computations result in f(w)
Note that all of M's computations halt iff:
Thereisanatural number N, depending on M and w, such that thereis no configuration C satisfying
(s, 0Qw) |-u" C.
An Example of Nondeter ministic Deciding
L ={w O{0, 1}* : wisthe binary encoding of a composite number}

M decides L by doing the following on input w:

1. Nondeterministically choose two binary numbers 1 < p, g, where |p| and |g| < |w|, and write them on the tape, after w,
Separated by ;.

04d110011;111;1111004
2. Multiply p and g and put the answer, A, on the tape, in place of p and g.
04d110011;101111100Q
3. CompareA andw. If equal,gotoy. Elsegoton.
Equivalence of Deterministic and Nondeter ministic Turing M achines

Theorem: If a nondeterministic Turing machine M semidecides or decides alanguage, or computes a function, then thereisa
standard Turing machine M' semideciding or deciding the same language or computing the same function.

Note that while nondeterminism doesn’t change the computational power of a Turing Machine, it can exponentially increase its
speed!

Proof: (by construction)
For semideciding: We build M', which runs through all possible computations of M. If one of them halts, M' halts

Recall the way we did thisfor FSMs: simulate being in a combination of states.
Will thiswork here?

What about: Try path 1. If it accepts, accept. Else
Try path 2. If it accepts, accept. Else

Lecture Notes 23 Turing Machine Extensions

The Construction

At any point in the operation of a nondeterministic machine M, the maximum number of branchesis

r= Kl O (z+2
states actions
So imagine atable:
1 2 3 r

(ql,Ul) (p-,U-) (p'vo') (p_!U_) (p'vo') (p_!U_)
(91,02) (p-,0-) (p-,0-) (p-,0-) (p-,0-) (p-,0-)
(ql,0n)
(g2,01)
(9K],on)

Note that if, in some configuration, there are not r different legal things to do, then some of the entries on that row will repeat.

The Construction, Continued
Mg: (supposer = 6)

Tape 1: I nput

Tape 2: 13265436

Mg chooses its 1st move from column 1
Mg chooses its 2nd move from column 3
Mg chooses its 3rd move from column 2

until there are no more numbers on Tape 2

My either:
e discoversthat M would accept, or
e comesto the end of Tape 2.

In either casg, it halts.
The Construction, Continued
M' (the machine that simulates M):

Tape 1: Input
Tape 2: Copy of Input
Mg
Tape 3: 13265436
Steps of M*:
write g on Tape 3
until My accepts do
(2) copy Input from Tape 1 to Tape 2
(2) run My
(3) if My accepts, exit
(4) otherwise, generate lexicographically next string on Tape 3.
Pass 1 2 3 7 8 9
Tape3 € 1 2 I 6 11 12 11l 2635
Lecture Notes 23 Turing Machine Extensions

Nondeter ministic Algorithms

Other Turing M achine Extensions

Multiple heads (on one tape)
Emulation strategy: Use tracks to keep track of tape heads. (See book)

Multiple tapes, multiple heads
Emulation strategy: Use tracks to keep track of tapes and tape heads.

Two-dimensional semi-infinite “tape’
Emulation strategy: Use diagonal enumeration of two-dimensional grid. Use second tape to help you keep track of
where the tape head is. (See book)
Two-dimensional infinite “tape” (really a sheet)
Emulation strategy: Use modified diagonal enumeration as with the semi-infinite case.
What About Turing M achine Restrictions?
Can we make Turing machines even more limited and still get all the power?
Example:
We alow atape aphabet of arbitrary size. What happensif we limit it to:
* Onecharacter?

* Two characters?
e Three characters?

Lecture Notes 23 Turing Machine Extensions

Problem Encoding, TM Encoding, and the Universal TM

ReadK & S5.1& 5.2.
Encoding a Problem asa L anguage
A Turing Machines deciding alanguage is analogous to the TM solving adecision problem.

Problem: |sthe number n prime?
Instance of the problem: Isthe number 9 prime?
Encoding of the problem, (n): nasabinary number. Example: 1001

Problem: Isan undirected graph G connected?
Instance of the problem: Isthe following graph connected?

I—2—3

NN

4 5

Encoding of the problem, (G):
1) |V|asabinary number
2) Alist of edges represented by pairs of binary numbers being the vertex numbers that the edge connects
3) All such binary numbers are separated by “/”.
Example: 101/1/10/10/11/1/100/10/101

Problem View vs. Language View
Problem View: It isunsolvable whether a Turing Machine halts on agiven input. Thisis called the Halting Problem.

Language View: Let H ={(M, w) : TM M halts on input string w}
H isrecursively enumerable but not recursive.

The Universal Turing Machine
Problem: All our machines so far are hardwired.
Question: Does it make sense to talk about a programmable Turing machine that accepts as input
program input string

executes the program, and outputs

output string
Yes, it's called the Universal Turing Machine.
Notice that the Universal Turing machine semidecidesH = {(M, w) : TM M halts oninput string w} = L(U).
To define the Universal Turing Machine U we need to do two things:
1. Define an encoding operation for Turing machines.
2. Describe the operation of U given an input tape containing two inputs:

e encoded Turing machine M,
* encoded input string to be givento M.

Lecture Notes 24 Problem Encoding, Turing Machine Encoding, and the Universal Turing Machine

Encoding a Turing Machine M

We need to describe M = (K, Z, 9, s, H) asastring. To do thiswe must:
1. Encoded

2. Specify s.

3. Specify H (and y and n, if applicable)

1. To encode &, we need to:
1. Encode the states
2. Encode the tape a phabet
3. Specify thetransitions

1.1 Encode the states as
gs :s0{0,1}" and
|s|=iand
i isthe smallest integer such that 2' > |K|

Example: 9 states i=4
s = 0000,
remaining states: q0001, 0010, 0011,
0100, 0101, @0110, q0111, 1000

Encoding a Turing Machine M, Continued

1.2 Encode the tape al phabet as
as :sO{0, 1} and
Isl=] and |
j isthe smallest integer such that 2 > |Z] + 2 (the+ 2 dlowsfor — and -)
Example 2 ={0,0,a, b} j=3
= a000
= ao01
<= aolo
- = a011l
a= al100
b= al101

Encoding a Turing Machine M, Continued
1.3 Specify transitionsas (state, input, state, output)
Example: (000,a000,011,a000)

2. Specify sas q0'
3. Specify H:

+ Stateswith no transitions out arein H.

* If M decides alanguage, then H = {y, n}, and we will adopt the convention that y is the lexicographically smaller of

the two states.
y =q010 n=g01l1
Encoding Input Strings

We encode input strings to a machine M using the same character encoding we use for M.
For example, suppose that we are using the following encoding for symbolsin M:

symbol representation
a a000
O a001
- a010
- a0ll
a a100

Then we would represent the string s = 0aala as "s' =(s) =a001a100a100a000a100

Lecture Notes 24 Problem Encoding, Turing Machine Encoding, and the Universal Turing Machine 2

An Encoding Example
Consider M = ({s, q, h}, {Q, ¢,a}, 8, s, {h}), where 6 =

state symbol 0 state/symbol representation

S a (9.9 s o0
S Q (h, Q) q qo1
s 0 (s,) h qll
q a (s,@ Q a000
q Q (s) 0 a001
q 0 (g -) < 2010

- a0ll

a al00

The representation of M, denoted, "M", (M), or sometimes p(M) =
(900,a100,q01,a000), (q00,a000,g11,a000), (q00,a001,q00,a011),
(g01,a100,q00,a100), (q01,a000,000,a011), (g01,a001,q01,a011)

Another Win of Encoding

One big win of defining away to encode any Turing machine M:
» It will make senseto talk about operations on programs (Turing machines). In other words, we can talk about some
Turing machine T that takes another Turing machine (say M) asinput and transforms it into a different machine
(say M) that performs some different, but possibly related task.

Example of atransforming TM T:
I nput: amachine M, that reads its input tape and performs some operation P on it.
Output: amachine M, that performs P on an empty input tape:

L, R M,

The Universal Turing Machine
The specification for U:
u'M" "w") ="M(w)"

M M ['w
1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 Q
0 Q Q Q 0 Q 0
Q Q 0 Q Q Q oo
0 0 0 0 0 0 0
"0 o | w w | QO Q
1 0 0 0 0 0 0
0 "M M" Q 0 0 0 Q
1 0 0 0 0 0 0
q 0 0 0 Q Q Q
1 Q Q Q Q Q Q

Initialization of U:
1. Copy "M" onto tape 2
2. Insert"0O" at the left edge of tape 1, then shift w over.
3. Look at"M", figure out what i is, and write the encoding of state s on tape 3.

Lecture Notes 24 Problem Encoding, Turing Machine Encoding, and the Universal Turing Machine 3

The Operation of U

a 0 0 1 a 0 0
1 0 0 0 0 0 0
O "M M" a a a a Q
1 0 0 0 0 0 0
o} 0 0 0 a a a
1 a a a a a a

Simulate the steps of M:

1. Start with the heads:
tape 1: the a of the character being scanned,
tape 2: far left
tape 3: far left

2. Simulate one step:
1. Scan tape 2 for a quadrupl e that matches current state, input pair.

2. Perform the associated action, by changing tapes 1 and 3. If necessary, extend the tape.
3. If no quadruple found, halt. Else go back to 2.

An Example

Tape 1. a001a000a100a100a000a100
O QO a a Q4 a

Tape 2: (q00,a000,g11,a000), (q00,a001,0q00,a011),
(900,a100,q01,a000), (q01,a000,g00,a011),
(g01,a001,q01,a011), (q01,a100,000,a100)

Tape 3. 01
+

Result of simulating the next step:

Tape 1. a001a000a100a100a000a100
O O a a QO a

Tape 3: qO0

+

If A Universal Machineis Such a Good ldea ...
Could we define a Universal Finite State Machine?

Such a FSM would accept the language
L={"F'"w": Fisafinite state machine, and w OJ L(F) }

Lecture Notes 24 Problem Encoding, Turing Machine Encoding, and the Universal Turing Machine

Grammars and Turing Machines

Do Homework 20.

Grammars, Recursively Enumerable Languages, and Turing Machines

Recursively
Enumerable
Language

Unrestricted
Grammar

Turing
M achine

Unrestricted Grammars

An unrestricted, or Type 0, or phrase structure grammar G is a quadruple

(V, 2, R, S), where

V isan alphabet,
> (the set of terminals) is a subset of V,
R (the set of rules) is afinite subset of
o (V* (V-2) V*) X V*,
context N context - result
S (the start symbol) isan element of V - 2.

We define derivations just as we did for context-free grammars.
The language generated by G is

{wOZx*:S=c* w}

There is no notion of a derivation tree or rightmost/Ieftmost derivation for unrestricted grammars.

Unrestricted Grammars

Example: L =ab"c", n>0

S - aBSc
S - aBc
Ba - aB
Bc - bc
Bb - bb
Another Example

L={w0O{a b, c}": number of as, b'sand c'sis the same}

S - ABCS CA - AC
S -~ ABC CB - BC
AB - BA A-a
BC - CB B-b
AC - CA C-c
BA - AB

Lecture Notes 25 Grammars and Turing Machines

A Strong Procedural Feel
Unrestricted grammars have a procedural feel that is absent from restricted grammars.

Derivations often proceed in phases. We make sure that the phases work properly by using nonterminals as flags that we'rein a
particular phase.

It's very common to have two main phases:

* Generate the right number of the various symbols.

e Movethem around to get them in the right order.

No surprise: unrestricted grammars are general computing devices.

Equivalence of Unrestricted Grammarsand Turing M achines

Theorem: A language is generated by an unrestricted grammar if and only if it isrecursively enumerable (i.e., it is semidecided
by some Turing machine M).

Proof:
Only if (grammar — TM): by construction of a nondeterministic Turing machine.

If (TM - grammar): by construction of a grammar that mimics backward computations of M.
Proof that Grammar — Turing Machine
Given agrammar G, produce a Turing machine M that semidecides L(G).

M will be nondeterministic and will use two tapes:

olc|o|e
Flo g
ol|ln|o|w
o|H|o|T
olo |o|w
ol|o|o|g
o|0|o|Db

For each nondeterministic "incarnation":
e Tapel holdstheinput.
» Tape 2 holds the current state of a proposed derivation.

At each step, M nondeterministically chooses aruleto try to apply and a position on tape 2 to start looking for the left hand side

of therule. Or it chooses to check whether tape 2 equalstape 1. If any such machine succeeds, we accept. Otherwise, we keep
looking.

Lecture Notes 25 Grammars and Turing Machines 2

Proof that Turing Machine - Grammar

Suppose that M semidecides alanguage L (it halts when fed stringsin L and loops otherwise). Then we can build M' that haltsin
the configuration (h, 0Q).

We will define G so that it simulates M backwards.
We will represent the configuration (g, Ouaw) as

>uagw<

M

goes from
O a a b b a a a a
O a a a a a a a a

Then, if w O L, we require that our grammar produce a derivation of the form
S=¢ >0h< (producesfina state of M")

=s* >0abg< (some intermediate state of M")

=s* >Qsw< (theinitial state of M")

= W< (viaa specid ruleto clean up >Qs)
=c W (viaaspecia ruleto clean up <)
TheRulesof G
S - >0h< (the halting configuration)
>0s - € (clean-up rules to be applied at the end)
< 5 8
Rules that correspond to &:
If &(a, &) = (p, b) : bp - aq
If &(g, @ =(p, »): abp-agp ObOZX
alp< - ag<
If (g, d=(p,), az0 pa - aq
1f &(q, Q) =(p, <) pab - Qgb ObOX
p< - dg<

Lecture Notes 25 Grammars and Turing Machines 3

A REALLY Simple Example

M'= (K, {a}, o, s, {h}), where
o={ ((s Q). (@ ~)). 1
((qr a-)! (qv _'))l 2
((qr D)! (t! ‘_))l 3
((t,a), (p,Q)), 4
((t,), (h,), 5
((pr D)! (t! ‘_)) 6
L=a
S - >0h< 3 taQ - Qg4
>Us - € tda - Uga
<5 € t< - Ug<
4 Qp - at
(1) Qdg- A4 (5) Qh - Qt
Qaq - Qsa (6) Q- Qpd
Udg< - Us< tQa - Upa
2 alq - ag t< - Qp<
aq - aga
alg< - ag<
Working It Out
S - >0h< 1 3 tQQ - QoA 10
>0s - € 2 tda - Uga 11
<€ 3 t< - Ug< 12
(4 Up - at 13
(1) Qdg- A4 4 (5) Qh - Qt 14
Oag - Qsa 5 (6) taa - Qpa 15
QQg< - As< 6 t0a - Qpa 16
(2 alq - ag 7 t< - Qp< 17
aq - aga 8
ado< - ag< 9
>0saa< 1 S = >0h< 1
>Qaga< 2 = >Ui< 14
>Uaag< 2 = >U0p< 17
>Qaalg< 3 = >Uat< 13
>Qaat< 4 = >0adp< 17
>0 p< 6 = >Laat< 13
>Qat< 4 = >Qaaldg< 12
>00p< 6 = >Uaag< 9
>0t< 5 = >0aga< 8
>0h< = >0saa< 5
= aa< 2
= aa 3
Lecture Notes 25 Grammars and Turing Machines

An Alternative Proof
An dternative isto build agrammar G that simulates the forward operation of a Turing machine M. It uses alternating symbols

to represent two interleaved tapes. One tape remembers the starting string, the other “working” tape simulates the run of the
machine.

Thefirst (generate) part of G:
Creates all strings over >* of the form
w=000UQsaayawazaUl...

The second (test) part of G simulates the execution of M on a particular string w. An example of a partially derived string:
¢00d0alb2cch4Q3a3

Examples of rules:
bbQ4 - b4Q4 (rewritebas4)
b4Q3 - Q3b4 (moveleft)

Thethird (cleanup) part of G erasesthejunk if M ever reaches h.

Examplerule:
#hal - a#h (sweep# hto theright erasing the working “tape”)

Computing with Grammars
We say that G computesf if, for all w, v X *,
SWS =c* v iff v =1f(w)
Example:
S1S =c* 11
S11S =6 111 f(x) = succ(x)
A function f is called grammatically computable iff there is agrammar G that computesit.

Theorem: A function f isrecursiveiff it is grammatically computable.
In other words, if a Turing machine can do it, so can agrammar.

Example of Computing with a Grammar
f(x) = 2x, where x is an integer represented in unary
G=({S 1},{1},R,S), whereR =
Sl - 11S
SS- ¢
Example:

Input: S111S

Output:

Lecture Notes 25 Grammars and Turing Machines 5

More on Functions: Why Have We Been Using Recursive as a Synonym for Computable?
Primitive Recursive Functions

Define a set of basic functions:
e zerog(ng, Ny, ...NY) =0
o identity; (N, My, ... MY =1y
e successor(n)=n+1
Combining functions:
» Composition of g with hy, hy, ... h¢is
g(ha(), ho(), ... hi()
e Primitiverecursion of f intermsof g and h:
f(ng,No,...Nk, 0) = g(Ng,Na,...1NK)
f(ny,Ny,...Nk,M+1) = h(ng,Ny,...N, M, f(Nyg, Ny,...NK,M))

Example: plus(n, 0) =n
plus(n, m+1) = succ(plus(n, m))

Primitive Recursive Functions and Computability

Trivialy true; al primitive recursive functions are Turing computable.
What about the other way: Not all Turing computable functions are primitive recursive.

Proof:

Lexicographically enumerate the unary primitive recursive functions, fo, fy, o, 3,

Define g(n) = f,(n) + 1.

Gisclearly computable, but it isnot on thelist. Supposeit were f,, for somem. Then
fm(m) = fi(m) + 1, which is absurd.

0 1 2 3 4
fo

fy

fa

fa 27

fa

Suppose gisfs. Theng(3) =27 + 1 =28. Contradiction.
Functionsthat Aren't Primitive Recursive

Example: Ackermann's function: A, y)=y+1
Ax+1,0)=A(x1)
Ax+1Ly+1)=AX AX+1Y))

0 1 2 3

0 1 2 3 4 5

1 2 3 4 5 6

2 3 5 7 9 11

3 5 13 29 61 125

4 13 65533 2203«

27 -3 ¢ 22 -3 %

* 19,729 digits 10*" seconds since big bang
10 digits 10% protons and neutrons
% 10" digits 102 light seconds = width

of proton or neutron
Thus writing digits at the speed of light on all protons and neutronsin the universe (al lined up) starting at the big bang would
have produced 10'’ digits.

Lecture Notes 25 Grammars and Turing Machines

Recursive Functions

A functionis p-recursiveif it can be obtained from the basic functions using the operations of:
e Composition,

* Recursive definition, and

* Minimalization of minimalizable functions:

The minimalization of g (of k + 1 arguments) is afunction f of k arguments defined as:
f(ng,ny,...nK) = theleast m such at g(ng,ny,. .. Nk,M)=1, if such an m exists,
0 otherwise
A function g is minimalizable iff for every ny,n,,...ny, there isan m such that g(ny,ny, ... N, M)=1.
Theorem: A functionis p-recursiveiff it isrecursive (i.e., computable by a Turing machine).
Partial Recursive Functions
Consider the following function f:
f(n) = 1if TM(n) halts on ablank tape
0 otherwise

The domain of f isthe natural numbers. Isf recursive?

domain range

Theorem: There are uncountably many partialy recursive functions (but only countably many Turing machines).

Functions and M achines

Partial Recursive
Functions

Recursive
Functions

Primitive Recursive
Functions

Turing Machines

Lecture Notes 25 Grammars and Turing Machines

Languages and M achines

Recursively Enumerable
Languages

Recursive
Languages

Context-Free
Languages

Deterministic

Context-Free
Languages

NDPDAs

Turing Machines

IsThere Anything In Between CFGs and Unrestricted Grammar s?

Answer: yes, various things have been proposed.
Context-Sensitive Grammar s and L anguages:
A grammar G is context sensitiveif all productions are of the form

X -y

and [x| < ly|
In other words, there are no length-reducing rules.
A language is context senditive if there exists a context-sensitive grammar for it.
Examples:

L ={a%"c",n>0}
L={wO{a b,c}" : number of as, b'sand c'sis the same}

Lecture Notes 25 Grammars and Turing Machines

Context-Sensitive L anguages are Recursive

Thebasicidea: Todecideif astringw isinL, start generating strings systematically, shortest first. If you generate w, accept. If
you get to strings that are longer than w, reject.

Linear Bounded Automata

A linear bounded automaton is a nondeterministic Turing machine the length of whose tape is bounded by some fixed constant k
times the length of the input.

Example: L={db"c¢":n=0}

0Qaabbcc10000000a0a

(¥ e (3
> a }'a’ R h }b’ R—e) C L,

ca ,c&/
Q,ab'.a
n

Context-Sensitive L anguages and Linear Bounded Automata

Theorem: The set of context-sensitive languages is exactly the set of languages that can be accepted by linear bounded automata.

Proof: (sketch) We can construct a linear-bounded automaton B for any context-sensitive language L defined by some grammar
G. We build amachine B with atwo track tape. Oninput w, B keepsw on thefirst tape. On the second tape, it
nondeterministically constructs all derivations of G. The key isthat as soon as any derivation becomes longer than |w| we stop,
since we know it can never get any shorter and thus match w. Thereis also a proof that from any |ba we can construct a context-
sensitive grammar, analogous to the one we used for Turing machines and unrestricted grammars.

Theorem: There exist recursive languages that are not context sensitive.

Lecture Notes 25 Grammars and Turing Machines 9

Languages and M achines

Recursively Enumerable
Languages

Recursive
Languages

Context-Sensitive
Languages

Context-Free
Languages

Deterministic

Context-Free
Languages

NDPDAs

Linear Bounded Automata

Turing Machines

Lecture Notes 25 Grammars and Turing Machines

10

Lecture Notes 25

The Chomsky Hierarchy

Recursively Enumerable
Languages

Context-Sensitive
Languages

Context-Free
Languages

Regular
(Type?3)
Languages
FSMs

TypeO [Typel [Type2

Linear Bounded Automata

Turing Machines

Grammars and Turing Machines

11

Undecidabilty

Read K & S5.1,5.3, & 5.4.
Read Supplementary Materials. Recursively Enumerable Languages, Turing Machines, and Decidability.
Do Homeworks 21 & 22.
Church'sThesis
(Church-Turing Thesis)

An algorithm isaformal procedure that halts.
The Thesis: Anything that can be computed by any algorithm can be computed by a Turing machine.
Another way to stateit: All "reasonable" formal models of computation are equivalent to the Turing machine.

Thisisn't aformal statement, so we can't proveit. But many different computational models have been proposed and they all turn
out to be equivalent.

Examples:

unrestricted grammars
lambda calculus
cellular automata
DNA computing
guantum computing (?)

The Unsolvability of the Halting Problem

Suppose we could implement the decision procedure
HALTS(M, x)
M: string representing a Turing Machine
X: string representing the input for M
If M(x) haltsthen True

else False
Then we could define
TROUBLE(x)
X: string
If HALTS(x, x) then loop forever
else halt

So now what happensif we invoke TROUBLE(“TROUBLE"), which invokes HALTS(* TROUBLE”, “TROUBLE")

If HALTS saysthat TROUBLE halts on itself then TROUBLE loops. |F HALTS saysthat TROUBLE loops, then TROUBLE
halts. Either way, we reach a contradiction, so HALTS(M, x) cannot be made into a decision procedure.

Lecture Notes 26 Undecidability 1

Another View

The Praoblem View: The halting problem is undecidable.
TheLanguage View: Let H =

{"M""w" : TM M halts on input string w}
H isrecursively enumerable but not recursive.
Why?
H isrecursively enumerable because it can be semidecided by U, the Universal Turing Machine.
But H cannot berecursive. If it were, then it would be decided by some TM MH. But MH("M" "w") would have to be:

If M isnot asyntactically valid TM, then False.

else HALTS("M" "w")
But we know cannot that HALTS cannot exist.
If H were Recursive
H={"M""w":TM M halts on input string w}
Theorem: If H were also recursive, then every recursively enumerable language would be recursive.
Proof: Let L be any RE language. Since L isRE, thereexistsaTM M that semidecidesit.
Suppose H isrecursive and thusis decided by some TM O (oracle).
We can buildaTM M' from M that decidesL:
1. M'transformsitsinput tape from 0QwQ to 0Q"M""w"Q.
2. M'invokes O on itstape and returns whatever answer O returns.
So, if H were recursive, al RE languages would be. But it isn't.
Undecidable Problems, Languagesthat Are Not Recursive, and Partial Functions

The Praoblem View: The halting problem is undecidable.
ThelLanguage View: LetH =

{"M""w" : TM M halts on input string w}

H isrecursively enumerable but not recursive.

The Functional View: Letf (w)=M(w)
fisapartia function on Z*

"M"w! pal I's

Lecture Notes 26 Undecidability

Other Undecidable Problems About Turing Machines
* GivenaTuring machine M, does M halt on the empty tape?
e GivenaTuring machine M, isthere any string on which M halts?
* GivenaTuring machine M, does M halt on every input string?

e Given two Turing machines M; and M, do they halt on the same input strings?
* GivenaTuring machine M, isthe language that M semidecidesregular? Isit context-free? Isit recursive?

Post Correspondence Problem
Consider two lists of strings over some alphabet . The lists must be finite and of equal length.

A =Xq, Xo, X3, ...y Xn
B=yu,¥2V¥3 ...i¥n

Question: Does there exist some finite sequence of integers that can be viewed as indexes of A and B such that, when elements of
A are selected as specified and concatenated together, we get the same string we get when elements of B are selected also as
specified?

For example, if we assert that 1, 3, 4 is such a sequence, we're asserting that X;XsX4 = Y1YaYa

Any problem of thisform is an instance of the Post Correspondence Problem.

I's the Post Correspondence Problem decidable?

Post Correspondence Problem Examples

i A B

1 1 111
2 10111 10
3 10 0

i A B

1 10 101
2 011 11
3 101 011

Some L anguages Aren't Even Recursively Enumer able

A pragmatically non RE language: Li={ (i, j) : i, j areintegers where the low order five digits of i are a street address number
and j isthe number of houses with that number on which it rained on November 13, 1946 }

An analytically non RE language: L,={x : x ="M" of a Turing machine M and M("M") does not halt}
Why isn't L, RE? Supposeit were. Then therewould beaTM M* that semidecidesL,. IS"M*" inL,?
e Ifitis, then M*("M*") halts (by the definition of M* as a semideciding machine for L,)
* But, by the definition of L,, if "M*" O L,, then M*("M*") does not halt.
Contradiction. So L, isnot RE.

Another Non RE Language
H

Why not?

Lecture Notes 26 Undecidability 3

Reduction
Let L4, L, 0 2* belanguages. A reduction fromL;toL,isarecursivefunctiont: * — 3* such that
x O Ly iff t(x) O L.
Example:
L;={ab:ab0ON:b=a+1}
U T = Succ
U a, bbecomes Succ(a), b
L,={ab:ab0ON:a=hb}
If thereisa Turing machine M, to decide L,, then | can build a Turing machine M to decide L ;:
1. Taketheinput and apply Succ to the first number.
2. Invoke M, on the result.
3. Return whatever answer M, returns.

Reductions and Recursive L anguages

Theorem: If thereisareduction fromL,to L, and L, isrecursive, then L, isrecursive.

X
Mg, xOL?
y=, M Yes), YES,,
Tt YOL? s ol

Theorem: If thereisareduction from L, to L, and L, isnot recursive, then L, is not recursive.

Reductions and RE L anguages
Theorem: If thereisareductionfromL;toL,andL,isRE, thenL;isRE.

X

x OL,?

= M2
?

halt, |halt
|l |4l

Theorem: If thereisareductionfromL,toL,and L, isnot RE, then L, isnot RE.

Lecture Notes 26 Undecidability

Can it be Decided if M Halts on the Empty Tape?

Thisisequivalent to, "Isthe language L, = {"M" : Turing machine M halts on the empty tape} recursive?"

L, =H= {s="M""w": Turing machine M halts oninput string w}
U T
(?My) L,= {s="M": Turing machine M halts on the empty tape}

Let T be the function that, from "M" and "w", constructs "M*", which operates as follows on an empty input tape:
1. Writew on the tape.
2. Operate asM would have.

If M, exists, then My = My(M(9)) decidesL;.
A Formal Reduction Proof
Prove that L, = {(M): Turing machine M halts on the empty tape} is not recursive.

Proof that L, is not recursive viaareduction from H = {{M, w): Turing machine M halts on input string w}, a non-recursive
language. Suppose that there existsa TM, M, that decides L,. Construct a machine to decide H as M;({M, w)) = M,(T({M, w))).
The 1 function creates from (M) and (w) a new machine M*. M* ignoresitsinput and runs M on w, halting exactly when M halts
onw.

e (M,w)dH= M hadtsonw = M* dways hats=¢ 00 L(M*) = (M*) O L, = M, accepts = M, accepts.

* (M,w)0H= M doesnot hatonw= ¢ 0L(M*) = (M*) OL,= M, reects= M, rejects.

Thus, if there is a machine M, that decides L,, we could use it to build a machine that decides H. Contradiction. 0L, is not
recursive.

Important Elementsin a Reduction Proof

» A clear declaration of the reduction “from” and “to” languages and what you' re trying to prove with the reduction.
e A description of how amachine is being constructed for the “from” language based on an assumed machine for the “to”
language and a recursive T function.

e A description of the T function’sinputs and outputs. If T isdoing anything nontrivial, it isagood ideato argue that it is
recursive.

» Note that machine diagrams are not necessary or even sufficient in these proofs. Use them as thought devices, where
needed.

* Runthrough the logic that demonstrates how the “from” language is being decided by your reduction. Y ou must do both
accepting and rejecting cases.
» Declare that the reduction proves that your “to” language is not recursive.
The Most Common Mistake: Doing the Reduction Backwards

The right way to use reduction to show that L, is not recursive:

1. Giventhat L, isnot recursive, L,
2. Reducel;toL,,i.e. show how to solve L (the known one) in terms of L, (the unknown one) \/
Lo

Example: If there exists a machine M, that solves L ,, the problem of deciding whether a Turing machine halts on a blank tape,
then we could do H (deciding whether M halts on w) as follows:

1. Create M* from M such that M*, given a blank tape, first writes w on its tape, then simulates the behavior of M.

2. Return My("M*").

Doing it wrong by reducing L, (the unknown oneto L,): If there exists a machine M, that solves H, then we could build a
machine that solves L, as follows:
1. Return (Mi("M","")).

Lecture Notes 26 Undecidability 5

Why Backwards Doesn't Work

Suppose that we have proved that the following problem L, isunsolvable: Determine the number of days that have elapsed since
the beginning of the universe.

Now consider the following problem L,: Determine the number of days that had elapsed between the beginning of the universe
and the assassination of Abraham Lincoln.

Reduce LitoL,: L
L1 =L, + (now - 4/9/1865) \/
Lo
Reduce L,to L4: L,
L, =L, - (now - 4/9/1865) \/
La

Why Backwards Doesn't Work, Continued

L, = days since beginning of universe
L, = elapsed days between the beginning of the universe and the assassination of Abraham Lincoln.
L3 = days between the assassination of Abraham Lincoln and now.

Considering L ,: L,
Reduce L to L,: \l(
L1 =L, + (now - 4/9/1865) 2
Reduce LrtoLq: L,
L, =L - (now - 4/9/1865) \/
Ly
Considering L 3: L,
Reduce L to L3 \/
L, = oops L3
Reduce LiztoLq: L3
Ly;=L;-365- (nOW-4/9/1866) W
Ly

IsThere Any String on Which M Halts?

L, =H= {s="M""w": Turing machine M halts on input string w}
U T
(?M,) L,= {s="M": there exists a string on which Turing machine M halts}

Let T be the function that, from "M" and "w", constructs "M*", which operates as follows:
1. M* examinesitsinput tape.
2. Ifitisequal tow, thenit simulates M.
3. If not, it loops.
Clearly the only input on which M* has a chance of halting isw, which it does iff M would halt on w.

If M, exists, then My = My(M(s)) decides L.

Lecture Notes 26 Undecidability 6

Does M Halt on All Inputs?

L, = {s="M" : Turing machine M halts on the empty tape}
U T
(?My) L,= {s="M": Turing machine M halts on all inputs}

Let T be the function that, from "M", constructs "M*", which operates as follows:
1. Erasetheinput tape.
2. Simulate M.

Clearly M* either halts on all inputs or on none, since it ignores its input.
If M, exists, then M = My(M(s)) decides L.
Rice's Theorem
Theorem: No nontrivial property of the recursively enumerable languages is decidable.

Alternate statement: Let P: 2 _ {true, false} be anontrivial property of the recursively enumerable languages. The language
{*M”: P(L(M)) = True} isnot recursive.

By "nontrivial" we mean a property that is not simply true for all languages or false for all languages.

Examples:

e L contains only even length strings.

* L contains an odd number of strings.

e L containsal stringsthat start with"a".
« Lisinfinite.

e Lisregular.

Note:
Rice's theorem applies to languages, not machines. So, for example, the following properties of machines are decidable;
e M contains an even number of states
e M hasan odd number of symbalsin its tape al phabet
Of course, we need away to define alanguage. Well use machines to do that, but the properties we'll deal with are properties of
L(M), not of M itself.

Proof of Rice's Theorem

Proof: Let P be any nontrivial property of the RE languages.
L, =H= {s="M""w": Turing machine M halts oninput string w}

U T
(MMy) L,= {s="M": P(L(M)) = true}

Either P(O) = trueor P(0) = false. Assume it isfalse (amatching proof existsif it istrue). Since P isnontrivial, there is some
language Ly such that P(Lp) istrue. Let Mp be some Turing machine that semidecides Lp.

Let T construct "M*", which operates as follows:

1. Copy itsinput y to another track for later.

2. Writew onitsinput tape and execute M on w.

3. If M halts, put y back on the tape and execute Mp.
4. If Mp haltsony, accept.

Claim: If M, exists, then M; = M,(M(s)) decides L.

Lecture Notes 26 Undecidability 7

Why?

Two cases to consider:
o "M""W'[OH= M haltsonw = M* will halt on all strings that are accepted by Mp = L(M*) = L(Mp) = Lp = P(L(M*)) =
P(Lp) = true = M, decides P, so M, accepts "M*" = M, accepts.

e "M""W'[OH= M doesn't halt on w = M* will halt on nothing = L(M*) =0 = P(L(M*)) = P(0) = fdse= M, decides
P, so M, rgjects "M*" = M, rejects.

Using Rice’'s Theorem

Theorem: No nontrivial property of the recursively enumerable languages is decidable.
To use Rice's Theorem to show that alanguage L is not recursive we must:
» Specify alanguage property, P(L)
e Show that the domain of Pisthe set of recursively enumerable languages.
» Show that Pisnontrivial:

» Pistrue of at least one language

» Pisfaseof at least one language

Using Rice's Theorem: An Example

L ={s="M": there exists a string on which Turing machine M halts}.
={s="M":L(M)z 0O}

e Specify alanguage property, P(L):
P(L) = Trueiff L#£ O

e Show that the domain of Pisthe set of recursively enumerable languages.
The domain of P isthe set of languages semidecided by some TM. Thisis exactly the set of RE languages.

e Show that Pisnontrivial:
Pistrue of at least one language: P({€}) = True
Pisfalse of at least one language: P(00) = False

Inappropriate Uses of Rice's Theorem

Example 1.
L ={s="M": M writes a1 within three moves} .

» Specify alanguage property, P(L)
P(M?) = True if M writes a1 within three moves,
False otherwise

e Show that the domain of Pisthe set of recursively enumerable languages.
??? The domain of P isthe set of all TMs, not their languages

Example 2:
L ={s="M1""M2";: L(M1) =L(M2)}.

» Specify alanguage property. P(L)
P(M1?, M2?) = Trueif L(M1) = L(M2)
False otherwise

e Show that the domain of Pisthe set of recursively enumerable languages.
??? The domain of PisRE x RE

Lecture Notes 26 Undecidability 8

Given aTuring MachineM, isL(M) Regular (or Context Free or Recursive)?
Is this problem decidable?

No, by Rice’'s Theorem, since being regular (or context free or recursive) is a nontrivial property of the recursively enumerable
languages.

We can also show this directly (viathe same technique we used to prove the more general claim contained in Rice’s Theorem):

Given aTuring MachineM, isL (M) Regular (or Context Free or Recursive)?
L;=H={s="M""w": Turing machine M halts on input string w}

U1
(My) L,= {s="M": L(M) isregular}

Let T be the function that, from "M" and "w", constructs "M*", whose own input is a string
t = "M*" "W*"
M*("M." "w:") operates as follows:
1. Copy itsinput to another track for later.
2. Writew onitsinput tape and execute M on w.
3. If M hdlts, invoke U on "M." "w.".
4. If U halts, halt and accept.
If M, exists, then =My(M*(s)) decides L, (H).

Why?
If M does not halt on w, then M* accepts O (which isregular).
If M does halt on w, then M* accepts H (which is not regular).

Undecidable Problems About Unrestricted Grammars
* Givenagrammar G and astring w, isw 0 L(G)?
e Givenagrammar G, ise O L(G)?
* Giventwo grammars G; and G,, isL(G,) = L(Gy)?
e Givenagrammar G, isL(G) =07?

Given aGrammar G and a Stringw, Isw OL(G)?

L, =H= {s="M""w": Turing machine M halts on input string w}
U T
(?M>) L,= {s="G""wW":wOL(G)}

Let T be the construction that builds a grammar G for the language L that is semidecided by M. Thus
w O L(G) iff M(w) halts.

Then T("M" "w") ="G" "w"

If M, exists, then M = My(M(s)) decides L.

Lecture Notes 26 Undecidability 9

Undecidable Problems About Context-Free Grammars
» Given acontext-free grammar G, isL(G) = Z*?
» Given two context-free grammars G, and G, isL(G,) = L(G)?
» Given two context-free grammars G; and G,, isL(Gy) n L(Gp) =07
e |Iscontext-free grammar, G ambiguous?

* Given two pushdown automata M; and M, do they accept precisely the same language?
e Given apushdown automaton M, find an equivalent pushdown automaton with as few states as possible.

Given Two Context-Free Grammars G; and G,, ISL(G;) =L(Gy)?
L= {s="G"aCFGGandL(G)=Zx*}
U T
(2M)) L,= {s="G;""G,": G, and G, are CFGsand L(G,) = L(G,)}
Let T append the description of a context free grammar Gs- that generates 2*.
Then, 1("G") ="G" "Gs"

If M, exists, then My = M,y(M(s)) decides L.

Non-RE Languages

There are an uncountable number of non-RE languages, but only a countably infinite number of TM’s (hence RE languages).
0 The class of non-RE languages is much bigger than that of RE languages!

Intuition: Non-RE languages usually involve either infinite search or knowing a TM will infinite loop to accept a string.

{{M): M isaTM that does not halt on the empty tape}
{{(M): MisaTM and L(M) = 2*}
{{M): M isaTM and there does not exist a string on which M halts}

Proving Languages are not RE
Diagonalization
Complement RE, not recursive
Reduction from a non-RE language
Rice's theorem for non-RE languages (not covered)

Diagonalization
L={(M): M isaTM and M({M)) does not halt} is not RE
Suppose L isRE. ThereisaTM M* that semidecidesL. Is(M*)inL?
o Ifitis, then M*((M*)) halts (by the definition of M* as a semideciding machine for L)
e But, by thedefinition of L, if (M*) O L, then M*((M*)) does not halt.
Contradiction. So L isnot RE.
(Thisisavery “bare-bones’ diagonalization proof.)

Diagonalization can only be easily applied to afew non-RE languages.

Lecture Notes 26 Undecidability

Complement of an RE, but not Recursive L anguage

Example: H = {(M, w): M does not accept w}
Consider H = {(M, w): M isaTM that accepts w}:

» HisRE—itissemidecided by U, the Universal Turing Machine.

» Hisnot recursive—it is equivalent to the halting problem, which is undecidable.
From the theorem, H is not RE.

Reductions and RE L anguages

Theorem: If thereisareductionfromL;toL,andL,isRE, thenL;isRE.

X
My xOL?
_ M
y= M 5 |halt, halt,_
T _[(X)r Yy O L2' > >

Theorem: If thereisareductionfromL,toL,and L, isnot RE, then L, isnot RE.
Reduction from a known non-RE L anguage

Using a reduction from a non-RE language:

L, =H ={(M, w): Turing machine M does not halt on input string w}
Ut
(?My) L, ={(M): there does not exist a string on which Turing machine M halts}

Let T be the function that, from (M) and (w), constructs (M*}, which operates as follows:

1. Erasetheinput tape (M* ignoresitsinput).

2. Writew on thetape

3. RunMonw.

M, w)

M, V¥
M*
. MY M, halty | halt,

M*
e o VIS “ee 2

M, w) DE = M does not halt on w = M* does not halt on any input = M* halts on nothing = M accepts (halts).
(M, w) O H = M hatsonw = M* halts on everything = M, loops.

If M, exists, then M;({M, w)) = M,(M({M, w))) and M; semidecidesL,. Contradiction. L;isnot RE. [0 L,isnot RE.
Lecture Notes 26 Undecidability

Language
Summary

IN

Semidecidable
Enumerable
Unrestricted grammar

Recursively
Enumerable

Decision procedure Recursive
Lexicicographically enumerable

Complement isrecursively enumer.

CF grammar Context Free
PDA

Closure

Regular expression
FSM
Closure

Lecture Notes 26 Undecidability

ouT

Diagonalization
Reduction

Pumping
Closure

Pumping
Closure

12

Introduction to Complexity Theory

Read K & S Chapter 6.
Most computational problems you will face your life are solvable (decidable). We have yet to address whether a problemis
“easy” or “hard”. Complexity theory triesto answer this question.
Recall that a computational problem can be recast as a language recognition problem.
Some “easy” problems:

» Pattern matching

* Parsing

= Database operations (select, join, etc.)

= Sorting
Some “hard” problems:

» Traveling salesman problem

» Boolean satisfiability

» Knapsack problem

= Optimal flight scheduling
“Hard” problems usually involve the examination of alarge search space.

Big-O Notation

= Gives aquick-and-dirty measure of function size
» Used for time and space metrics

A function f(n) is O(g(n)) whenever there exists a constant ¢, such that [f(n)| < cljg(n)| for all n= 0.
(We are usually most interested in the “smallest” and “simplest” function, g.)
Examples:
2n® + 3n’lbg(n) + 75n° + 7n + 2000 is O(n%)
752" + 200n° + 10000 is O(2")
A function f(n) is polynomial if f(n) is O(p(n)) for some polynomial function p.

If afunctionI f(n) is not polynomial, it is considered to be exponential, whether or not it is O of some exponentia function
(e.g.n'®").

In the above two examples, the first is polynomial and the second is exponential.
Comparison of Time Complexities

Speed of various time complexities for different values of n, taken to be a measure of problemsize. (Assumes 1 step per
microsecond.)

f(n)\n 10 20 30 40 50 60
n .00001 sec. .00002 sec. .00003 sec. .00004 sec. .00005 sec. .00006 sec.
n° .0001 sec. .0004 sec. .0009 sec. .0016 sec. .0025 sec. .0036 sec.
n° .001 sec. .008 sec. .027 sec. .064 sec. .125 sec. .216 sec.
n° .1 sec. 3.2 sec. 24.3 sec. 1.7 min. 5.2min. 13.0 min.
2" .001 sec. 1.0 sec. 17.9 min. 12.7 days 35.7 yr. 366 cent.
3" .059 sec. 58 min. 6.5 yr. 3855 cent. 2x10° cent. 1.3x10" cent.

Faster computers don't really help. Even taking into account Moore's Law, algorithms with exponential time complexity are
considered intractable. [Polynomial time complexities are strongly desired.

Lecture Notes 27 Complexity Theory 1

Polynomial Land

If f1(n) and f,(n) are polynomials, then so are;
= fi(n) +f2(n)
= fi(n) Oa(n)
= fu(fa(n)

This means that we can sequence and compose polynomial -time al gorithms with the resulting algorithms remaining polynomial -
time.
Computational Model

For formally describing the time (and space) complexities of algorithms, we will use our old friend, the deciding TM (decision
procedure).

There are two parts:
»= The problem to be solved must be translated into an equivalent language recognition problem.
= A TM to solve the language recognition problem takes an encoded instance of the problem (of size n symbols) as input
and decides the instance in at most Ty (n) steps.

We will classify the time complexity of an algorithm (TM) to solve it by its big-O bound on Ty(n).
We are most interested in polynomial time complexity algorithms for various types of problems.
Encoding a Problem

Traveling Salesman Problem: Given aset of cities and the distances between them, what is the minimum distance tour a
salesman can make that coversall cities and returns him to his starting city?

Stated as a decision question over graphs: Given agraph G = (V, E), apositive distance function for each edge d: E— N+, and a
bound B, isthere acircuit that coversal V where sd(e) < B? (Here aminimization problem was turned into a bound problem.)

A possible encoding the problem:

Give |V| as an integer.

Give B asan integer.

Enumerate al (v4, v,, d) asalist of triplets of integers (this gives both E and d).
All integers are expressed as Boolean numbers.

Separate these entries with commas.

Note that the sizes of most “reasonable” problem encodings are polynomially related.
What about Turing M achine Extensions?
Most TM extensions are can be simulated by a standard TM in atime polynomially related to the time of the extended machine.

» k-tape TM can be simulated in O(T?(n))
» Random Access Machine can be simulated in O(T3(n))

(Real programming languages can be polynomially related to the RAM.)
BUT... The nondeterminism TM extension is different.

A nondeterministic TM can be simulated by a standard TM in O(2"™) for some polynomial p(n).
Some faster simulation method might be possible, but we don’'t know it.

Recall that a nondeterministic TM can use a“guess and test” approach, which is computationally efficient at the expense of
many paralléel instances.

Lecture Notes 27 Complexity Theory 2

TheClassP
P ={ L : thereisapolynomial-time deterministic TM, M that decidesL }

Roughly speaking, P isthe class of problems that can be solved by deterministic algorithmsin atime that is polynomially related
to the size of the respective problem instance.

The way the problem is encoded or the computational abilities of the machine carrying out the algorithm are not very important.
Example: Given an integer n, isthere a positive integer m, such that n = 4m?
Problemsin P are considered tractable or “easy”.
The Class NP
NP ={ L: thereisapolynomial time nondeterministic TM, M that decidesL }

Roughly speaking, NP is the class of problems that can be solved by nondeterministic algorithmsin atime that is polynomially
related to the size of the respective problem instance.

Many problemsin NP are considered “intractable” or “hard”.
Examples:

» Traveling salesman problem: Givenagraph G = (V, E), apositive distance function for each edge d: E— N+, and a
bound B, isthere acircuit that coversal V where sd(e) < B?

= Subgraph isomor phism problem: Given two graphs G; and G,, does G, contain a subgraph isomorphic to G,?

The Relationship of P and NP

Recursive

NP

WEe're considering only solvable (decidable) problems.
Clearly PO NP.

Pisclosed under complement.

NP probably isn’t closed under complement. Why?

Whether P = NP is considered computer science' s greatest unsolved problem.

Lecture Notes 27 Complexity Theory 3

Why NP isso Interesting

= Todate, nearly all decidable problems with polynomial bounds on the size of the solution arein this class.
» Most NP problems have simple nondeterministic solutions.
» Thehardest problemsin NP have exponential deterministic time complexities.
» Nondeterminism doesn’t influence decidability, so maybe it shouldn’t have a big impact on complexity.
= Showing that P = NP would dramatically change the computational power of our algorithms.

Stephen Cook’s Contribution (1971)
» Emphasized the importance of polynomial time reducibility.
= Pointed out the importance of NP.

» Showed that the Boolean Satisfiability (SAT) problem has the property that every other NP problem can be
polynomially reduced to it. Thus, SAT can be considered the hardest problem in NP.

» Suggested that other NP problems may also be among the “hardest problemsin NP”.
This“hardest problemsin NP” classis called the class of “NP-complete” problems.

Further, if any of these NP-complete problems can be solved in deterministic polynomial time, they all can and, by implication,
P=NP.

Nearly all of complexity theory relies on the assumption that P # NP.
Polynomial Time Reducibility

A language L, is polynomial time reducibleto L, if there is a polynomial-time recursive function t such that Ox O L, iff t(x) O
L,.

If L, ispolynomial time reducibleto L,, we say L, reducesto L, (“polynomial time” is assumed) and we writeitasL; [L.
Lemma: If Ly 0L, then (L, O P) = (L, O P). And conversaly, (L, OP) = (L, OP).

Lemma: If Ly 0LyandL, O0Lszthenl, OLs.

L, and L, are polynomially equivalent whenever both L; (0 L, and L, O L;.

Polynomially equivalent languages form an equivalence class. The partitions of this equivalence class are related by the partial
order [.

Pisthe“least” element in this partial order.

What isthe “maximal” element in the partial order?

Lecture Notes 27 Complexity Theory 4

The Class NP-Complete
A language L isNP-complete if L [0 NP and for all other languagesL’ O NP, L’ O L.
NP-Complete problems are the “hardest” problemsin NP.
Lemma: If L;and L, belongto NP, L, is NP-complete and L, (I L,, then L, is NP-complete.
Thusto prove alanguage L, is NP-complete, you must do the following:
1. Show that L, O NP.
Select a known NP-complete language L ;.

2
3. Construct areduction T from L, to L.
4. Show that T is polynomial-time function.

My

w (W)
—1» T —> M
» n

How do we get started? |sthere alanguage that is NP-complete?
Boolean Satisfiability (SAT)

Given a set of Boolean variables U = {uy, U,, ..., Uy} and a Boolean expression in conjunctive normal form (conjunctions of
clauses—disjunctions of variables or their negatives), is there atruth assignment to U that makes the Boolean expression true
(satisfies the expression)?

Note: All Boolean expressions can be converted to conjunctive normal form.
Example: (x;00-X, Ox3) O (=x3 OX4 OXy)

Cook’s Theorem: SAT is NP-complete.
1. Clearly SAT O NP.
2. The proof constructs a complex Boolean expression that satisfied exactly when aNDTM accepts an input string X
where |w| = n. Becausethe NDTM isin NP, its running timeis O(p(n)). The number of variablesis polynomially
related to p(n).

SAT isNP-complete because SAT O NP and for all other languagesL’ O NP, L’ O SAT.

Reduction Roadmap

SAT

v

3SAT

o T
! Y

PARTITION HC CLIQUE

The early NP-complete reductions took this structure. Each phrase represents a problem. The arrow represents a reduction from
one problem to another.

Today, thousands of diverse problems have been shown to be NP-compl ete.

Let’s now look at these problems.

Lecture Notes 27 Complexity Theory 5

3SAT (3-satisfiability)
Boolean satisfiability where each clause has exactly 3 terms.
3DM (3-Dimensional Matching)

Consider aset M O X x Y x Z of digoint sets, X, Y, & Z, suchthat |X|=|Y|=[Z| = . Doesthere exist amatching, a subset
M’ M such that [M’| = qand M’ partitions X, Y, and Z?

Thisis ageneralization of the marriage problem, which has two sets men & women and a relation describing acceptable
marriages. |sthere apairing that marries everyone acceptably?

The marriage problem isin P, but this “3-sex version” of the problem is NP-complete.
PARTITION

Given aset A and a positive integer size, (@) 0 N*, for each element, a0 A. Isthere asubset A’ 0 A such that

2 sa=2 3a) ?
alA” alA-A’

VC (Vertex Cover)

Given agraph G = (V, E) and an integer K, such that 0 < K < |V|, isthere a vertex cover of sizeK or lessfor G, that is, a subset
V' OV suchthat [V'| < K and for each edge, (u, v) O E, at least one of uand v belongsto V'?

CLIQUE
Given agraph G = (V, E) and an integer J, such that
0 < J< V|, does G contain aclique of size Jor more, that isasubset V' 00V such that [V'| = Jand every two verticesin V' are
joined by an edgein E?

HC (Hamiltononian Circuit)

Given agraph G = (V, E), does there exist a Hamiltonian circuit, that is an ordering <v;, v», ..., v,> of al V such that
(vyvp vi) OEand (v, visg) O Eforali, 1<i<|V[?

Traveling Salesman Prob. is NP-complete

Given agraph G = (V, E), apositive distance function for each edge d: E - N+, and abound B, is there a circuit that coversall V
where sd(e) < B?

To prove alanguage TSP is NP-complete, you must do the following:
1. Show that TSP O NP.
2. Select aknown NP-complete language L ;.
3. Construct areduction t from L, to TSP.
4. Show that T is polynomial-time function.

TSP O NP: Guessaset of roads. Verify that the roads form atour that hits all cities. Answer “yes’ if the guessisatour and the
sum of the distancesis< B.

Reduction from HC: Answer the Hamiltonian circuit question on G = (V, E) by constructing a complete graph where “roads’
have distance 1 if the edgeisin E and 2 otherwise. Pose the TSP problem, isthere atour of length < |V|?

Lecture Notes 27 Complexity Theory 6

Notes on NP-complete Proofs
The more NP-complete problems are known, the easier it isto find a NP-complete problem to reduce from.
Most reductions are somewhat complex.
It is sufficient to show that arestricted version of the problem is NP-compl ete.
More Theory

NP has arich structure that includes more than just P and NP-complete. This structureis studied in later courses on the theory of
computation.

The set of recursive problems outside of NP (and including NP-complete) are called NP-hard. Thereisa proof techniqueto
show that such problems are at least as hard as NP-complete problems.

Space complexity addresses how much tape doesa TM usein deciding alanguage. Thereisarich set of theories surrounding
space complexity.

Recursive

2

Dealing with NP-completeness
You will likely run into NP-complete problemsin your career. For example, most optimization problems are NP-complete.

Some techniques for dealing with intractable problems:

= Recognize when there is atractable special case of the general problem.

= Use other techniques to limit the search space.

= For optimization problems, seek a near-optimal solution.
Thefield of linear optimization springs out of the latter approach. Some linear optimization solutions can be proven to be “near”
optimal.

A branch of complexity theory deals with solving problems within some error bound or probability.

For more: Read Computers and Intractability: A Guide to the Theory of NP-Completeness by Michael R. Garey and David S.
Johnson, 1979.

Lecture Notes 27 Complexity Theory 7

1. Homework

CS 341 Homework 1
Basic Techniques

1. What are these sets? Write them using braces, commas, numerals, ... (for infinite sets), and [J only.
(@ ({21,35 0{3,1})n{3,57}
(b) U{{3},{3, 5}, N{{5, 7}, {7, 9}}}
(© ({1,2,5 -{57,9})0(5,7,9 -{1,2,5})
(d) ol7.8, 9 - 7.9
(e) 2°
(f) {x: Oy O N wherex = y3}
(9) {x : x isan integer and x* = 2}

2. Prove each of the following:
@AOBNC)=(AOB)Nn(AOC)
b)An(BOC)=(AnB)O(ANnC
(An(AOB)=A
(dAOANB)=A
©A-BnC=(A-B)O(A-0O)

3. Write each of the following explicitly:
(@) {1} x{1,2} x{1,2,3}
(b) O x {1, 2}
(c) 2% x{1,2}

4. LetR={(a b), (a c), (c,d), (a a), (b, a)}. What isR ° R, the composition of R with itself? What isR™, the
inverseof R? IsR, R ° R, or R afunction?

5. What is the cardinality of each of the following sets? Justify your answer.
(@ S=N-{2,3,4}
(b) S={0, {0}}
(c) S=otabd
(d)S={ab,c} x{1,2, 3,4}
(e9S={ab,...,z} xN

6. Consider the chart of example relationsin Section 3.2. For thefirst six, give an example that proves that the
relation is missing each of the properties that the chart claimsit ismissing. For example, show that M other-of
is not reflexive, symmetric, or transitive.

7.Let A, B betwo sets. If 2* = 25, must A = B? Prove your answer.

8. For each of the following sets, state whether or not it isa partition of {0, 1, 2, 3,4, 5, 6, 7, 8, 9, 10}.
(@ {{0}, {1}, {2}, {3}, {4} . {5}. {6}, {7}, {8} {9}, {10}}
(b) {0, {1}.{2}, {3}, {4}, {5}, {6}, {7}, {8, {9}, {10}
©{{1,2},{3,4}.,{56},{7, 8, {9 10}}
(d){{1,2,{2,3},{3,4},{4,5}.{56},{6,7},{7, 8, {8, 9} {9, 10}}

9. For each of the following relations, state whether it isa partia order (that is not also total), atotal order, or
neither. Justify your answer.

(a) DivisibleBy, defined on the natural numbers. (x, y) U DivisibleBy iff x isevenly divisible by y. So, for
example, (9, 3) [DivisibleBy but (9, 4) [DivisibleBy.

Homework 1 Basic Techniques 1

(b) LessThanOrEqual defined on ordered pairs of natural numbers. (a, b) < (x,y) iffa<xor (a=x and
b<y). For example, (1,2) < (2,1) and (1,2) < (1,3).
(c) Therelation defined by the following boolean matrix:

1 1
1)1
1)1
1 1

10. Arethe following sets closed under the following operations? If not, what are the respective closures?
(a) The odd integers under multiplication.
(b) The positive integers under division.
(c) The negative integers under subtraction.
(d) The negative integers under multiplication.
(e) The odd length strings under concatenation.

11. What is the reflexive transitive closure R* of the relation
R={(a b), (a c), (a d), (d, ¢), (d, €)} Draw adirected graph representing R*.

12. For each of the following relations R, over some domain D, compute the reflexive, symmetric, transitive
closure R'. Try to think of asimple descriptive name for the new relation R'. Since R’ must be an equivalence
relation, describe the partition that R induces on D.

(a) Let D bethe set of 50 statesin the US. Lixy, xRy iff x shares aboundary withy.

(b) Let D be the natural numbers. LIxy, xRy iff y = x+3.

(c) Let D be the set of strings containing no symbol except a. [Ixy, xRy iff y = xa. (i.e., if y equals x
concatenated with a).

13. Consider an infinite rectangular grid (like an infinite sheet of graph paper). Let S be the set of intersection
pointson the grid. Let each point in S be represented as apair of (x,y) coordinates where adjacent points differ
in one coordinate by exactly 1 and coordinates increase (asis standard) as you move up and to the right.

(a) Let R bethefollowing relation on S: [I(X1,y1)(X2,Y2), (X1,y1)R(X2,y2) iff Xo= x;+1 and y,=y;+1. Let R’ be
the reflexive, symmetric, transitive closure of R. Describe in English the partition P that R' induceson S. What
isthe cardinality of P?

(b) Let R bethe following relation on S: LI(X1,Y1)(X2,Y2), (X1,Y1)R(X2,y2) iff (Xo= X3+1 and yo,=y;+1) or (Xo= X1~
landy,=y,+1). Let R' bethereflexive, symmetric, transitive closure of R. Describe in English the partition P
that R’ induceson S. What is the cardinality of P?

(c) Let R bethe following relation on S: L1(X1,y1)(X2,Y2), (X1,Y1)R(X2,Y2) iff (X2,y2) is reachable from (x1,y1) by
moving two squares in any one of the four directions and then one square in a perpendicular direction. Let R’
be the reflexive, symmetric, transitive closure of R. Describe in English the partition P that R’ induceson S.
What is the cardinality of P?

14. Isthe transitive closure of the symmetric closure of a binary relation necessarily reflexive? Proveit or give
acounterexample.

15. Give an example of abinary relation that is not reflexive but has atransitive closure that is reflexive.

16. For each of the following functions, state whether or not it is (i) one-to-one, (ii) onto, and (iii) idempotent.
Justify your answers.
(@) +: Px P - P, where Pisthe set of positive integers, and
+(a, b) = a+ b (Inother words, simply addition defined on the positive integers)
(b) X : B xB - B,whereB isthe set { True, False}

Homework 1 Basic Techniques 2

X(&a b) =the exclusive or of aand b

17. Consider the following set manipulation problems:
(@ LetS={ab}. LetT={b,c}.Listtheelementsof P, defined as
P=2°n2",
(b) LetZbethesetofintegers. LetS={x0Z: [y OZandx=2y}. Let T={x0Z: [y 0Zandx=2%.
Let W=S-—T. Describe W in English. List any five consecutive elementsof W. Let X =T —S. What is X?

Solutions

1. (@ {3 /5
(b) {3,5 7}
(o {1,2,7,9
(d) {8}.{7,8},{8,9.,{7,8 9
(e {00}
(f) {0,1,4,9,25,36...} (the perfect squares)
() O (sincethe squareroot of 2 isnot an integer)

2@ AOBNC) =BnCUA commutativity
=(BOA)n (COA) distributivity
=(AOB)n(AOC) commutativity

(b) An(BOC) =(BOC)NA commutativity
=(BnA)O(CNnA) distributivity
=(AnB)O(ANnC) commutativity

(0 An(AOB) =(AOB)nA commutativity
=A absorption

3.(a) {(1L11),(L12),(113),(1.21), (1,22, (1,2,3)}
(b) O
(¢ {0102, (1.1, (1.2, (2,1, ({2, 2, (12, 1), ({12, 2)}

4. R°R={(a a), (a d), (a b), (b, b), (b, c), (b, a), (a c)}
Rinverse={(b, a), (c, @), (d, ¢), (& a), (a b)}
Noneof R, R° Ror R inverseisafunction.

5 (@& S={0,1,5,6,7,...}. Shasthesame number of elementsas N. Why? Because thereisabijection
between Sand N: f: S — N, wheref(0) =0, f(1) =1, Ox =5, f(X) =x- 3. S0 || = L.

(b) 2.

(c) S=allsubsetsof {a b,c}. SoS={0,{a}, {b},{c},{a b}, {a c},{b,c},{a b c}}. So[5=8. We
could also simply have used the fact that the cardinality of the power set of afinite set of cardinality c
is2.

d) sS={(a1l).(a2),(a3),(a4),(b1),(b2),(b?3)(b4),(c1),(c2),(c3)(c4} Sol§=12. Or
we could have used the fact that, for finite sets, |A x B|=|A|* |B|.

e S={(a0),(®&1),...,(b0),(b,1),..} Clearly Scontainsan infinite number of elements. But are there
the same number of elementsin Sasin N, or are there more (26 times more, to be precise)? The
answer isthat there are the same number. |S|= J,. To provethis, we need abijection from Sto N. We
can define this bijection as an enumeration of the elements of S:

(& 0), (b, 0),(c,0),... (Firstenumerate all 26 elements of S that have O as their second element)

Homework 1 Basic Techniques 3

(& 1), (b, 1),(c,1),... (Nextenumerateall 26 elementsof Sthat have 1 astheir second element)
and so forth.

6. Mother-of: Not reflexive: Eveisnot the mother of Eve (in fact, no oneis her own mother).

Not symmetric: mother-of (Eve, Cain), but not Mother-of (Cain, Eve).

Not transitive: Each person has only one mother, so if Mother-of(x, y) and Mother-of(y, z),
the only way to have Mother-of(x, z) would be if x and y are the same person, but we know
that that's not possible since Mother-of(x, y) and no one can be the mother of herself).

Would-recognize-picture-of:
Not symmetric: W-r-p-o(Elaine, Bill Clinton), but not W-r-p-o (Bill Clinton, Elaine)
Not transitive: W r-p-o(Elaine, Bill Clinton) and W r-p-o(Bill Clinton, Bill's mom) but not
W-r-p-o(Elaine, Bill's mom)
Has-ever-been-married-to: ~ Not reflexive: No oneis married to him or herself.
Not transitive: H-e-b-m-t(Dave, Sue) and H-e-b-m-t(Sue, Jeff) but not
H-e-b-m-t(Dave, Jeff)
Ancestor-of: Not reflexive: not Ancestor-of (Eve, Eve) (in fact, no oneistheir own ancestor).

Not symmetric: Ancestor-of(Eve, Cain) but not Ancestor-of(Cain, Eve)

Hangs-out-with: Not transitive: Hangs-out-with(Bill, Monica) and Hangs-out-with(Monica, Linda Tripp),
but not Hangs-out-with(Bill, Linda Tripp).
L ess-than-or-equal-to: Not symmetric: 1< 2, but not 2 < 1.

7. Yes, if 2 = 2° then A must equal B. Supposeit didn't. Then thereis some element x that isin one set but
not the other. Call theset x isin A. Then 2* must contain {x}, which must not bein 2°, sincex 0 B. This
would mean that 2* # 2°, which contradicts our premise.

8.(a vyes
(b) no, since no element of a partition can be empty.
(c) no,0ismissing
(d) no, since, each element of the original set S must appear in only one element of a partition of S.

9. (a) DivisibleByisapartia order. [Ix (X, x) [DivisibleBy, so DivisibleBy isreflexive. For x to be
DivisibleBy y, x must be greater than or equal toy. So the only way for both (X, y) and (y, X) to bein
DivisibleBy isfor x and y to be equal. Thus DivisibleBy is antisymmetric. Andif x isDivisibleByyandy is
DivisibleBy z, then x is DivisibleBy z. So DivisibleBy istransitive. But DivisibleBy is not atotal order. For
example neither (2, 3) nor (3, 2) isinit.

(b) LessThanOrEqual defined on ordered pairsisatotal order. Thisiseasy to show by relying on the fact
that < for the natural numbersisatotal order.

(c) Thisoneisnot apartial order at all because, although it is reflexive and antisymmetric, it is not
transitive. For example, it includes (4, 1) and (1, 3), but not (4, 3).

10. (a) The odd integers are closed under multiplication. Every odd integer can be expressed as 2n+1 for some
value of n O N. So the product of any two odd integers can be written as (2n+1)(2m+1) for some values of n
and m. Multiplying this out, we get 4(n+m) +2n + 2m +1, which we can rewrite as 2(2(n+m) + n + m) +1,
which must be odd.

(b) The positive integers are not closed under division. To show that a set is not closed under an operation, it
is sufficient to give one counterexample. 1/2 is not an integer. The closure of the positive integers under
division isthe positive rationals.

(c) The negative integers are not closed under subtraction. -2 - (-4) = 2. The closure of the negative numbers
under subtraction is the integers.

(d) The negative integers are not closed under multiplication. -2* -2 = 4. The closure of the negative
numbers under multiplication is the nonzero integers. Remember that the closure is the smallest set that

Homework 1 Basic Techniques 4

contains al the necessary elements. Sinceit isnot possible to derive zero by multiplying two negative
numbers, it must not be in the closure set.

(e) The odd length strings are not closed under concatenation. "a" ||"b" = "ab", which isof length 2. The
closure isthe set of strings of length = 2. Note that strings of length 1 are not included. Why?

11I.R*=RO{(x,x):xO{a b, c,d e} O{(a e}

12. (a) The easiest way to start to solve a problem like thisis to start writing down the elements of R’ and see if
apattern emerges. So we start with the elements of R: {(TX, LA), (LA, TX), (TX, NM), (NM, TX), (LA, Ark),
(Ark, LA), (LA Miss), (Miss, LA) ...}. Toconstruct R', wefirst add all elements of the form (x, x), so we add
(TX,TX), and so forth. Then we add the elements required to establish transitivity:
(NM, TX), (TX, LA) = (NM, TX)
(TX, LA), (LA, Ark) = (TX, Ark)
(NM, TX), (TX, Ark) = (NM, Ark), and so forth.
If we continue this process, we will seethat the reflexive, symmetric, transitive closure R’ relates all states
except Alaska and Hawaii to each other and each of them only to themselves. So R' can be described as
relating two statesif it's possible to drive from one to the other without leaving the country. The partition is:
[Alaskal
[Hawaii]
[all other 48 states)

(b) R includes, for example {(0, 3), (3, 6), (6, 9), (9, 12) ...}. When we compute the transitive closure, we
add, among other things{ (0, 6), (0, 9), (0,12)}. Now try this starting with (1,4) and (2, 5). It's clear that [IX,y,
XR'y iff x =y (mod 3). In other words, two numbers are related iff they have the same remainder mod 3. The
partition is:

[0,3,6,9,12...]
[1,4,7,10,13...]
[2,5,8,11,14 ...]
(c) R relates all strings composed solely of a sto each other. So the partitionis

[€, a aa, aoa, aaa, ...]

13. (a) Think of two points being related viaR if you can get to the second one by starting at the first and
moving up one square and right one square. When we add transitivity, we gain the ability to move diagonally
by two squares, or three, or whatever. So Pisan infinite set. Each element of P consists of the set of points
that fall on an infinite diagonal line running from lower |eft to upper right.

(b) Now we can more upward on either diagonal. And we can move up and right followed by up and left,
and so forth. The one thing we can’t do is move directly up or down or right or left exactly one square. So take
any given point. To visualize the pointsto which it isrelated under R’, imagine a black and white chess board
where the squares correspond to points on our grid. Each point isrelated to al other points of the same color.
Thusthe cardinality of Pis 2.

(c) Now every point isrelated to every other point. The cardinality of Pis 1.

14. Y ou might think that for all relations R on some domain D, the transitive closure of the symmetric closure
of R (call it TC(SC(R))) must be reflexive because for any two elements x, y I D such that (x, y) O R, welll
have (x, y), (Y, z) O SC(R) and therefore (x, x), (y, y) U TC(SC(R)). Thisisall true, but does not prove that for
al zOD, (z,2) O TC(SC(R)). Why not? Suppose thereisaz [1 D such that thereisno y [0 D for which (y, 2)
ORor(z,y) OR. (If youlook at the graph of R, zis an isolated vertex with no edgesin or out.) Then (z, z) [
TC(SC(R)). Sotheanswer isno, with R =[] on domain {a} asasimple counterexample: TC(SC(R)) = [, yet
it should contain (a, a) if it were reflexive.

15.R={(a b), (b, @} ondomain {a, b} doesthetrick easily.

Homework 1 Basic Techniques 5

16. (a) (i) +isnotoneto-one. For example+(1, 3) =+(2, 2) = 4.
(ii) +isnotonto. Thereare no two positive integers that sumto 1.
(iii) + isnot idempotent. +(1, 1) # 1.
(b) (i) X isnot one-to-one. For example True X True = False X False = False.
(if) X isonto. Proof: True X True=False. True X False=True. In genera, when the domainisa
finite set, it's easy to show that afunction is onto: just show one way to derive each element.
(iii) X isnot idempotent. True X True = False.

17. (a) P={0O{b}}

(b) Sisthe set of even numbers. T isthe set powersof 2. W isthe set of even numbers that are not powers
of 2. SoW={....-6,-4,-2,0, 6, 10, 12, 14, 18, ...}. X isthe set of numbers that are powers of 2 but are not
even. There' sonly oneelement of X. X ={1}.

Homework 1 Basic Techniques 6

CS 341 Homework 2
Strings and L anguages

lLe>={ab}. LetlL;={x0O>*: [x|<4}. Let L, ={aa, aaa, aaaa}. Listthe elementsin each of the
following languages L :

(a) L;=L, 0L,

(b) L4: Ll n L2

(©Ls=LiLy

(d)Le=L:i-L>

2. Consider the language L = d'b"c™. Which of the following strings are in L?
(@« (b) ab (c)c (d) aabc (e) aabbcc () abbcc

3. It probably seems obvious to you that if you reverse astring, the character that was originally first becomes
last. But the definition we've given doesn't say that; it says only that the character that was originally last
becomesfirst. If we want to be able to use our intuition about what happensto the first character in a proof, we
need to turn it into atheorem. Prove [x,awhere x isastring and ais asingle character, (ax)® = x"a

4. For each of the following binary functions, state whether or not it is (i) one-to-one, (ii) onto, (iii) idempotent,
(iv) commutative, and (v) associative. Also (vi) state whether or not it has an identity, and, if so, what it is.
Justify your answers.
(@ ||:SxS -~ S whereSisthe set of strings of length > 0
(&, b) =a||b (In other words, ssimply concatenation defined on strings)
(b) |I:LxL - L whereL isalanguage over some a phabet >
(& b)={wO>*:w=x|yfor somex [Jaand y[Ib} In other words, the concatenation of two
languages A and B isthe set of strings that can be derived by taking a string from A and then
concatenating onto it a string from B.

5. We can define aunary function F to be self-inverse iff [x O Domain(F) F(F(x)) = x. The Reverse function
on strings is self-inverse, for example.

(a) Give an example of a self-inverse function on the natural numbers, on sets, and on booleans.

(b) Prove that the Reverse function on stringsis self-inverse.

Solutions

1. First we observethat L, ={¢, a b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb} .
(& Ls={¢, a b, aa ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa}
(b) Ls={aa asa}
(c) Ls=every way of selecting one element from L, followed by one element from L
{ eaa, aaa, baa, aaaa, abaa, baaa, bbaa, aaaaa, aabaa, abaaa, abbaa, baaaa, babaa, bbaaa, bbbaa} [
{ caaa, asaa, basa, asaaa, abaaa, basaa, bbaaa, asasaa, aabaaa, abaaaa, abbaaa, basaaa, babaaa,
bbaaaa, bbbaaa}. Note that we've written €aa, just to make it clear how this string was derived. It
should actually be written asjust aa. Also note that some elements are in both of these sets (i.e.,
there's
more than one way to derive them). Eliminating duplicates (since L isa set and thus does not contain
duplicates), we get:
{ @, aaa, baa, asaa, abaa, basa, bbaa, asasa, ashaa, abaaa, abbaa, basaa, babaa, bbaaa, bbbaa, asssaa,
aabaaa, abasaa, abbaaa, baaaaa, babaaa, bbaaaa, bbbaaa}
(d) Le=everystringthatisinL, but notinL,: {€, a b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb} .

Homework 2 Strings and Languages 1

2.(a)
(b)
(c)
(d)
(e)
()

Yes. n=0andm=0.
Yes. n=1andm=0.
Yes. n=0andm=1.
No. There must be equal numbers of a'sand b's.
Yes. n=2andm=2.
No. There must be equal numbers of asand b's.

3. Prove: Ox,awhere x isastring and ais asingle character, (ax)® = x*a. Well use induction on the length of
x. If x| =0 (i.e, x =€), then (ae)" = a= e"a. Next we show that if thisistrue for all strings of length n, then it
istruefor al strings of length n+ 1. Consider any string x of length n + 1. Since |x| > 0, we can rewrite X asyb
for some single character b.

4. (a)

(b)

on

5.(a)
(b)

(@)} = (ayb)® Rewrite of X asyb
= b(ay)® Definition of reversal
= b(y"a) Induction hypothesis (since x| =n+ 1, [y| =n)
=(byMa Associativity of concatenation
=x"a Definition of reversal: If x = yb then x® = by®

(i) |lisnot one-to-one. For example, ||(ab, ¢) = ||(a, bc) = abc.

(i) |lisonto. Proof: OsO S, ||(s, €) = s, so every element of s can be generated.

(iii) || is not idempotent. ||(a, @) # a

(iv) || is not commutative. ||(ab, cd) # (cd, ab)

(v) ||isassociative.

(vi) || has € as both aleft and right identity.

(i) |lisnot oneto one. For example, Let = ={a, b, c}. ||({a}, {bc}) ={abc} =||({ab}, {c})

(ii) |[isonto. Proof: 0L OO X*, ||(L, {€}) =L, so every element of s can be generated. Notice that this
proof isvery similar to the one we used to show that concatenation of stringsisonto. Both proofsrely

the fact that € isan identity for concatenation of strings. Given the way in which we defined
concatenation of languages as the concatenation of strings drawn from the two languages, {€} isan
identity for concatenation of languages and thus it enables us to prove that all languages can be derived
from the concatenation operation.

(iii) || is not idempotent. ||({a}, {a}) = {aa}

(iv) || is not commutative. ||[({a}, {b}) ={ab}. But ||({b}, {a}) = {ba}.

(v) ||isassociative.

(vi) || has{ €} asboth aleft and right identity.

Integers: F(x) = -x isself-inverse. Sets: Complement is self-inverse. Booleans: Not is self-inverse.
We'll prove this by induction on the length of the string.

Basecase: If [x|=0or 1, thenx®=x. So(x")F=x"=x.

Show that if thisistrue for al strings of length n, then it istrue for all strings of lengthn + 1. Any
string s of length n + 1 can be rewritten as xa for some single character a. So now we have:

=ax® definition of string reversal
(S =(@xdH? substituting ax® for s%
= (xRa by the theorem we proved above in (3)
=xa induction hypothesis
=s since xawas just away of rewriting s

Homework 2 Strings and Languages 2

CS 341 Homework 3
L anguages and Regular Expressions

1. Describe in English, as briefly as possible, each of the following (in other words, describe the language
defined by each regular expression):

(@ L(((@ab)0b)

(b) L((((a*b*)*ab) O ((a*b*)*ba))(b [&*)

2. Rewrite each of these regular expressions as a simpler expression representing the same set.
(@0*O0a Ob* O (al by*

(b) ((a"b*)* (b*a*)*)*

(c) (ab)* U (b*a)*

3. Let > ={a, b}. Writeregular expressions for the following sets:
(a) All stringsin Z* whose number of asisdivisible by three.

(b) All stringsin 2* with no more than three a's.

(c) All stringsin =* with exactly one occurrence of the substring aaa.

4. Which of the following are true? Prove your answer.
(a) baa [J & b*a*b*

(b) b*a* n a*b* =a* [0 b*

(c) a*b* n cxd* =0

(d) abed O (a(cd)*b)*

5. Show that L((a 0 b)*) = L(a* (ba*)*).

6. Consider the following:
(a) (@l b) O (ab))*
(b) (& ab)
(c) ((ab)* 00)
(d) (((@) O o)* n (b0 c*))
(e) (O* O (bb*))
(i) Which of the above are “pure” regular expressions?
(i) For each of the above that isaregular expression, give asimplified equivalent “ pure” regular expression.
(iif) Which of the above represent regular languages?

7. True - False: For all languagesL1, L2, and L3

(@) (L1L2)* =L1*L2*

(b) (L1OL2* =L1* O L2*
(c)(L1O0L2)L3=L1L30L2L3

(d)(L1L2) O L3=(L10L3)(L20OLY3)

(e) L1)* =L1*

(f) (L) =L1"

(g) (L1*)" = (L1+)*

(hL1*=L1"00

(i) (ab)*a= a(ba)*

() (@O b)* b(@aldb)* =a* b(al b)*

(K)[(@Ob* b(@db)y* O (al b)* a(al b)*] = (al b)*
() [(@O0b)* b(@Ob)* O (al b)* a(ald b)*] =(al b)*
(m)[(@0 b)* ba(all b)* 00 a*b*] = (al b)*

Homework 3 Languages and Regular Expressions

(n) (L1L2L3)* = L1*L2*L3*
(0) (L1* O L3*) = (L1* O L3*)*

(p)L1* L1 =L1+

(@) (L1 O L2)* = (L2 0 L1)*

(r)L1* (L2 0 L3)" = (L1* L2" O L1* L3
(90 L1* =0

(t) O L1* ={g}

(u) (L1-L2) = (L2-L1)

(v) (L1L2) O (L1L3))* = (L1 (L2 O L3)*

8. LetL ={w {a b}* : w contains bba as a substring}. Find aregular expression for {a, b}* - L.

9.Let > ={ab}. For each of the following sets of strings (i.e., languages) L, first indicate which of the
example strings are in the language and which are not. Then, if you can, write a concise description, in English,
of the strings that are in the language.

Example strings: (1) aaabbb, (2) abab, (3) abba, (4) €

(@) L ={w:forsomeu O >*, w=u"u}

(b) L ={w : ww = www}

(c) L ={w: for someu [>*, www = uu}

10. Write aregular expression for the language consisting of all odd integers without leading zeros.

11. Let2={a b}. LetL ={¢, a b}. Let R bearelation defined on 2* asfollows. [Ixy, xRy iffy =xb. Let R’
be the reflexive, transitive closure of L under R. Let L' ={x: Ly [J L such that yR'x}. Write aregular
expression for L.

Solutions

1. (a) Any string of asand/or b's with zero or more as followed by asingle b.
(b) Any string of asand/or b'swith at least one occurrence of ab or ba.

2.(a O*={¢},andeU(@ldb)*.
a* U (al b)*.
b* O (all b)*. So sincethefirst three terms describe subsets of the last one, unioning them into the last
one doesn't add any elements. Thus we can write smply (a] b)*.
(b) To solve this one, well use some identities for regular expressions. We don't have time for an extensive
study of such identities, but these are useful ones:
((a* b*)* (b* a*)*)* =
Using (A*B*)* = (A O B)* (Both simply describe any string that is composed of elements of
A and elements of B concatenated together in any order)
(@bb*(bDa*) =
Using (A O B) =(B O A) (Set union is commutative)
(@bb*(@bby*)* =
Using A*A* = A*
(@ b)*)* =
Using (A*)* = A*
(@l b)*

Homework 3 Languages and Regular Expressions 2

(c) (a*b)* O (b*a)* = (all b)* (In other words, all stringsover {a, b}.) How do we know that? (a*b)* isthe
union of € and all stringsthat endinb. (b*a)* isthe union of € and al stringsthat end in a. Clearly any string
over {a, b} must either be empty or it must end inaor b. So we've got them all.

3. (&) The as must come in groups of three, but of course there can be arbitrary numbers of b's everywhere. So:
(b*ab*ab*a)* b*
Sincethe first expression has* around it, it can occur O or more times, to give us any number of a's
that isdivisible by 3.
(b) Another way to think of thisisthat there are three optional asand all the b'syou want. That gives us:
b* (al) b* (all €) b* (all €) b*
(c) Another way to think of thisisthat we need one instance of aaa. All other instances of aa must occur
with
either b or end of string on both sides. The aaa can occur anywhere so we'll plunk it down, then list the
options for everything else twice, once on each side of it:
(@UOaabOb)* aa (balbaal b)*

4. (a) True. Consider the defining regular expression: a*b*a*b*. To get baa, take no as, then one b, then two
asthennob's.

(b) True. We can prove that two sets X and Y are equal by showing that any stringin X must also beinY
and vice versa. First we show that any string in b*a* n a*b* (which we'll call X) must also bein a* [b*
(whichwelll call Y). Any stringin X must have two properties: (from b*a*): all b's come before all ds; and
(from a*b*): al a's come before all b's. The only way to have both of these properties simultaneoudy isto be
composed of only asor only b's. That's exactly what it takesto beinY.

Next we must show that every stringin Y isin X. Every stringin Y iseither of theform a* or b*. All strings
of theform a* arein X since we simply take b* to be b°, which givesusa* n a* = a*. Similarly for al strings
of the form b*, where we take a* to be &.

(c) False. Remember that to show that any statementsisfalseit is sufficient to find a single counterexample:

eda*b* ande lc*d*. Thuse O a*b* n c*d* , which istherefore not equal to [J.

(d) False. Thereisno way to generate abcd from (a(cd)*b)*. Let's call the language generated by
(a(cd)*b)* L. Noticethat every stringin L has the property that every instance of (cd)* isimmediately
preceded by a. abcd does not possess that property.

5. That the language on the right is included in the language on the left isimmediately apparent since every
string in the right-hand language is a string of alsand b's. To show that any string of alsand b'sis contained in
the language on the right, we note that any such string begins with zero or more as. If there are no b's, then the
stringis contained in @ . If thereisat least one b, we strip off any initial as as a part of a* and examine the
remainder. If there are no more b's, the remainder isin ba*. If thereisat least one more b to the right, then we
strip of theinitial b and any following consecutive a's (astring in ba*) and examine the remainder. Repeat the
last two steps until the end of the string is reached. Thus, every string of a's and b'sisincluded in the language
on theright.

6. (i) &, ¢, e (b contains superscript n; d contains n)
(i) (@ = (ad b)*
(=0
(€) =b*
(iii) 3, ¢, d, e (bis{a@™": m>n}, which is not regular)

7@FOFOTA@FREOTOT@T.MOFOT.OT.KFEOT,MT,M0F©)F @ T (by def. of
H@TOFRETOFRMWFEMT.

Homework 3 Languages and Regular Expressions 3

8. (a ba)* (¢ O b O bbb*) = (a0l ba)*b*

9. (a) (2) no (2) no, (3) yes, (4) yes
L iscomposed of strings whose second half isthe reverse of the first half.

(b) (1) no (2) no (3) no (4) yes
L contains only the empty string.

(c) (1) no (2) yes(3) no (4) yes

L contains strings of even length whose first half is the same as the second half. To see why thisis so,
notice that |uu| is necessarily even, sinceit's |u| times 2. So we must assure that jwww] is also even. Thiswill
only happen if |w|iseven. To discover what u isfor any proposed w, we must first write out www. Then we
splititin half and call that u. Suppose that w can be described as the concatenation of two strings of equal
length, r and s. (We know we can do this, since we already determined that |w| iseven.) Then w will be equal
to rsand www will bersrsrs. So u must equal both rsr and srs. There can only be such auif r and s are the
same.

10. (¢ O ((1-9)(0-9)*))(10315070119), or, without using € or the dash notation,
(A03050709) O
((1D203040506070809) (0U10203040506070809)* (103050709))

11. Whew. A lot of formalism. The key isto walk through it one step at atime. It'sgood practice. R relates
pairs of strings that are identical except that the second one has one extra b concatenated on theend. So it
includes, for example, {(a, ab), (ab, abb), (abb, abbb), (b, bb), (bb, bbb), ...}. Now we have to compute R'.
Consider the element a. First, we must add (a, a) to make R’ reflexive. Now we must consider transitivity. R
givesus (a, ab). But it also gives us (ab, abb), so, by transitivity, R" must contain (g, abb). Infact, amust be
related to all stringsin the language ab*. Similarly € must be related to al stringsin eb* or simply b*. And b
must be related to all stringsin bb*. We could also notice many other things, such as the fact that ab isrelated
to all stringsin abb*, but we don’t need to bother to do that to solve this problem. What we need to do isto
figureout what L' is. It’sall stringsthat arerelated viaR' to some element of L. There are three elementsof L,
{e,a b}. SoL'=b* [0 ab* O bb*. But every string in bb* isalso in b*, so we can ssimplify to b* [] ab*.

Homework 3 Languages and Regular Expressions 4

CS 341 Homework 4
Deterministic Finite Automata

1. If M isadeterministic finite automaton. Under exactly what circumstancesise [1L(M)?

2. Describe informally the languages accepted by each of the following deterministic FSMs:

a-

(from Elements of the Theory of Computation, H. R. Lewisand C. H. Papdimitriou, Prentice-Hall, 1998.)

Homework 4 Deterministic Finite Automata

3. Construct a deterministic FSM to accept each of the following languages:
(@ {wO{a b}*:each‘a inwisimmediately preceded and followed by a‘'b’}
(b) {w O {4, b}* : w has abab as a substring}
(c) {w O {a, b}* : w has neither aa nor bb as a substring}
(d) {w O {4, b}* : w has an odd number of as and an even number of b's}
(e) {w O {a, b}* : w has both ab and ba as substrings}

4. Construct a deterministic finite state transducer over {a, b} for each of the following tasks:
(@) On input w produce @', where n is the number of occurrences of the substring ab in w.
(b) Oninput w produce &', where n is the number of occurrences of the substring abain w.
(c) On input w produce a string of length w whose i symbol isan aif i =1 or if i > 1 and thei™ and (i-1)®
symbols of w are different; otherwise, the ™ symbol of the output is b.

5. Construct a dfa accepting L ={w [0 {&, b}* : w contains no occurrence of the string ab} .

6. What language is accepted by the following fsa?

7. Give adfaaccepting {x [J {a, b}* : at least one ain x is not immediately followed by b} .

8. LetL={w{a b}*: wdoesnot endin ba}.
(a) Construct adfaaccepting L.
(b) Give aregular expression for L.

9. Consider L ={a@":0<n< 4}
(a) Show that L isregular by giving adfathat acceptsit.
(b) Give aregular expression for L.

10. Construct a deterministic finite state machine to accept strings that correspond to odd integers without
leading zeros.

11. Imagine atraffic light. Let > ={a}. In other words, the input consists just of astring of as. Think of
each a as the output from atimer that signals the light to change. Construct a deterministic finite state
transducer whose outputs are drawn fromthe set { Y, G, R} (corresponding to the colors yellow, green, and
red). The outputs of the transducer should correspond to the standard traffic light behavior.

12. Recall the finite state machine that we constructed in class to accept $1.00 in change or bills. Modify
the soda machine so that it actually does something (i.e., some soda comes out) by converting our finite state
acceptor to afinite state transducer. Let there be two buttons, one for Coke at $.50 and one for Water at
$.75 (yes, it's strange that water costs more than Coke. The world isa strange place). In any case, there will
now be two new symbolsin the input aphabet, C and W. The machine should behave as follows:

Homework 4 Deterministic Finite Automata 2

» The machine should keep track of how much money has been inserted. If it ever gets more than $1.50, it
should spit back enough to get it under $1.00 but keep it above $.75.

» If the Coke or Water button is pushed and enough money has been inserted, the product and the change
should be outpui.

« If abutton is pushed and there is not enough money, the machine should remember the button push and
wait until there is enough money, at which point it should output the product and the change.

13. Consider the problem of designing an annoying buzzer that goes off whenever you try to drive your car
and you're not wearing a seat belt. (For ssimplicity, we'l just worry about the driver's possible death wish. If
you want to make this harder, you can worry about the other seats aswell.) Design afinite state transducer
whose inputs are drawn from the alphabet { K1, KR, SO, SU, BF, BU}, representing the following events,
respectively: "key just inserted into ignition", "key just removed from ignition”, "seat just became
occupied”, "seat just became unoccupied”, "belt has just been fastened”, and "belt has just been unfastened".
The output alphabet is{ ON, OFF}. The buzzer should go on when ON is output and stay off until OFF is
output.

14. Isit possible to construct afinite state transducer that can output the following sequence:
1010010001000010000010000001...
If it is possible, design one. If it's not possible, why not?

Solutions

1. e O L(M) iff theinitial stateisafinal state. Proof: M will hatinitsinitial state given € asinput. So: (IF)
If theinitial stateisafinal state, then when M haltsin theinitial state, it will bein afinal state and will
accept e asan element of L(M). (ONLY IF) If theinitial stateis not afinal state, then when M haltsin the
initial state, it will reject itsinput, namely €. So the only way to accept € isfor the initial state to be afinal
state.

2.

(o) You must read a to reach the unique final state. Once there, you may read ba
and still accept. So the language is a(ba)*. (Or (abd)*a.) This problem is fairly easy to
analyze. (Informally, you could describe this as all strings that begin and end with a, and
the symbois alternate a and b, or something of this nature; giving the regular expression is
much clearer and easier.)

.{(b) There are two final states that are reachable. This one is quite easy because
once you reach the final states you cannot go further. The obvious answer is aa*bUb. This
can be simplified to a*b. The machine is distinguishing between whether the aumber of a’s
is positive or 0, but there is no need to.

¢) This one is trickier. How can we reach the final state here? By going to the
middle state with a and then returning with . This can be iterated. But while in the
middle state we may iterate ab. So the answer is (a(abd)*b)".

(d) This one is similar to (¢) but easier. We can reach the final state by reading
ab or ba, and in either cass we may iterste again. So (ad U da)* is the solution.

Homework 4 Deterministic Finite Automata 3

{e) Number the states 1,2,3,4,5,6 going right to left, top to bottom. The following
properties characterise each state: »
1: ¢ has been read.
2: zb has been read, for some z € (a U b)° not ending in b.
: zbb has been read, for some z € (a U b)°.
: za has been read, for some z € (a U b)* not ending in a.
: zaa has been read, for some z € (a U b)°.
: zbbay or zaaby has been read, for some z,y € (a U b)°.
Therefore the language is all strings containing bba or aad as a substring, i.e., (a U b)*(bba
aab)(a U b)°.

D oW

(a) L = {w € {a,0}* : each a in w is immediately preceded and immediately

followed by a b}.

" (A regular expression for L is (b°ba)(b*ba)*bs* U °, or, using *,

(b*a)*dt U b®. Notice the necessary distinction between strings with no a’s and those with
a’s. Why doesn’t the simpler §°(b*ad*)* work?)

This will need a machine with s deadstate because as soon as we see an a not preceded

or followed by a b, the string should be rejected and no matter what comes later, the string
is bad. Le., we will assume the string is ok until a specific occurence which tells us to reject
the string.

Clearly e € L since every a in ¢ has the property. Now for any longer string, the
machine only needs to remember what the last symbol was to determine if the string should

be rejected.

So we could make states with the properties:

1: e € L has been read.

2: za has been read, for some z € L not ending in g (the string so far is ok, but we'd better
see 3 b next since za ¢ L.)

3: zb € L has been read (the string so far is ok.)

4: z has been read, such that for no y is zy € L. (we know the string is bad - no matter
what comes later.)

You should be able to draw the machine now. Notice that s = 1, F = (1,3}.
(b) L = {w € {a,b}* : w has ababd as & substring}.
(A regular expression for L is easy: (a U b)*abab(a U b)°.)
Again we need to keep track only of the last part of the string, in this case the last 3
symbols. In this one we are looking for an occurence in the string which will make us accept

the string (compare to Problem (a).) Once there has been an occurence of abab, whatever
follows is irrelevant.

Lol Sl 4

Here are the relevant properties of the string as it is read in:

1: z has been read, for some z € (a Ub)" such that z € L and z does not end in a.

: za has been read, for some z € (a U)® such that z € L and z does not end in ab.

: zab has been read, for some z € (a U)* such that z ¢ L and z does not end in ab.
zaba has been read, for some z € (a U b)* such that 2 ¢ L and 2 does not end in ab.

: zababy has been read, for some z,y € (aUb)* such that = € L and z does not end in ab.

Homework 4 Deterministic Finite Automata

So a 5 state machine can do the trick. The start state is 1, because that’s the property
e has (¢ € (aUb)* and e does not end in a.) Any string with property 1 which is then
followed by b continues to have property 1, s0 §(1,5) = 1. Any string with property 1 which
is then followed by @ now has property 2, so §(1,a) = 2. And so on. Clearly 88,0) =5
since once abab has been seen, that fact cannot be changed - abab continues to have been
seen. Clearly a string has abab as a substring iff it has property 5, so F = {5}. Now you
draw the DFA.

(¢) L = {w € {a,b}" : w has neither aa nor bb as a substring}.

(A regular expression for L is eUa(ba)* (bUe)Ub(abd)* (aUe). This distinguishes between
whether the string starts with a or b or is empty. Another one is (aU e)(ba)*(bUe), though
this is perhaps less obvious.)

Like Problem (a), we should assume the string is ok until we see a bad occurence (aa or
bd). To test this, we clearly only need to keep track of the last symbol read. So the relevant
properties are:

1: e has been read (and so a or b may follow.)

2: za has been read, for some za € L (so only b may follow.)
3: zb has been read. for some zb € L (so only a may follow.)
4: 2 has been read, forsome z ¢ L.

Clearly any string with property 1,2 or 3 isin L, so F = {1,2, 3}. The start state is 1.
Now you draw it.

(d) L = {w € {a,d}" : #(a, w) is odd and #(3, w) is even}.

I use the function #(e,) to mean “the number of occurences of symbol ¢ in string z.”
E.g., #(a,aba) = 2 and #(b,aaa) = 0.

Unlike the previous problems, there is no specific occurence we are looking for, either to
reject or accept the string. Instead, we need to continually monitor it. When the string is
all read in, its status will then determine whether it is accepted or rejected.

Clearly what we need to monitor is the parity (even or odd) of the number of a’s and
the number of b's. These are independent data, so there are 2 x 2 = 4 possible states or
properties:

(0,0): z has been read, where #(a, z) and #(b, z) both even.
(0.1): z has been read, where #(a,z) even and #(b, z) odd.
(1,0): z has been read, where #(a, z) odd and #(b, 2) even.
(1,1): z has been read, where #(a, z) and #(b, z) both odd.

Since #(c,¢) = 0, and 0 is even, the start state is (0,0). (A fair number of people
unnecessarily distinguish between 0 and other even numbers, producing machines with more
states than necessary.) The only final state is (1,0). § can be defined by §((m,n),a) =
(m+1 mod 2,n) and §((m, n),b) = (m,n + 1 mod 2).

This is a technique easily generalised. Finite automata cannot count to arbitrarily high
natural sumbers, but they ces count modulo s number (so-called “clock arithmetic”). The
DFA just given counts the number of a’s and the number of b’s modulo 2. (A number m is
even iff m is congruent to 0 mod 2, written z = 0 mod 2, eg,z=..,-2024,..) You
could design a DFA to accept all strings z with #(a,z) = 7 mod 12 and #(b,z2)EO0mod §
and and #(c,2) = 2 mod 3, i.e., #(a,2) = 7,19,26, ... and #(b, 2) is & multiple of 5 and

Homework 4 Deterministic Finite Automata

#(e,z) = 2,5,8,.... A minimum state DFA to accept this language uses 12 x 5 x 3 = 180
states. For notational convenience, I would call the states (i, j, k), where 0 < i < 12,
0 < j<5and 0 < k< 3. Then the final state would be (7,0,2). The start state is of course
(0,0,0).

What would you do if you wanted all strings z with #(a,z) = 2 or 3 mod 4, or #0,z)=
1 mod 37 (Hint: the states are constructed in the same manner; only the final conditions
are different.)

(e) L = {w € {a,b}" : w has both ab and ba as substrings}.

Here we are looking for not one occurence but two in the string. There are two subtleties.
Either event might occur first, so we must be prepared for the ab or the ba to be read
first. Also, the definition of L does not require the two substrings of ab anb ba to be
nonoverlapping: e.g.,aba € L.

1: e has been read (30 we have seen neither substring.)
: @™ has been read, for some m > 1 (30 we have seen neither substring.)
: a™b" has been read, for some m,n > 1 (so we have seen ab.)
: b™ has been read, for some m > 1 (30 we have seen neither substring.)
: ™a™ has been read, for some m,n 2 1 (so we have seen ba.)
: a™b"az or b™a"bz has been read, for some m,n > 1 and z € (a U b)* (so we have seen
ab and ba.)

N N b W N

Clearly, 1 is the start state and {6} is the set of final states. You should be able to draw
the DFA now.

4. (@

(b)

Homework 4 Deterministic Finite Automata

(©)

b Q a
ab
oS W oI
6. (aa)* (bb* [bb*a(aa)*) = (aa)*b’(e O a(aq)*) = al strings of a's and b's consisting of an even number of
as, followed by at least one b, followed by zero or an odd number of as.

8. (a) (byedal (al by* (b O aa)

7.

Homework 4 Deterministic Finite Automata

9.(a)

(b) (¢ O ab O aabb Daaabbb Casaabbbb)

Homework 4 Deterministic Finite Automata

CS 341 Homework 5
Regular Expressions in UNIX

Regular expressions are all over the place in UNIX, including the programs grep, sed, and vi.
There's a regular expression pattern matcher built into the programming language perl. There's also
one built into the majordomo maillist program, to be used as a way to filter email messages. So it's
easy to see that people have found regular expressions extremely useful. Each of the programs that
uses the basic idea offers its own definition of what a regular expression is. Some of them are more
powerful than others. The definition in perl is shown on the reverse of this page.

1. Write perl regular expressions to do the following things. If you have easy access to a perl
interpreter, you might even want to run them.

(a) match occurrences of your phone number

(b) match occurrences of any phone number

(c) match occurrences of any phone number that occurs more than once in a string

(d) match occurrences of any email address that occurs more than once in a string

(e) match the Subject field of any mail message from yourself

(f) match any email messages where the address of the sender occurs in the body of
the message

2. Examine the constructs in the perl regular expression definition closely. Compare them to the
much more limited definition we are using. Some of them can easily be described in terms of the
primitive capabilities we have. In other words, they don't offer additional power, just additional
convenience. Some of them, though, are genuinely more powerful, in the sense that they enable you
to define languages that aren't regular (i.e., they cannot be recognized with Finite State Machines).
Which of the perl constructs actually add power to the system? What is it about them that makes
them more powerful?

Homework 5 Regular Expressions in UNIX 1

Regular Expressions in perl

. Matches any character except newline
{a-20-9] Matches any single character of set

[*a~20-9] Matches any single character not in set
\d Matches a digit, same as [0~9]
\D Matches a non-digit, same as ["0-9]
\w Matches an alphanumeric (word) character (a~zA-Z0-9_]
\W Matches a non-word character [“a-zA~Z0-9_]
\s Matches a whitespace char (space, tab, newline...)
\S Matches a non-whitespace character

\n Matches a newline

\r Matches a return

\t Matchesatab

\f Matches a formfeed .
\b Matches a backspace (inside {] only)

\0 Matches a null character :

\000 Also matches a null character because...
\nnn Matches an ASCII character of that octal value
\xnn Matches an ASCII character of that hexadecimal value
\ceX Matches an ASCII control character
\metachar ~ Matches the character itself (\|,\.,*...)
(abc) Remembers the match for later backreferences

\1 Matches whatever first of parens matched
\2 Matches whatever second set of parens matched
\3 and so on...

x? Matches 0 or 1 x’s, where x is any of above
x* Matches 0 or more x’s
x+ Maiches 1 or more x’s

x{m,n} Matches at least m x’s but no more than n
abc Matches all of a, b, and ¢ in order
fee|fie|foe Matches one of fee, fie, or foe
\b Matches a word boundary (outside [] only)
\B Matches a non-word boundary

Anchors match to the beginning of a line or string
$ Anchors match to the end of a line or string

from Programming in Perl, Larry Wall and Randall L. Scwartz, O’'Reilly & Associates, 1990.

Homework 5 Regular Expressions in UNIX

CS 341 Homework 6
Nondeter ministic Finite Automata

1. (a) Which of the following strings are accepted by the nondeterministic finite automaton shown on the left below?

0] a
(i) aa
(iii) aab
(iv) €

(b) Which of the following strings are accepted by the nondeterministic finite automaton on the right above?

0] €

(i) ab
(iii) abab
(iv) aba
(V) abaa

2. Writeregular expressions for the languages accepted by the nondeterministic finite automata of problem 1.

3. For any FSM F, let |F| be the number of statesin F. Let R be the machine shown on the right in problem 1.
LetL ={w {0, 1}* : M such that M isan FSM, L(M) = L(R), M| = |R|, and w is the binary encoding of [M[}. Writea
regular expression for L.

4. Draw state diagrams for nondeterministic finite automata that accept these languages:
() (ab)*(ba)* [aa*

(b) ((ab U aab)*a)*

(c) ((ab*a)*b)*

(d) (baO b)* O (bb O a)*

5. Some authors define a nondeterministic finite automaton to be aquintuple (K, Z, A, S, F), where K, Z, A, and F are aswe
have defined them and Sis afinite set of initial states, in the same way that F is afinite set of final states. The automaton may
nondeterministically begin operating in any of these initial states. Explain why this definition is not more general than oursin
any significant way.

6. (a) Find a simple nondeterministic finite automaton accepting ((a [0 b)*aabab).

(b) Convert the nondeterministic finite automaton of Part (a) into a deterministic finite automaton by the method described
in class and in the notes.

(c) Try to understand how the machine constructed in Part (b) operates. Can you find an eguivalent deterministic machine
with fewer states?

7. Construct aNDFSA that accepts the language (ba O ((a O bb) a*by)).

Homework 6 Nondeterministic Finite Automata 1

8. Construct a deterministic finite automaton equivalent to the following nondeterministic automaton:

abO\ b b

9.L={wlO{a b}* : every aisfollowed by at least oneb }
(a) Write aregular expression that describesL.
(b) Write aregular grammar that describesL.
(c) Construct an FSM that accepts precisely L.

10. Consider the following regular grammar, which defines alanguage L :

S->DbF
S->as
F->¢
F->bF
F->aF

(a) Construct an FSM that accepts precisely L.

(b) Write aregular expression that describes L.

(c) Describe L in English.

Solutions

1. (a) [i.] yes [ii.] yes [iii.] no [iv.] yes
(b) [i.] yes [ii.] yes [iii.] yes [iv.] yes [v.] no

2. (a) a* Note that the second state could be eliminated, since there's no path from it to afinal state.
(b) (ab O aba)* Notice that we could eliminate the start state and make the remaining final state the start state and we'd
still get the same resullt.

3. To determine L, we need first to consider the set of machines that accept the same language as R. It turns out that we don't
actually need to know what all such machines look like because we can immediately see that there's at least one with four
states (R), one with 5, one with 6, and so forth, and all that we need to establish L isthe sizes of the machines, not their
structures.. From R, we can construct an infinite number of equivalent machines by adding any number of redundant states.
For example, we could add a new, nonfinal state 1 that is reachable from the start state via an € transition. Since 1 is not final
and it doesn’t go anywhere, it cannot lead to an accepting path, so adding it to R has no affect on R's behavior. Now we have
an equivalent machine with 5 states. We can do it again to yield 6, and so forth. Thus the set of numbers we need to
represent issimply 4 < n. Now all we haveto do isto describe the binary encodings of these numbers. 1f we want to
disallow leading zeros, weget 1(0 0 1) (0O 1) (0 O 1)*. There must be at least three digits of which the first must be 1.

4. (a) The easiest way to do thisisto make a 2 state FSA for aa* and a 4 state one for (ab)* (ba)*, then make a seventh state,
the start state, that nondeterministically guesses which class an input string will fall into.
(b) First we simplify. ((ab O aab)*a*)*
[(LL)* = (L O L))"/
((ab O aab) O a)*

/ union is associative /
(ab O aab 0 &@*, which can be rewritten as

Homework 6 Nondeterministic Finite Automata 2

(ab O a@)*. Thisisso because aab can be formed by one application a, followed by one of ab. So it
isredundant inside a Kleene star. Now we can write atwo state machine;

If you put the loop on a on the start state, either in place of where we have it, or in addition to it, it's also right.
(c) First we simplify: ((a*b*a*)*b)*

[(Ly*Lo*Ls*)* = (L O L, O Ly)* /
(a0 bd a*b)*
/ union is idempotent /
(@@l b)*h)*
Thereisasimple 2 state NDFSM accepting this, which is the empty string and all strings ending with b.
(d) Thisisthe set of strings where either: (1) every ais preceded by ab,
or (2) al b'soccurin pairs.
So we can make a five state nondeterministic machine by making separate machines (each with two states) for the two
languages and then introducing € transitions from the start state to both of them.

5. To explain that any construct A is not more general or powerful than some other construct B, it suffices to show that any
instance of A can be simulated by a corresponding instance of B. So in this case, we have to show how to take a multiple start
state NDFSA, A, and convert it to aNDFSA, B, with asingle start state. We do thisby initially making B equal to A. Then
add to B anew state welll call SO. Make it the only start statein B. Now add € transitions from SO to each of the states that
was a start statein A. So B has asingle start state (thusit satisfies our original definition of a NDFSA), but it simulates the
behavior of A sincethefirst thing it does isto move, nondeterministically, to all of A's start states and then it exactly mimics
the behavior of A.

6. If you take the state machine asit is given, add a new start state and make ¢ transitions from it to the given start states, you
have an equivalent machine in the form that we’ ve been using.

7.(a)

(b) (1) Compute the E(g)s. Since there are no € transitions, E(q), for al statesqisjust {q}.

(2 S ={q0}

3o = { ({q0}, & {q0, q1}),
({90}, b, {{q0}),
({90, g1}, a {q0, g1, g2}),
({90, g1}, b, {q0}),
({90, a1, 92}, a {q0, a1, g2}),
({90, a1, g2}, b, {90, g3}),
({90, g3}, & {90, g1, g4}),
({90, g3}, b, {q0}),
({90, g1, g4}, a {q0, a1, g2}),
({90, g1, g4}, b, {q0, g5}),
({90, g5}, & {q0, q1}),
({90, g5}, b, {q0}) }

Homework 6 Nondeterministic Finite Automata 3

(4 K" ={{q0}, {00, q1},{q0, a1, g2}, {q0, 93}, {90, q1, g4}, {q0, 5} }
() F ={{q0, a5}}
(c) Thereisn’t asimpler machine since we need a minimum of six statesin order to keep track of how many characters
(between 0 and 5) of the required trailing string we have seen so far.

8. We can build the following machine really easily. We make the path from 1 to 2 to 3 for the ba option. The rest isfor the
second choice. We get a nondeterministic machine, as we generally do when we use the simple approach.

Y bl@a,

In this case, we could simplify our machine if we wanted to and get rid of state 4 by adding atransition on b from2to 5.

9. (1) E(q0) ={q0, g1}, E(q1) ={ql}, E(92) ={qg2}, E(a3) ={a3, g4}, E(q4) = { a4}
(2 s ={q0, q1}
(]9 = { {90, g1}, & {q0, q1}),
({90, g1}, b, {q0, q1, g2, g4}),
({90, g1, 2, g4}, a {90, g1, g3, g4}),
({90, g1, g2, g4), b, {q0, g1, g2, g4}) }
({90, g1, g3, g4}, a {90, g1, g3, g4}),
({90, g1, 3, g4}, b, {d0, g1, g2, g4}),
(4) K ={ {d0, g1}, {q0, g1, g3, g4}, {q0, g1, g2, g4} }
(®) F ={{d0, a1, g3, g4}, {q0, a1, g2, g4} }

This machine corresponds to the regular expression a*b(al b)*

10. (a)

(b) (a0 by*ba* OR a*b(all b)*

(oL={wO{ab}*: thereisat least oneb}

Homework 6 Nondeterministic Finite Automata 4

CS 341 Homework 7
Review of Equivalence Relations

1. Assume afinite domain that includes just the specific cities mentioned here. Let R = the reflexive,
symmetric, transitive closure of:
(Austin, Dallas), (Dallas, Houston), (Dallas, Amarillo), (Austin, San Marcos),
(Philadel phia, Pittsburgh), (Philadel phia, Paoli), (Paoli, Scranton),
(San Francisco, Los Angeles), (Los Angeles, Long Beach), (Long Beach, Carmel)
(a) Draw R asagraph.
(b) List the elements of the partition defined by R on its domain.

2. Let R be arelation on the set of positive integers. Define R asfollows:
{(a,b): (amod 2) = (bmod 2)} Inother words, R(a, b) iff aand b have the same remainder when
divided by 2.
(a) Consider the following example integers: 1, 2, 3, 4, 5, 6. Draw the subset of R involving just these values as
agraph.
(b) How many elements are there in the partition that R defines on the positive integers?
(c) List the elements of that partition and show some example elements.

3. Consider the language L, over the alphabet X = { a, b}, defined by the regular expression
a*(bOeg) a*
Let R beareation on *, defined as follows:
R(x, y) iff bothx andy arein L or neither x nor y isin L. In other words, R(x,y) if x and y have
identical statuswith respectto L.
(a) Consider the following example elements of 2*: €, b, aa, bb, aabaaa, bab, bbaabb. Draw the subset of R
involving just these values as a graph.
(b) How many elements are there in the partition that R defines on >*?
(c) List the elements of that partition and show some example elements.

Solutions
1 (b) [citiesin Texag], [citiesin Pennsylvania), [citiesin California]
2. (b) Two

(c) [even integers] Examples: 2, 4, 6, 106
[odd integers] Examples: 1, 3, 5, 17, 11679

3. (a) (Hint: L isthe language of strings with no more than one b.)
(b) Two
(c) [stringsin L] Examples: €, aa, b, asbaaa
[stringsnotin L] Examples: bb, bbaabb, bab

Homework 7 Review of Equivalence Relations 1

CS 341 Homework 8
Finite Automata, Regular Expressions, and Regular Grammars

1. We showed that the set of finite state machinesis closed under complement. To do that, we presented a
technique for converting a deterministic machine M into a machine M' such that L (M") is the complement of
L(M). Why did we insist that M be deterministic? What happens if we interchange the final and nonfinal states
of anondeterministic finite automaton?

2. Give adirect construction for the closure under intersection of the languages accepted by finite automata.
(Hint: Consider an automaton whose set of statesis the Cartesian product of the sets of states of the two
original automata.) Which of the two constructions, the one given in the text or the one suggested in this
problem, is more efficient when the two languages are given in terms of nondeterministic finite automata?

3. Using the either of the construction techniques that we discussed, construct a finite automaton that accepts
the language defined by the regular expression: a* (ab [ba[J €)b*.

4. Write aregular expression for the language recognized by the following FSM:

a—’
b
b a
a
ab
b
5. Consider the following FSM M:
Q)

(a) Write aregular expression for the language accepted by M.
(b) Give adeterministic FSM that accepts the complement of the language accepted by M.

w

6. Construct a deterministic FSM to accept each of the following languages:
(a) (aba O aabaa)*
(b) (ab)* (aab)*

7. Consider the language L = {w [(g, b)* : w has an odd number of a's}

(a) Write aregular grammar for L.
(b) Use that grammar to derive a (possibly nondeterministic) FSA to accept L.

Homework 8 Finite Automata, Regular Expressions, and Regular Grammars 1

8. Construct a deterministic FSM to accept the intersection of the languages accepted by the following FSMs:

a a b b
b /)
g

@ b
BN o

9. Consider the following FSM M:

q@/b :@ % : >@D‘”

(a) Give aregular expression forL (M).
(b) Describe L(M) in English.

Solutions

1. We define acceptance for aNDFSA corresponding to the language L as there existing at least one path that
getsusto afinal state. There can be many other paths that don't, but we ignore them. So, for example, we
might accept a string S that gets us to three different states, one of which accepts (which is why we accept the
string) and two of which don't (but we don't care). If we simply flip accepting and nonaccepting states to get a
machine that represents the complement of L, then we still have to follow all possible paths, so that same string
Swill get us to one nonaccepting state (the old accepting state), and two accepting states (the two states that
previously were nonaccepting but we ignored). Unfortunately, we could ignore the superfluous nonaccepting
pathsin the machine for L, but now that those same paths have gotten us to accepting states, we can't ignore
them, and we'll haveto accept S. In other words, we'll accept S as being in the complement of L, even though
we also accepted it asbeing in L. The key isthat in a deterministic FSA, argjecting path actually means reject.
Thus it makes senseto flip it and accept if we want the complement of L. InaNDFSA, arejecting path doesn't
actually mean reject. So it doesn't make senseto flip it to an accepting state to accept the complement of L.

2.

Given two DFA’s M\, = (K1,L,6,8,F1) and M3 =
(K3, £, 82, 83, F2), we wish to construct a new machine M = (X, L, §, s, F) such that L(M) =
L(My) N L(M3). (Notice that of course the alphabets of the 3 DFA’s will be equal.)

Since the regular languages are closed under union and complementation, and since
Linky = m, closure under intersection is already proved. This direct construction
will avoid using the earlier constructions and illustrates a different proof technique.

The hint is to let K = Ky x K3. Thus each state of M is really a pair (g1, q2) of states
from M, and M;. The intuition will be that M simultaneously simulates M, and Mz on a
given input string. M will keep track of what states M; and M; would be in if they were
reading the string. These are two independent pieces of data; hence the use of a pair for
M'’s state.

Homework 8 Finite Automata, Regular Expressions, and Regular Grammars 2

Initially, M, and M3 start in their start states, s; and s3. Therefore we should let
s = (81, 92).

Now suppose that M, is in some state ¢; € K| and reads symbol ¢. What state does M,
enter? 61(q1,0). Similarly for M;. So we would like M, when in state (q;,q2) and reading
o, to enter state (§1(q1,2),82(q2, 7)); otherwise M would not be correctly keeping track of
what M, and M2 would do."So we define, for all (¢1,¢3) € K and alle € &,

(91, 92)s 0) = ($1(q1, @), 63(g2, 7))

Notice that § : K x T — K. so everything is consistent and correct. Since K = K, x K,
this means 6 is actually a function taking a pair of states (from M; and M-) and a symbol
from L.

We've now got the transitions defined, and M correctly simulates M; and Ma. Le.,

5(s,z) = (q1,q3)
iff
51(81,z) = q1 and §3(s3,2) = ¢3.}

So we only need to define F'. When shouid M accept z? Exactly when both M, and M,
do, since z € L(My) N L(M3) iff z € L(M,) and £ € L(M3). Therefore F should consist of
all those states (¢1,92) € K such that ¢; € F1 and g3 € Fy. This can be written as

F={(q1,92) : 1 € F\ and ¢2 € F3},

or more succinctly as F = Fy x F3.
Thus the complete answer is

M = (K, x K3, L,§ (81,93), F1 x F3)

where '
6((910 “)- ’) = (61(111 ’)o &(”s ’))'

Notice that this assames M; and M; are deterministicc. What if M; and M3 are not
deterministic? We can assume that they are deterministic without loss of generality, because
if they were not, the subset construction can be applied to them to produce equivalent
DFA’s. However, this construction can be modified to work directly on NFA's if desired.
Unfortunately, it gets rather messy because of the following problem:

We are given two NFA’s M) = (K}, E,A1,0,F1) and My =
(K3,Z.A4, 32, F3), and we wish to construct a new machine M = (K, L, A, s, F) such that
L(M) = L(My) N L(Ma).

‘Todﬂuﬂy.éhcm:doynbohmmwhmnmuﬂywit to strings by the
recursive generalization:

§(q.e) = 4
5(q.02) = 6(8(q.0). %)

Le., if it is determined what § does with s singie symbol, then it is determined what § does with a string
simply by tracing through symbol by symbol.

Homework 8 Finite Automata, Regular Expressions, and Regular Grammars

If we do the obvious thing and define

A= {((QI- Q). 2, (qlh 22)) : (a2, ﬁ) € Ay and (920 <, qs) € Aﬂ}v

i.e., we make a transition (1,92) = (¢},¢3) in M exactly when there are transitions ¢; — ¢}
in M, and q3 — ¢4 in Ma,then there is trouble. The trouble is that the transitions in an
NFA need not read exactly 1 symbol, so M defined this way will be unable to simulate many
of moves of My and Ma. E.g., if M} has the transition (1,1, aa, q1) and M3 has (32, a, ¢3), you
can see that M will have dificulty keeping in synch. So A will have to be defined much more
cleverly (and compiexly). So it’s much easier to just assume M; and .\ are deterministic.

4. Without using the algorithm for finding aregular expression from an FSM, we can note in this case that the
lower right state is a dead state, i.e., an absorbing, non-accepting state. We can leave and return to the initial
state, the only accepting state, by reading ab along the upper path or by reading ba along the lower path. These

can be read any number of times, in any order, so the regular expression is (ab [J ba)*. Note that € isincluded,
asit should be.

5.(a) € O ((a O ba)(ba)*b)

(b)

6. (a)

ab

Homework 8 Finite Automata, Regular Expressions, and Regular Grammars 4

(b)

7. (&) Nonterminal Sisthe starting symbol. We'l use it to generate an odd number of as. Well aso use the
nonterminal E, and it will always generate an even number of as. So, whenever we generate an a, we must

either stop then, or we must generate the nonterminal E to reflect the fact that if we generate any more ds, we
must generate an even number of them.

S-a
S- a
S - bS
E-b
E - bE
E - aS

9. (a) (al bb*aa)* (¢ O bb*(al €))
(b) All stringsin {& b}* that contain no occurrence of bab.

Homework 8 Finite Automata, Regular Expressions, and Regular Grammars 5

CS 341 Homework 9
Languages That Areand Are Not Regular

1. Show that the following are not regular.

(@ L ={ww":wO{a b}*}

(b) L ={ww:w O{a b}*}

(c)L={ww':w{a b}*}, wherew' stands for w with each occurrence of areplaced by b, and vice versa.

2. Show that each of the following is or is not a regular language. The decimal notation for a number is the
number written in the usual way, as a string over the alphabet {-, 0, 1, ..., 9}. For example, the decimal
notation for 13 isastring of length 2. In unary notation, only the symbol 1 is used; thus 5 would be represented
as 11111 in unary notation.

(&) L ={w : wisthe unary notation for a natural number that is a multiple of 7}

(b) L ={w : wisthe decimal notation for a natural number that isamultiple of 7}

(c) L ={w : wisthe unary notation for a natural number n such that there exists a pair p and g of twin primes,
both > n} Two numbers p and q are a pair of twin primes iff g = p + 2 and both p and q are prime. For
example, (3, 5) isapair of twin primes.

(d) L ={w:wis, for somen = 1, the unary notation for 10"}

(e) L ={w:wis, for somen = 1, the decimal notation for 10"}

(f) L = {w is of the form x#y, where x, y 0 {1} and y = x+1 when x and y are interpreted as unary numbers}
(For example, 11#111 and 1111#11111 0 L, while 11#11, 1#111, and 1111 0 L.)

(@ L={av:In-j|=2}

(h) L ={uww?v:u,v,wO{a b}+}

()L ={w {a b}* : for each prefix x of w, #a(x) = #b(x)}

3. Are the following statements true or false? Explain your answer in each case. (In each case, afixed alphabet
> isassumed.)

(a) Every subset of aregular languageis regular.

(b) LetL"=L1n L2. If L"isregular and L2 isregular, L1 must be regular.

(c)If Lisregular, thensoisL'={xy:xOLandy OL}.

(d) {w : w=w"} isregular.

(e) If L isaregular language, then soisL' ={w:w OL andw? OL}.

(f) If Cisany set of regular languages, [LIC (the union of all the elements of C) isaregular language.
(9) L = {xyx?: x,y O0>*} isregular.

(h) If L'=L10L2isaregular language and L1 isaregular language, then L2 is aregular language.
(i) Every regular language has a regular proper subset.

(1) If L1 and L2 are nonregular languages, then L1 [J L2 isalso not regular.

4. Show that the language L = {ah™: n# m} isnot regular.

5. Prove or disprove the following statement:
If Ly and L, are not regular languages, then L, [L, isnot regular.

6. Show that the language L = {x [{a, b}* : x = a'ba ™bad™ ™"} is not regular.
7. Show that the language L = {x O {& b}* : x contains exactly two more b's than a's} is not regular.

8. Show that the language L = {x [1{&, b}* : x contains twice as many dsas b's} isnot regular.

Homework 9 Languages That Are and Are Not Regular 1

9. LetL ={w: #a(w) = #b(w)}. (#a(w) =the number of asinw.)
(a) IsL regular?
(b) IsL* regular?

Solutions

1. (@) L ={ww®:wDO{a b}*}. L istheset of al strings whose first half is equal to the reverse of the second
half. All stringsin L must have even length. If L isregular, then the pumping lemmatells usthat [IN > 1, such
that O stringsw O L, where jw| = N, X, y, z, such that w = xyz, [xy|< N,y # ¢, and 0 g =0, xy%zisinL. We
must pick astringw [J L and show that it does not meet these requirements.

First, don't get confused by the fact that we must pick a string w, yet we are looking for strings of the form
wwR. These are two independent uses of the variable name w. It just happens that the problem statement uses
the same variable name that the pumping lemma does. If it helps, restate the problemasL = {ss": s {a, b}*}.

We need to choose a“long” w, i.e., one whose length is greater than N. But it may be easier if we choose one
that is even longer than that. Remember that the fact that [xy| < N guarantees that y (the pumpable region) must
occur within thefirst N characters of w. If we don’t want to have to consider alot of different possibilities for
what y could be, it will help to choose aw with along first region. Let’slet w = a'bba. We know that y must
consist of one or more @ sin the region beforethe b’s. Clearly if we pump in any extraa’'s, we will no longer
haveastringinL. Thuswe know that L is not regular.

Notice that we could have skipped the b’s altogether and chosen w = a“a". Again, we’ d know that y must be a
string of one or more a's. Unfortunately, if y is of even length (and it could be: remember we don’t get to pick
y), then we can pump in all the copies of y we want and still have astringin L. Sure, the boundary between the
first half and the second half will move, that that doesn’t matter. It isusually good to choose a string with a
long, uniform first region followed by a definitive boundary between it and succeeding regions so that when
you pump, it's clearly the first region that has changed.

(b) L ={ww : w O {a b}*}. Well use the pumping lemma. Again, don't get confused by the use of the
variable w both to define L and as the name for the string we will choose to pump on. Asis always the case,
the only real work we have to do isto choose an appropriate stringw. We need one that islong enough (i.e., |w|
> N). And we need one with firm boundaries between regions. So let’s choosew = a'bab. Since [xy| < N, we
know that y must occur in the first aregion. Clearly if we pump in any additional a's, the two halves of w will
no longer be equal. Q. E. D. By the way, we could have chosen other strings for w. For example, let w =
ba'ba. But then there are additional choices for what y could be (since y could include the initial b) and we
would have to work through them all.

(o) L ={ww':w [{a b}*}, where w' stands for w with each occurrence of areplaced by b, and vice versa.
We can prove this easily using the pumping lemma. Letw = a'b". Since [xy| < N, y must be astring of all a's.
So, when we pump (either in or out), we modify the first part of w but not the second part. Thus the resulting
stringisnotinlL.

We could also solve this problem just by observing that, if L isregular, soisL' =L n ab*. ButL'isjustab",
which we have aready shown isnot regular. ThusL isnot regular either.

2.(a) L ={w : wisthe unary notation for a natural number that isamultiple of 7}. L isregular sinceit can be
described by the regular expression (1111111)*.

Homework 9 Languages That Are and Are Not Regular 2

(b) L ={w : w isthe decimal notation for a natural number that is a multiple of 7}. L isregular. We can
build a deterministic FSM M to accept it. M is based on the standard algorithm for long division. The states
represent the remainders we have seen so far (so there are 7 of them, corresponding to 0 — 6). The start state, of
course, is 0, corresponding to aremainder of 0. So isthefinal state. The transitions of M are asfollows:

OsO{0-6} andJc O{0-9}, s, ¢) = (10s + ¢) mod 7
So, for example, on the input 962, M would first read 9. When you divide 7 into 9 you get 1 (which we don’t
care about since we don't actually care about the answer — we just care whether the remainder is 0) with a
remainder of 2. So M will enter state 2. Next it reads 6. Since it isin state 2, it must divide 7 into 2*10 +6
(26). It gets aremainder of 5, so it goesto state 5. Next it reads 2. Sinceit isin state 5, it must divide 7 into
5*10 + 5 (52), producing a remainder of 3. Since 3 is not zero, we know that 862 is not divisible by 7, so M
rejects.

(c) L ={w : wisthe unary notation for a natural number such that there exists a pair p and q of twin primes,
both>n.}. L isregular. Unfortunately, thistime we don’'t know how to build a PDA for it. We can, however,
prove that it is regular by considering the following two possibilities:

(1) Thereis an infinite number of twin primes. In this case, for every n, there exists a pair of twin primes
greater than n. ThusL = 1*, which isclearly regular.

(2) Thereis not an infinite number of twin primes. In this case, there is some largest pair. There is thus
also alargest n that has a pair greater than it. Thus the set of such n’sisfinite and so isL (the unary
encodings of those values of n). Since L isfinite, itisclearly regular.

It is not known which of these cases is true. But interestingly, from our point of view, it doesn’'t matter. L is
regular in either case. It may bother you that we can assert that L is regular when we cannot draw either an
FSM or aregular expression for it. It shouldn’'t bother you. We have just given a nonconstructive proof that L
is regular (and thus, by the way, that some FSM M accepts it). Not all proofs need to be constructive. This
situation isn’t realy any different from the case of L' ={w : w is the unary encoding of the number of siblings
| have}. You know that L' is finite and thus regular, even though you do not know how many siblings | have
and thus cannot actually build amachineto accept L'.

(d) L ={w : wis, for somen = 1, the unary notation for 10"}. So L ={1111111111, 1'®, 1'°° . }. Lisn't
regular, since clearly any machine to accept L will have to count the 1's. We can prove this using the pumping
lenma: Let w = 1", N < P and P is some power of 10. y must be some number of 1's. Clearly, it can be of
length at most P. When we pump it in once, we get a string s whose maximum length is therefore 2P. But the
next power of 10is10P. Thusscannot beinL.

(e L ={w : wis, for some n > 1, the decimal notation for 10"}. Often it's easier to work with unary
representations, but not inthiscase. ThisL isregular, sinceit isjust 100*.

(f) L ={w isof theform x#y, where x, y 0 {1} " and y = x+1 when x and y are interpreted as unary numbers}
(For example, 11#111 and 1111#11111 0 L, while 11#11, 1#111, and 1111 00 L.) L isn'tregular. Intuitively, it
isn’t regular because any machine to accept it must count the 1's before the # and then compare that number to
the number of 1's after the #. We can prove that this is true using the pumping lemma: Let w = 1"#1"**. Since
[xy] £ N, y must occur in the region before the #. Thus when we pump (either in or out) we will change x but
not make the corresponding changetoy, so y will no longer equal x +1. Theresulting stringisthusnotinL.

()L ={ab: |n—j|=2}. Lisn'tregular. L consistsof all strings of the form a*b* where either the number
of asistwo more than the number of b's or the number of b’'s is two more than the number of a's. We can

show that L is not regular by pumping. Let w = a'b™*% Since [xy| < N, y must equal & for some p > 0. We can
pump y out once, which will generate the string & "b™*? whichisnot in L.

Homework 9 Languages That Are and Are Not Regular 3

(h) L ={uww"v :u,v,w O{a b}+}. L isregular. Thismay seem counterintuitive. But any string of length
at least four with two consecutive symbols, not including the first and the last ones, isin L. We simply make
everything up to the first of the two consecutive symbolsu. Thefirst of the two consecutive symbolsisw. The
second is W®. And the rest of the string isv. And only strings with at least one pair of consecutive symbols
(not including the first and last) arein L because w must end with some symbol s. w® must start with that same
symbol s. Thus the string will contain two consecutive occurrences of s. L is regular because it can be
described the regular expression (a b)* (aa 0 bb) (a b)".

() L ={w {a b}* : for each prefix x of w, #a(x) = #b(x)}. First we need to understand exactly what L is.
In order to do that, we need to define prefix. A string x isa prefix of astringy iff [z [0 ¥* such that y = xz. In
other words, x is a prefix of y iff x isan initial substring of y. For example, the prefixes of abba are €, a, ab,
abb, and abba. So L is all strings over {a, b}* such that, at any point in the string (reading left to right), there
have never been more b’sthan a's. The strings €, a, ab, aaabbb, and ababaarein L. The strings b, ba, abba, and
ababb are not in L. L is not regular, which we can show by pumping. Let w = a'b". Soy = &, for some
nonzero p. If we pump out, there will be fewer a sthan b’'sin the resulting string s. So sisnot in L since every
string is a prefix of itself.

3. (a) Every subset of aregular language is regular. FALSE. Often the easiest way to show that a universally
quantified statement such as this is false by showing a counterexample. So consider L = a. L is clearly
regular, since we have just shown a regular expression for it. Now consider L' = d: i isprime. L' O L. But we
showed in classthat L' is not regular.

(b) Let L' =L1 n L2 If L"isregular and L2 is regular, L1 must be regular. FALSE. We know that the
regular languages are closed under intersection. But it isimportant to keep in mind that this closure lemma (as
well as all the others we will prove) only says exactly what it says and no more. In particular, it says that:

If L1isregular and L2 isregular
ThenL'isregular.

Just like any implication, we can’t run this one backward and conclude anything from the fact that L' is regular.
Of course, we can’'t use the closure lemma to say that L1 must not be regular either. So we can’'t apply the
closure lemma here at all. A rule of thumb: it is almost never true that you can prove the converse of a closure
lemma. So it makes sense to look first for a counterexample. Wedon't havetolook far. LetL'=[. LetL2=
0. SoL'and L2 areregular. Now let L1 ={d:iisprime}. L1lisnotregular. YetL'=L1 n L2. Notice that
we could have made L2 anything at all and its intersection with [0 would have been J. When you are looking
for counterexamples, it usually works to look for very simple ones such as [or >2*, so it's a good idea to start
there first. [0 works well in this case because we're doing intersection. >* is often useful when we're doing
union.

(c) If Lisregular,thensoisL'={xy:xOLandy OL}. TRUE. Proof: Sayingthaty [JL isequivaentto
saying that y O L. Since the regular languages are closed under complement, we know that L isalso regular. L’
is thus the concatenation of two regular languages. The regular languages are closed under concatenation.
Thus L' must be regular.

(d) L ={w:w =w"} isregular. FALSE. L is NOT regular. You can prove this easily by using the
pumping lemmaand letting w = a“bal".

(e) If L isaregular language, then soisL' ={w:w O L andw" OL}. TRUE. Proof: Sayingthatw®OL is

equivalent to saying that w O L®. If w must bein both L and L¥, that is equivalent to saying that L' = L n LF.
L isregular because the problem statement says so. L™ is also regular because the regular languages are closed

Homework 9 Languages That Are and Are Not Regular 4

under reversal. The regular languages are closed under intersection. So the intersection of L and L* must be
regular.

Proof that the regular languages are closed under reversal (by construction): If L is regular, then there exists
some FSM M that acceptsit. From M, we can construct anew FSM M’ that accepts LR, M’ will effectively run
M backwards. Start with the states of M’ equal to states of M. Take the state that corresponds to the start state
of M and make it the final state of M'. Next we want to take the final states of M and make them the start states
of M'. But M' can have only a single start state. So create a new start state in M" and create an epsilon
transition from it to each of the statesin M’ that correspond to final states of M. Now just flip the arrows on all
the transitions of M and add these new transitionsto M'.

(f) If Cisany set of regular languages, LIC is a regular language. FALSE. If Cis afinite set of regular
languages, thisistrue. It follows from the fact that the regular languages are closed under union. But suppose
that C is an infinite set of languages. Then this statement cannot be true. If it were, then every language would
be regular and we have proved that there are languages that are not regular. Why is this? Because every
language is the union of some set of regular languages. Let L be an arbitrary language whose elements are wy,
Wy, W3, Let C bethe set of singleton languages {{wa}, {wy}, {ws}, ... } such that w; [0 L. The number of
elements of Cisequal to the cardinality of L. Each individual element of C is alanguage that contains asingle
string, and so it isfinite and thus regular. L = [1C. Thus, since not all languages are regular, it must not be the
case that [IC is guaranteed to be regular. If you're not sure you follow this argument, you should try to come
up with a specific counterexample. Choose an L such that L is not regular, and show that it can be described as

[1C for some set of languages C.

(9) L = {xyx":x,y O=*} isregular. TRUE. Why? We ve aready said that xx~ isn’t regular. Thislooks a
lot like that, but it differsin akey way. L isthe set of strings that can be described as some string x, followed
by some string y (where x and y can be chosen completely independently), followed by the reverse of x. So, for
example, it is clear that abcceecba O L (assuming = ={a, b, ¢}). Welet x = ab, y = cccee, and x¥ = ba. Now
consider abbcccccaaa. Y ou might think that this stringisnotinL. Butitis. Welet x = a, y = bbcccecaa, and
xR =a What about accch? This string too isin L. Welet x = €, y = acceb, and x® = €. Note the following
things about our definition of L: (1) Thereis no restriction on the length of x. Thuswe can let x =¢€. (2)There
is no restriction on the relationship of y tox. And (3) e¥=¢. ThusL isin fact equal to >* because we can take
any stringw in =* and rewriteit as€ w €, which is of the form xyx®. Since Z* isregular, L must be regular.

(h) If L' = L1 0 L2 isaregular language and L1 is a regular language, then L2 is a regular language.
FALSE. Thisisanother attempt to use a closure theorem backwards. Let L1 =3*. L1lisclearly regular. Since
L1 contains all strings over %, the union of L1 with any language isjust L1 (i.e., L' = ¥*). If the proposition
were true, then all languages L2 would necessarily be regular. But we have already shown that there are
languages that are not regular. Thus the proposition must be false.

(i) Every regular language has a regular proper subset. FALSE. [isregular. And it is subset of every set.
Thusit is a subset of every regular language. However, it isnot aproper subset of itself. Thusthis statement is
false. However the following two similar statements are true:

(1) Every regular language has a regular subset.
(2) Every regular language except [1 has aregular proper subset.

() If L1 and L2 are nonregular languages, then L1 0 L2 isalso not regular. False. Let L1 ={adbh™, n=>m}
andL2={adb™, n<m}.L10L2=a*b*, whichisregular.

Homework 9 Languages That Are and Are Not Regular 5

4. If L wereregular, then its complement, L,, would also be regular. L, contains all strings over {a, b} that are
not in L. There are two ways not to be in L: have any as that occur after any b's (in other words, not have all
the asfollowed by all the b's), or have an equal number of asand b's. So now consider

L,=L; n ab*
L, contains only those elements of L, in which the as and b'sare in the right order. In other words,

L,= ab"
But if L were regular, then L; would be regular. Then L,, since it is the intersection of two regular languages
would also be regular. But we have already shown that it (a'h") is not regular. Thus L cannot be regular.

5. This statement isfalse. To proveit, we offer a counter example. Let L, ={adh™: n=m} and let L, =
{a'b™: n#m}. We have shown that both L, and L, are not regular. However,
L, O L,=a*b*, whichisregular.
There are plenty of other examplesaswell. LetL;={d.n>1andnisprime}. LetL,= {ad“ n>1andnisnot
prime}. Neither Ly nor Lyisregular. ButL; O L,=a’, whichisclearly regular.

6. This is easy to prove using the pumping lemma. Let w = a'ba'ba. We know that xy must be contained
within the first block of as. So, no matter how y is chosen (as long as it is not empty, as required by the
lemma), for any i > 2, xyiz 0 L, since the first block of as will be longer than the last block, which is not
allowed. ThereforeL isnot regular.

7. First, let L' = L n a*b*, which must be regular if L is. We observe that L' = a8'b™?: n> 0. Now use the
pumping lemmato show that L' is not regular in the same way we used it to show that ah" is not regular.

8. We use the pumping lemma. Let w = &"b". xy must be contained within the block of a's, so when we pump
either in or out, it will no longer be true that there will be twice as many as as b's, since the number of as
changes but not the number of b's. Thus the pumped string will not bein L. Therefore L isnot regular.

9. (a) L isnot regular. We can prove this using the pumping lemma. Let w = a*b". Since'y must occur within
the first N characters of w, y = & for some p > 0. Thus when we pump y in, we will have more asthan b's,
which produces strings that are not in L.

(b) L* isaso not regular. To prove this, we need first to prove alemma, which we'll call EQAB: [s, s [
L* = #a(s) = #b(s). To prove the lemma, we first observe that any string s in L* must be able to be
decomposed into at least one finite sequence of strings, each element of which isin L. Some strings will have
multiple such decompositions. In other words, there may be more than one way to form s by concatenating
together stringsin L. For any string sin L*, let SQ be some sequence of elements of L that, when concatenated
together, form s. It doesn't matter which one. Define the function HowMany on the elements of L*.
HowMany(x) returns the length of SQ. Think of HowMany as telling you how many times we went through the
Kleene star loop in deriving x. We will prove EQAB by induction on HowMany(s).

Base case: If HowMany(s) = O, then s= €. #a(s) = #b(s).
Induction hypothesis: If HowMany(s) < N, then #a(s) = #b(s).
Show: If HowMany(s) = N+1, then #a(s) = #b(9).

If HowMany(s) = N+1, then 0w,y such that s=wy, w [0 L*, HowMany(w) = N, and y [J L. In other words,
we can decompose s into a part that was formed by concatenating together N instances of L plus a second part
that isjust one more instance of L. Thuswe have:

Homework 9 Languages That Are and Are Not Regular 6

(1) #a(y) = #o(y). Definition of L

(2) #a(w) = #b(w). Induction hypothesis

(3) #a(s) = #a(w) + #a(y) s=wy

(4) #b(s) = #b(w) + #b(y). s=wy

(5) #b(s) = #a(w) + #b(y) 4,2

(6) #b(s) = #a(w) + #a(y) 51

(7) #b(s) = #a(s) 6,3 Q.E.D.

Now we can show that L* isn’'t regular using the pumping lemma. Let w = d'b". Since y must occur within the
first N characters of w, y = & for some p > 0. Thus when we pump y in, we will have a string with more a's
than b’'s. By EQAB, that string cannot bein L*.

Homework 9 Languages That Are and Are Not Regular 7

CS 341 Homework 10
State Minimization

1. (a) Give the equivalence classes under =, for these languages:
(i) L=(aab0O ab)*
(i) L ={x: x contains an occurrence of aababa}
(iii) L ={xx?:xO{a b}*}
(iv) L={xx:x0O{a b}*}
(v) L,={a b}a{a b}", wheren> 0isafixed integer
(vi) The language of balanced parentheses
(b) For those languages in (@) for which the answer isfinite, give a deterministic finite automaton with the smallest number
of states that accepts the corresponding language.

2.LetL ={x0O{a b}* : x contains at least one aand endsin at |east two b's}.
(a) Write aregular expression for L.
(b) Construct a deterministic FSM that acceptsL.
(c) Let R, be the equivalence relation of the Myhill-Nerode Theorem. What partition does R, induce on the set
{a, bb, bab, abb, bba, aab, abba, bbaa, baaba} ?
(d) How many equivalence classes are there in the partition induced on * by R, ?

3.LetL ={x0O{a b}*: x beginswith aand endswith b}.

(a) What isthe nature of the partition induced on >2* by R, the equivalence relation of the Myhill-Nerode Theorem? That
is, how many classes are there in the partition and give a description of the stringsin each.

(b) Using these equivalence classes, construct the minimum state deterministic FSM that acceptsL.

4. Suppose that we are given alanguage L and a deterministic FSM M that acceptsL. AssumelL isasubset of {a, b, c}*. Let
R, and Ry, be the equivalence relations defined in the proof of the Myhill-Nerode Theorem. True or False:

(a) If we know that x and y are two strings in the same equivalence class of R, we can be sure that they are in the same
equivalence class of Ry.

(b) If we know that x and y are two strings in the same equivalence class of Ry, we can be sure that they are in the same
equivalence class of R, .

(c) There must be at least one equivalence class of R, that has contains an infinite number of strings.

(d) Ry induces a partition on { a, b, c}* that has afinite number of classes.

(e) If e O L, then [€] (the equivalence class containing €) of R, cannot be an infinite set.

5. Use the Myhill-Nerode Theorem to prove that { 8'b™c™ ™ bPd : m, n, p = 0} is not regular.

6. (a) In classwe argued that the intersection of two regular languages was regular on the basis of closure properties of
regular languages. We did not show a construction for the FSM that recognizes the intersection of two regular languages.
Such a construction does exist, however, and it is suggested by thefact that L; n L, =>* - (Z* - Ly) O (Z* - Ly)).

Given two deterministic FSMs, M; and M, that recognize two regular languages L ; and L ,, we can construct an FSM that

recognizesL =L, n L, (in other words strings that have all the required properties of both L, and L,), as follows:

1. Construct machines M;' and M>', as deterministic versions of M; and M. This step is necessary because complementation
only works on deterministic machines.

2. Construct machines M;" and M,", from M;" and M5, using the construction for complementation, that recognize >* - L,
and Z* - L,, respectively.

3. Construct M3, using the construction for union and the machines M;" and M.,", that recognizes
((=* - Ly O (Z* - Ly)). Thiswill be anondeterministic FSM.

4. Construct My, the deterministic equivaent of M.

5. Construct M|, using the construction for complementation, that recognizes * - ((Z* - L,) O (Z* - Ly)).

Now consider: > ={a b}

L, ={w O Zz* : al asoccur in pairs} e.g., aa, aaaa, aabaa, aabbaabbb [0 L,
aag, baaab, ab 0 L4

Homework 10 State Minimization 1

L, ={w O Z* : w contains the string bbb}
Use the procedure outlined above to construct an FSM M that recognizesL =L; n L,.
Is M guaranteed to be deterministic?
(b) What are the equivalence classes under = for thelanguageL =L, n L,?
(c) What are the equivalence classes under ~, for M, in (@) above?
(d) Show how ~, isarefinement of = .

(e) Use the minimization algorithm that we have discussed to construct from M in (a) above a minimal state machine that
acceptsL.

7. 1f you had trouble with this last one, make up another pair of L, and L, and try again.
Solutions

1. (a)
() L =(aab O ab)*
1. [, aab, ab, and all other elements of L]
2. [aorwa:wL]
3.[aaorwaa:w L]
4. [everything elsg, i.e., strings that can never become elements of L because they contain illegal
substrings such as bb or aad]
(if) L ={x : scontains an occurrence of aababa}
1. [(aO b)*aababa(a 0 b)*, i.e., al elements of L]
2. [g or any string not in L and ending in b but not in aab or aabab, i.e., no progress yet on
"aababa']
3. [wafor any w [0 [2]; alternatively, any string not in L and ending in a but not in aa, aaba, or
aababa)
4. [any string not in L and ending in aa]
5. [any string not in L and ending in aab]
6. [any string not in L and ending in aaba]
7. [any string not in L and ending in aabab]
Note that thistime thereis no "everything else”. Strings never become hopelessin this
language. They simply fail if we get to the end without finding "aababa’.
(L = o x O {a b}*}
1. [a, which isthe only string for which the continuations that lead to acceptance are all strings of
theformwa: wherew [0 L]
2. [b, which isthe only string for which the continuations that lead to acceptance are all strings of
the form wb : wherew [0 L]
3. [ab, which isthe only string for which the continuations that |ead to acceptance are all strings
of the formwba: wherew [L]
4. [aa, which isthe only string for which the continuations that |ead to acceptance are all strings
of the formwaa : wherew [0 L]
And so forth. Every stringisin adistinct equivalence class.
(iv)L={xx:x0O{a b}*}
1. [a, which isthe only string for which the continuations that lead to acceptance are all strings
that would bein L except that they are missing aleading a)
2. [b, which isthe only string for which the continuations that |ead to acceptance are all strings
that would bein L except that they are missing aleading b]
3. [ab, which isthe only string for which the continuations that |ead to acceptance are all strings
that would bein L except that they are missing aleading ab]

Homework 10 State Minimization

4. [aa, which isthe only string for which the continuations that lead to acceptance are al strings
that would bein L except that they are missing aleading a3
And so forth. Every stringisin adistinct equivalence class.
(v) Ln={a b}a{a b}"
0. [g]
1.[a b]
2. [aa, bal
3. [aaa, aab, baa, bab]

n+2. [(a0 b)aad b)"

n+3. [strings that can never become elements of L]

There isafinite number of stringsin any specific language L,,. So thereis afinite number of equivalence classes of
=.. Every string in L, must be of length n+2. So there are n+3 equivalence classes (numbered 0 to n+2, to indicate the length
of the strings in the class) of strings that may become elements of L, plus one for strings that are already hopeless, either
because they don't start with ab or aa, or because they are aready too long.

(vi) L = The language of balanced parentheses

1. [wr(w*:w L] /* i.e., one extra left parenthesis somewhere in the string

2. [wr((w* :w L] [* two “

3. [wr(((w* :w L]

4. [w*((((w* :w O L]

5. [w* (((((w* : w O L]

... and so on. Thereisan infinite number of equivalence classes.

Each of these classesis distinct, since) is an acceptable continuation for 1, but none of the others;)) is acceptable for
2, but none of the others,))) is acceptable for 3, but none of the others, and so forth.

1. (b)
Q)

(i) There's always a very simple nondeterministic FSM to recognize al strings that contain a specific substring. It'sjust a
chain of states for the desired substring, with loops on al letters of > on the start state and the final state. In this case, the
machineis:

b\LZ a ®a)@b @a ><(_5>b)@ab
a,

To construct aminimal, deterministic FSM, you have two choices. Y ou can use our algorithm to convert the NDFSM to a
deterministic one and then use the minimization algorithm to get the minimal machine. Or you can construct the minimal
FSM directly. Inany case, itis:

Homework 10 State Minimization 3

(iii) Thereisno FSM for this language, sinceit is not regular.

(iv) Thereisno FSM for thislanguage, sinceit is not regular.

(v)

(vi) Thereisno FSM for thislanguage, sinceit is not regular.

2.(a) (0 by*a@l by*bbb* or (all b)*a@ll b)* bb

(b)
b a

o
v

7

(c) It'seasiest to answer (d) first, and then to consider (c) as a special case.
(d) [0] = all strings that contain no a
[1] = al stringsthat end with a
[2] = @l strings that end with ab
[3] = al stringsthat contain at |east one aand that end with bb, i.e,, all stringsin L.
It is clear that these classes are pairwise digjoint and that their unionis{a, b}*. Thusthey represent a partition of {a, b} *. It
isalso easy to see that they are the equivalence classes of R, of the Myhill-Nerode Theore, since all the members of one
equivalence class will, when suffixed by any string z, form strings al of which arein L or al of whicharenotinL. Further,
for any x and y from different equivalence classes, it is easy to find az such that one of xz, yz isin L and the other is not.

Letting the equivalence relation R, be restricted to the set in part (c), gives the partition

Homework 10 State Minimization 4

3. (@ [1={g (b) N a
[2] =b(al b)* 1 ° a
[3] =a O ala b)*a
[4] = a(a 0 b)*b b b

o=
ab

4. (@) F, (b) T, (c) T (Z* isinfinite and the number of equivalence classesisfinite), (d) T, (e) F.

5. Choose any two distinct strings of as: call them d and d (i <j). Then they must bein different equivalence classes of R,
sinceab'c O L but ab'c' O L. Therefore, there is an infinite number of equivalence classes and L is not regular.

6.(@) My, whichrecognizesL,, is:

ab

\D
(o
N

Step (1) M;' = M because M1 is deterministic.
M,' = M, because M2 is deterministic.

Step (2) M;"isM;' except that states 3 and 4 are the final states.
M," is M, except that states 5, 6, and 7 are the final states.

Step (3) Msis:

Homework 10 State Minimization

Step (4) Myis:

{1,2,5},a{3,5) {2,5,2,{3 5 {4,5),28,{4,5) {4, 8},8{4,8)
b, {2, 6} b, {2, 6} b, {4, 6} b, {4, 8}
{3.5},a{25} {4,6},a{4,5 {4, 7}, 8,{4,5} {3.8,a{28
b, {4, 6} b, {4, 7} b, {4, 8} b, {4, 8}
{2,6},a {35} {2, 7},a {35 {2.8,a{3 8}
b, {2, 7} b, {2, 8} b, {2, 8}
={1,2,5}
F=K-{2,8},i.e, al statesexcept { 2, 8} arefinal states.

Y ou may find it useful at this point to draw this out.
Step (5) M| = M, except that now thereisasingle final state, {2, 8}.

M_ isdeterministic. My is deterministic by construction, and Step 5 can not introduce any nondeterminism since it doesn't
introduce any transitions.

(b) 1. [strings without bbb and with any asin pairs, including €]
2. [strings without bbb but with a single a at the end)]
3. [strings that cannot be made legal because they have asingle afollowed by a b]
4. [strings without bbb, with any asin pairs, and ending in asingle b]
5. [strings without bbb, with any asin pairs, and ending with just two b's]
6. [strings with bbb and with any dsin pairs]
7. [strings with bbb but with a single a at the end]

(© {1,2 5} (€]

{3, 5} [strings without bbb but with a single a at the end]

{2, 6} [strings without bbb, with any asin pairs, and ending in asingle b]

{2, 5} [strings without bbb and with at least one pair of a'sand any a'sin pairg|

{4, 6} [strings that cannot be made legal because they have asingle afollowed by ab
and where every b is preceded by an a and the last character is b]

{2, 7} [strings without bbb, with any a'sin pairs, and ending with just two b's]

{4, 5} [strings that cannot be made legal because they have a single afollowed by b
and where there is no bbb and the last character is g

{4, 7} [strings that cannot be made legal because they have asingle afollowed by ab
and where there is no bbb but there is at least one bb and the last
character isb]

{2, 8} [al stringsinL]

{4, 8} [strings that cannot be made legal because they have asingle afollowed by ab
and where there is a bbb, but the ab violation came before the first bbb]

{3, 8} [strings with bbb but with a single a at the end]

(d) {1,2,5 0{25} =1

{3,5y =2

{4,6}0{4,5,0{4,770{4,8 =3

{2,6} =4

{2, 7} =5

{2,8} =6

{3,8=7

Homework 10 State Minimization

(€) =0=A:[{2,8}],
B:[{1,2,5},{2,5},{3,5},{4,6},{4,5},{4,7},{4,8},{2,6},{2,7},{3, 8}]
To compute =;: Consider B (since clearly A cannot be split). We need to look at all the single character transitions out of
each of these states. We've already done that in Step (3) of part (a) above, so we can use that table to tell us which of our
current states each state goesto. Now we just need to use that to determine which element of =, they go to. We notice that all
transitions are to elements of B except: ({2, 7}, b, A) and ({3, 8}, a, A). So we must split these two states from B. and they
must be distinct from each other because their aand b behaviors are reversed. So we have:
= =A[{2 8],
B:[{1,2,5},{2,5},{3,5},{4,6},{4,5},{4, 7},{4, 8},{2, 6}]
C:[{2,7}]
D: [{3, 8}]
To compute =,: Again we consider B:
Onreading an a, al elements of B go to elements of B.
But on b: ({2, 6}, b, C), so we must split off {2, 6}. Thisgivesus:
==A:[{28}],
B:[{1,2,5},{2,5},{3,5},{4,6},{4,5},{4, 7}, {4, 8}]
C:[{2,7}]
D: [{3, 8}]
E: [{2, 6}]
To compute =3: Again we consider B:
Onreading an a, al elements of B go to elements of B.
Butonb, {1, 2, 5} and {2, 5} go to E, while everyone else goesto B. So we have to split these two off. Thisgives us:
==A:[{2 8}],
B:[{3,5},{4 6}.{4,5},{4, 7}, {4 8}]
C:[{2,7}]
D: [{3, 8}]
E: [{2, 6}]
F:[{1,2,5},{2 5}]
To compute =4: Again we consider B:
Onreading b, al elements of B stay in B. But on reading a, {3, 5} goesto F, so we split it off. Thisgivesus:
= =A:[{2 8}],
B: [{4,6},{4.5},{4,7},{4, 8}]
C:[{2,7}]
D: [{3, 8}]
E: [{2, 6}]
F:[{1,2,5},{2 5}]
G: [{3, 5}]
To compute =s: Again we consider B: On both inputs, al elements of B stay in B. So we do no further splitting, and we
assert that = = =4. Notice that thisisidentical to what we expected from (d) above.

Homework 10 State Minimization 7

We can now show the minimal machine:

Homework 10

State Minimization

ab

CS 341 Homework 11
Context-Free Grammars

1. Consider the grammar G = (V, %, R, S), where
V={ab, S A}
z ={a b},
R={ S AA,
A - AAA,
A -3
A - DA,
A - Ab }.
(&) Which strings of L(G) can be produced by derivations of four or fewer steps?
(b) Give at least four distinct derivations for the string babbab.
(c) For any m, n, p > 0, describe aderivation in G of the string b™ab"ab’.

2. Construct context-free grammars that generate each of these languages:
(@) {wew®: w O {a, b}*}
(b) {ww®: w O {a, b}*}
(©{wO{a b}*:w=w"}

3. Consider thealphabet 2 ={a, b, (,), U, *, J}. Construct a context-free grammar that generates all stringsin
>* that are regular expressions over {a, b}.

4. Let G be a context-free grammar and let k > 0. Welet L (G) [L(G) be the set of all strings that have a
derivation in G with k or fewer steps.

(a) What isLs(G), whereG=({S,(,)},{(,)},{S-¢S-S5S - (9})?

(b) Show that, for al context-free grammars G and all k > 0, L(G) isfinite.

5LetG= (V,Z,R,S), where
V={ab, S},
z ={a b},
R={ S - aSh,
S - aSa,
S - bSa,
S - bSh,
S-¢l.
Show that L(G) isregular.

6. A programin a procedural programming language, such as C or Java, consists of alist of statements, where
each statement is one of several types, such as:

(1) assignment statement, of the formid := E, where E is any arithmetic expression (generated by the grammar
using T and F that we presented in class).

(2) conditional statement, e.g., "if E < E then statement", or while statement , e.g. "while E < E do statement".

(3) goto statement; furthermore each statement could be preceded by alabel.

(4) compound statement, i.e., many statements preceded by a begin, followed by an end, and separated by ";".
Give a context-free grammar that generates all possible statements in the simplified programming language
described above.

7. Show that the following languages are context free by exhibiting context-free grammars generating each:
(@ {ad™": m=n}

Homework 11 Context-Free Grammars 1

(b) {d""c”d*: m+n=p+q}
(c) {w O {4, b}* : w hastwice as many b's as as}
(d) {uawb : u, w O {a&, b}*, |u| = w[}

8. Let> ={a b, c}. LetL bethelanguage of prefix arithmetic defined as follows:
(i) any member of Z isawell-formed expression (wff).
(if) if a and 3 are any wff's, then so are Aaf3, Saf3, Maf3, and Da3.
(iii) nothing else is a wff.
(One might think of A, S, M, and D as corresponding to the operators +, -, %, /, respectively. Thusin L we could
write Aab instead of the usual (a + b), and MSabDbc, instead of ((a - b) x (b/c)). Note that parentheses are
unnecessary to resolve ambiguitiesin L.)
(a) Write a context-free grammar that generates exactly the wif's of L.
(b) Show that L is not regular.

9. Consider the language L = {@™?"'c*d”: p>m, andm, n= 1}.
(&) What is the shortest stringin L?
(b) Write a context-free grammar to generate L.

Solutions

1. (a) We can do an exhaustive search of all derivations of length no more than 4:
S>AA>aA>aa
S=>AA = aA = abA = aba
S=>AA = aA > aAb= adb
S= AA = bAA = baA = baa
S= AA = bAA = bAa= bhaa
S= AA = AbA = abA = aba
S= AA = AbA = Aba— aba
S>AA>Aa—aa
S= AA = Aa= bAa= baa
S= AA = Aa= Aba= aba
S= AA = AbA = abA = aba
S= AA = AbA = Aba— aba
S= AA = AAb= aAb= aab
S= AA= AAb= Adb = aab
Many of these correspond to the same parse trees, just applying the rulesin different orders. In any case, the
strings that can be generated are: aa, aab, aba, baa.

(b) Noticethat A = bA = bAb = bab, and also that A = Ab = bAb = bab. This suggests 8 distinct

derivations:

S= AA = AbA = AbAb = Abab =* babbab

S= AA = AAb = AbAb = Abab =* babbab

S= AA = bAA = bAbA = babA =* babbab

S= AA = AbA = bAbA = babA =* babbab
Where each of these four has 2 ways to reach babbab in the last steps. And, of course, one could interleave the
productions rather than doing all of thefirst A, then all of the second A, or vice versa.

(c) Thisisamatter of formally describing a sequence of applications of the rulesin terms of m, n, p that will
produce the string b™ab"ab®.
S
=/*byrueS - AA */

Homework 11 Context-Free Grammars 2

AA
=* [* by mapplications of rule A - bA */

bTAA
= /*byruleA - a */
b"aA
=* [* by napplications of rule A - bA */
bMab"A
=* by p applicationsof ruleA - Ab */
bMab"Ab®
= [*byruleA - a */
bMab"ab”

Clearly this derivation (and some variations on it) produce b™ab"ab® for each m, n, p.

2@G=(V,Z,R,9withV={S ab,c},2={ab,c,R={

S - aSa
S - bSb
S-c }.

(b) Same as (a) except remove c fromV and X and replacethelast rule, S - ¢, by S - €.

(c) This language very similar to the language of (b). (b) was all even length palindromes; this is all
palindromes. We can use the same grammar as (b) except that we must add two rules:
S-a
S-b

3. Thisiseasy. Recall the inductive definition of regular expressions that was givenin class:
1. 0 and each member of X isaregular expression.
2.1f a, B areregular expressions, then so is a3
3.If a, B areregular expressions, then soisalp .
4. 1f a isaregular expression, then so isa*.
5. 1f a isaregular expression, then sois (a).
6. Nothing elseisaregular expression.
This definition provides the basis for a grammar for regular expressions:

G=(V,Z,R,9withV={S ab()0*0}Z={ab ()0 * 0O}, R={

S-. 0O [* part of rule 1, above

S-a I* "

S-b I* "

S- SS I* rule2

S-SOdSs [* rule 3

S & * rule4

S (9 [* rule5 }

4. (a) We omit derivations that don't produce stringsin L (i.e, they still contain nonterminals).
Li:S=>¢

L,:S= (9 =()
L;:S=S5=¢eS=¢
5= (9= ((9) = (0)
Ls:S=S5= (9S=()S=()
S=>SS=89 =9 =)
S= (9 = ((5) = (9 = (0))
Ls:S=S5=(95= (9 = 09 =00

Homework 11 Context-Free Grammars 3

S=S5=(9S=((9)s=(0)S=(0)

S= (5 =((9) = (((9)) = (((9)) = (((0))
SoLs={g (), (0), ((0), (((O), 00 }

(b) We can give a (weak) upper bound on the number of stringsin Lx(G). Let P be the number of rulesin G
and let N be the largest number of nonterminals on the right hand side of any rule in G. For the first derivation
step, we start with S and have P choices of derivationsto take. So at most P strings can be generated. (Generally
there will be many fewer, since many rules may not apply, but we're only producing an upper bound here, so
that's okay.) At the second step, we may have P strings to begin with (any one of the ones produced in the first
step), each of them may have up to N nonterminals that we could choose to expand, and each nonterminal could
potentially be expanded in Pways. So the number of strings that can be produced is PxNxP. Note that many of
them aren't strings in L since they may still contain nonterminals, but this number is an upper bound on the
number of stringsin L that can be produced. At the third derivation step, each of those strings may again have N
nonterminals that can be expanded and P ways to expand each. In general, an upper bound on the number of
strings produced after K derivation steps is PXN®®, which is clearly finite. The key here is that there is a finite
number of rules and that each rule produces a string of finite length.

5. We will show that L(G) is precisely the set of all even length strings in {a, b}*. But we know that that
languageisregular. QED.

First we show that only even length strings are generated by G. Thisis trivial. Every rule that generates any
terminal characters generates two. So only strings of even length can be generated.

Now we must show that all strings of even length are produced. This we do by induction on the length of the
strings:
Base case: € U Lg (by application of the last rule). So we generate the only string of length O.

Induction hypothesis: All even length strings of length < N (for even N) can be generated from S.

Induction step: We need to show that any string of length N+2 can be generated. Any string w of length N + 2 (N
> 0) can be rewritten as xyz, where x and z are single characters and |y| = N. By the induction hypothesis, we
know that all values of y can be generated from S. We now consider al possible combinations of values for x
and z that can be used to create w. There are four, and the first four rulesin the grammar generate, for any string
T derivable from S, the four strings that contain T plus a single character appended at the beginning and at the
end. Thusall possible stringsw of length N+2 can be generated.

6. Since we already have a grammar for expressions (E), well just use E in this grammar and treat it as though it
were aterminal symbol. Of course, what we really have to do is to combine this grammar with the one for E. As
we did in our grammar for E, we'll use the terminal string id to stand for any identifier.
G=(V,Z,R,9§,whereV={S,U,C L, TE :;=<>;azid},2={:,=<>; &z id}, and
R={
S-LU [* astatement can be alabel followed by an unlabeled statement
S-U [* or a statement can be just an unlabeled statement. We need to
make the distinction between Sand U if we want to prevent a
statement from being preceded by an arbitrary number of labels.

U-id:=E [* assignment statement
U-IifETEthenS [* if statement

U - whileETEdoS /* while statement

U - gotolL [* goto statement

U - beginS; Send /* compound statement

L - id [* alabel isjust an identifier

Homework 11 Context-Free Grammars 4

T- <|>]|= /* weuse T to stand for atest operator. We introduce the | (or) notation
here for convenience. }
There's one problem we haven't addressed here. We have not guaranteed that every label that appears after a goto
statement actually appears in the program. In general, this cannot be done with a context-free grammar.

7.(@ L ={d™™: m=n}. Thisoneis very similar to Example 8 in Supplementary Materials. Context-Free
Languages and Pushdown Automata: Designing Context-Free Grammars. The only difference isthat in that case,
m<n. Soyou can use any of the ideas presented there to solve this problem.

(b) L = {d™"c"d®: m+ n=p+ g}. Thisoneis somewhat like (a): For any string a"b"c’d® O L, we will
produce as and d'sin parallel for awhile. But then one of two things will happen. Either m= g, in which case
we begin producing as and c's for a while, or m < q, in which case we begin producing b's and d's for a while.
(You will seethat it isfine that it's ambiguous what happensif m = q.) Eventually this process will stop and we
will begin producing the innermost b's and c's for a while. Notice that any of those four phases could produce
zero pairs. Since the four phases are distinct, we will need four nonterminals (since, for example, once we start
producing c's, we do not want ever to produce any d's again). So we have:

G=({ST,U,V,ab,cd,{abcd,R,S),where

R={S-a,S-T,S- U, T alc,T-V,U-budU-V,V - bVe,V - g
Every derivation will use symbols S, T, V in sequence or S, U, V in sequence. As a quick check for fencepost
errors, note that the shortest string in L is g, which isindeed generated by the grammar. (And we do not need any
rulesS - gorT - &)

How do we know this grammar works? Notice that any string for which m = g has two distinct derivations:
S=* d"Sd" = d"Td" = d"Vd" = d™b"c’d?, and
S=* d"Sd" = d"Ud" = d"Vd" = d"b"c’d?

Every string a"b"c’d® O L for which m > ¢ has a derivation:

S
= /* by q application of rule S - aSd */
alsde
=/ byrueS - T */
a'Td

= /* by m- g application of rulerule T - alc */
ald™m i Tc™d? = "™

= /*byrueT -V */

a"vc™ids
= /*byn=p-(m-q) applicationsof ruleV - bvVc */

d"o"Vv MO = gV P

=/*byrueV - ¢

a"b"cPd

For the other case (m <q), you can show the corresponding derivation. So every string in L is generated by G.
And it can be shown that no string not in L is generated by G.

(c)L={w O {a b}* : whastwice asmany b'sasas}. Thisoneis sort of tricky. Why? Because L doesn't
care about the order in which the as and b's occur. But grammars do. One solution is:
G=({S ab},{ab},R,S),whereR={S - SaSbSbS, S - ShSaShS, S - SbShbSaS, S - €}
Try some examples to convince yourself that this grammar works. Why does it work? Notice that all the rules
for S preserve the invariant that there are twice as many b'sasas. So we're guaranteed not to generate any strings
that aren't in L. Now we just have to worry about generating all the strings that are in L. The first three rules
handle the three possible orders in which the symbols b,b, and a can occur.

Homework 11 Context-Free Grammars 5

Another approach you could take is to build a pushdown automaton for L and then derive a grammar from it.

This may be easier simply because PDA's are good at counting. But deriving the grammar isn't trivia either. If
you had a hard time with this one, don't worry.

(d) L ={uawb : u,w O {a b}*, |ul = w[}. This one fools some people since you might think that the aand b
are correlated somehow. But consider the smpler language L' = {uaw : u, w [0 {a b}*, [u| = \w[}. This one

seems easier. We just need to generate u and w in parallel, keeping something in the middle that will turn into a.
Now back toL: L isjust L'with b tacked ontheend. So agrammar for L is:

G=({S T,ab},{ab},R,S),whereR={S - Th, T - ala, T - alb, T - bTa, T - bTh, T - a}.

8@G=({S A M,D,Fabc.{A,M,D, S ab,c,R,S),wheeR ={

F-a F - AFF

F-b F - SFF

Foc F - MFF
F - DFF }

(b) First, welet L'=L n A*a*. L'= {A"&d"':n>0}. L' can easly be shown to be nonregular using the
Pumping Theorem, so, since the regular languages are closed under intersection, L must not be regular.

9. (a) abbccedd
b)G=({S X,Y,ab,cd},{abcd,R,S),whereRiseither:
(S - axXdd, X - Xd, X - aXd, X - bbYccc, Y - bbYcce, Y - ¢€), or
(S-asd,S- Sd, S - aMdd, M - bbcee, M - bbMccc)

Homework 11 Context-Free Grammars 6

CS 341 Homework 12
Parse Trees

1. Consider thegrammar G = ({+,*, (,),id, T, F, E}, {+, *, (,), id}, R, E}, where
R={E-E+T,E-T, ToT*F, T F F-> (E), F-id}.
Givetwo derivations of the string id * id + id, one of which is leftmost and one of which is not leftmost.

2. Draw parse trees for each of the following:
(&) The simple grammar of English we presented in class and the string "big Jim ate green cheese.”
(b) The grammar of Problem 1 and the stringsid + (id + id) * id and (id * id + id * id).

3. Present a context-free grammar that generates [1, the empty language.

4. Consider the following grammar (the start symbol is S; the alphabets are implicit in the rules):
S - SS|AAA |&
A - aA|Aalb
(a) Describe the language generated by this grammar.
(b) Give aleft-most derivation for the terminal string abbaba.
(c) Show that the grammar is ambiguous by exhibiting two distinct derivation trees for some terminal string.
(d) If thislanguage is regular, give aregular (right linear) grammar generating it and construct the
corresponding FSM. If the language is not regular, prove that it is not.
5. Consider the following language : L = {w"w" : w [0 {&a, b}* and w" indicates w with each occurrence of a
replaced by b, and vice versa}. Give a context-free grammar G that generates L and a parse tree that shows that
aababb O L.

6. (a) Consider the CFG that you constructed in Homework 11, Problem 2 for {wew® : w O {a, b}*}. How many
derivations are there, using that grammar, for the string aabacabaa?
(b) Show parse tree(s) corresponding to your derivation(s). Is the grammar ambiguous?

7. Consider the language L = {w [J {a, b}* : w contains equal numbers of as and b's}

(a) Write a context-free grammar G for L.

(b) Show two derivations (if possible) for the string aabbab using G. Show at |east one leftmost derivation.

(c) Do all your derivations result in the same parse tree? If so, seeif you can find other parse trees or convince
yourself there are none.

(d) If Gisambiguous (i.e., you found multiple parse trees), remove the ambiguity. (Hint: look out for two
recursive occurrences of the same nonterminal in the right side of arule, e.g, X - XX)

(e) See how many parse trees you get for aabbab using the grammar developed in (d).

Solutions

3G=({S UZ % R,S),whereRisany set of rulesthat can't produce any stringsin =*. So, for example, R =
{S - S} doesthetrick. SodoesR = [J.

Homework 12 Parse Trees 1

4. (a) (& ba* ba* ba*)*
(b) S= AAA = aAAA = abAA = abAaA = abbaA — abbaAa— abbaba

(c) S S
A A A A /A\ T
N L |
Al\ a b b b a A b
|
b b
(d) G=({S, Sy, B1, Bs, B, a b}, {a, b}, R, S), where R = {
S-oe¢ Bl—’aBl B3_)aB3
S-S5 B; - bB, B; - €
St - aS B2 - aB> Bs - &
S]_—»bBl BZ—’bB3

a a

)
€ 3 b
@ £ | b a
J

56=({S,ab},{ab},R S),R={S - ah,S- bSa S - ¢} T
/\
a S b
a/é\b
PN
b]S a
€

6. (a) ThegrammarisG=(V, Z,R, S withV ={S,a b, c},~={a b,c},R={S - aSa, S - bSh, S - ¢}.
Thereisasingle derivation:
S = aSA = aaSaa = aabShaa = aabaSabaa = aabacabaa
(b) Thereisasingle parse tree. The grammar is unambiguous.

7.@G=(V,Z,R,9withV ={S},E={ab},R={

S - aSh

S - bSa

S-¢

S SS }

(b) (i) S= SS = aShS = aaShbS = aabbaSbh — aabbab /* Thisisthe leftmost derivation of the most
"sensible" parse.
(i) S= SS= SSS = aShSS = aaShbSS = aabbSS = aabbaShS = aabbabS = aabbab /* Thisisthe

leftmost derivation of a parse that introduced an unnecessary Sin the first step, which was then eliminated by
rewriting it as€ in thefinal step.

Homework 12 Parse Trees

(c) No. Thetwo derivations shown here have different parse trees. They do, however, have the same
bracketing, [ab]b][ab].(In other words, they have similar essential structures.) They differ only in how Sis
introduced and then eliminated. But there are other derivations that correspond to additional parse trees, and
some of them correspond to a completely different bracketing, [a[ab][ba]b]. One derivation that doesthisis

(i) S= aSh = aSSh = aabSh = aabbab

(d) Thisistricky. Recall that we were able to eliminate ambiguity in the case of the balanced parentheses
language just by getting rid of € except at the very top to allow for the empty string. If we do the same thing here,
wegetR= { S- ¢

S-T

T i a.b

T - arb

T - ba

T - bTa

T-TT
But aabbab still has multiple parses in this grammar. This language is different from balanced parens since we
can go back and forth between being ahead on a's and being ahead on b's (whereas, in the paren language, we
must always either be even or be ahead on open paren). So the two parses correspond to the bracketings
[aabb][ab] and [a[ab] [ba] b]. Thetroubleistherule T - TT, which can get applied at the very top of the tree
(asin the case of thefirst bracketing shown here), or anywhere further down (as in the case of the second one).
We clearly need some capability for forming a string by concatenating a perfectly balanced string with another
one, since, without that, we'll get no parse for the string abba. Just nesting won't work. We have to be able to
combine nesting and concatenation, but we have to control it. It's tempting to think that maybe an unambiguous
grammar doesn't exist, but it's pretty easy to see how to build a deterministic pda (with a bottom of stack symbol)
to accept this language, so there must be an unambiguous grammar. What we need is the notion of an A region,
in which we are currently ahead on as, and a B region, in which we are currently ahead on b's. Then at the top
level, we can allow an A region, followed by a B region, followed by an A region and so forth. Think of
switching between regions as what will happen when the stack is empty and we're completely even on the number
of dsand b'sthat we've seen so far. For example, [ab][ba] isone A region followed by one B region. Once we
enter an A region, we stay in it, always generating an afollowed (possibly after something else embedded in the
middle) by ab. After all, the definition of an A region, isthat we're always ahead on as. Only when we are
even, can we switch to a B region. Until then, if we want to generate a b, we don't need to do a pair starting with
b. We know we're ahead on a's, so make any desired b's go with an awe already have. Once we are even, we
must either quit or moveto aB region. If we allow for two A regions to be concatenated at the top, there will be
ambiguity between concatenating two A regions at the top vs. staying in asingle one. We must, however, allow
two A regions to be concatenated once we're inside an A region. Consider [a[ab][ab]b] Each [ab] is a perfectly
balanced A region and they are concatenated inside the A region whose boundaries are the first a and the final b.
So we must distinguish between concatenation within aregion (which only happens with regions of the same
type, e.g, two A'swithin an A) and concatenation at the very top level, which only happens between different

types.
Also, we must be careful of any rule of theform X — XX for another reason. Suppose we have a string that

correspondsto XX X. Isthat thefirst X being rewritten as two, or the second one being rewritten astwo. We
need to force a single associativity.

Homework 12 Parse Trees 3

All of thisleads to the following set of rulesR:

S-¢
S-T. [* start with an A region, then optionally aB, then an A, and so forth
S- T, [* start with a B region, then optionally an A, then a B, and so forth

Ta - A/* just asingle A region

Ta— AB * two regions, an A followed by aB

T, - ABT, /* wewritethisinstead of T, » TaT,to alow an arbitrary number of regions,
but force associativity,

T, — B/* these next three rules are the same as the previous three but starting with b

T, - BA

T, - BAT,

A - Ay/* this A region can be composed of asingle balanced set of asand b's

A -5 AA [* or it can have arbitrarily many such balanced sets.
A; - aAb [* abalanced set isastring of A regionsinside amatching a, b pair
A, - ab [* or it bottoms out to just the pair &, b

B - B;/* these next four rules are the same as the previous four but for B regions
B - BB

B, - bBa

B, - ba

(e) The string aabbab isasingle A region, and has only one parse tree in this grammar, corresponding to
[[aabb][ab]]. You may also want to try abab, abba, and abaababb to see how G works.

Homework 12

Parse Trees

CS 341 Homework 13
Pushdown Automata

1. Consider the pushdown automaton M = (K, 2, T, A, s, F), where
K={sf},
F={f},
z ={a b},
r={a,
A={((s a¢), (s a).((s b e)(sa)((s ae)(f) ((f. a a), (f,) ((f, b a), (f, €))}.
(a) Trace all possible sequences of transitions of M on input aba.
(b) Show that aba, aa, abb 0 L(M), but baa, bab, basaa 0 L (M).
(c) Describe L(M) in English.

2. Construct pushdown automata that accept each of the following:
(a) L = the language generated by the grammar G = (V, Z, R, S), where
V={S () LI}
2={G) L1}
R={ S-g
S - SS,
S -8,
S - (9}.
(b)L={d™": m<n<2m}.
(©L={wO{ab}*:w=w"}.
(d) L ={w O {a b}* : w has equal numbers of asand b's}.
(e) L ={w O{a b}* : whastwice asmany dsasb's}.
fL={dD":m=n}
(9) L ={uawb: uand w O {& b}* and |u| = |wl}

3. Consider the following language : L = {w"w" : w 00 {&, b}* and w" indicates w with each occurrence of a
replaced by b, and vice versa}. In Homework 12, problem 5, you wrote a context-free grammar for L. Now give
aPDA M that accepts L and trace a computation that shows that aababb [L.

4. Construct a context-free grammar for the language of problem 2(b): L = ({d"™ m< n<2m}).

Solutions

1. (a) There are three possible computations of M on aba:
(s aba) |- (s, ba, @) |- (s, & aa) |- (s, €, aaa)
(s aba) |- (s,ba @) |- (s, & aa) |- (f, €, aa)
(S! aba, 8) |_ (f1 ba, 8)
None of these is an accepting configuration.
(b) Thisis done by tracing the computation of M on each of the strings, as shown in (a).
(c) L(M) isthe set of strings whose middle symbol isa. In other words,

L(M) = {xay D {a b}*: x| = |y[}.

2. (a) Notice that the square brackets and the parentheses must be properly nested. So the strategy will be to push
the open brackets and parens and pop them against matching close brackets and parens as they areread in. We
only need one state, since all the counting will be done on the stack. Since € [L, the start state can be final.
Thuswehave M =({s}, {(,), [, 1}.{(, [}, A, s{s}), where (sorry about the confusing use of parentheses both as
part of the notation and as symbolsin the language):

Homework 13 Pushdown Automata 1

A= {((s (-8, (s (), /* push (- */

(s [,), (s D), /*pusn[*/
((s,), 0.(s €)), * if the input character is) and the top of the stack is (, they match */
(s 1,D, (s 9)} /* same for matching square brackets */

If we run out of input and stack at the same time, we'll accept.

(b) Clearly we need to use the stack to count the a's and then compare that count to the b's asthey'reread in. The
complication hereisthat for every a, there may be either one or two b's. So well need nondeterminism. Every
string in L has two regions, the aregion followed by the b region (okay, they're hard to tell apart in the case of ¢,
but trivially, this even true there). So we need a machine with at least two states.

There are two ways we could deal with the fact that, each time we see an a, we don't know whether it will be
matched by one b or two. Thefirst isto push either one or two characters onto the stack. In this case, once we
get to the b's, we'll pop one character for every b we see. A nondeterministic machine that follows all paths of
combinations of one or two pushed characters will find at least one match for every stringin L. The aternativeis
to push asingle character for every a and then to get nondeterministic when we're processing the b's: For each
stack character, we accept either one b or two. Here'saPDA that takes the second approach. Y ou may want to
try writing one that doesit the other way. This machine actually needs three states since it needs two states for
processing b'sto allow for the case where two b's are read but only asingleais popped. SoM =({s, f, g}, {a, b},
{a, A, s {f, g}), where

A={((s & ¢), (s a), /* Read an aand push one onto the stack */
((s &, €), (f,), /¥ Jump to the b reading state */
((f, b, &, (f, €)), /* Read asingleb and popana */
((f, b, @), (g, €)),/* Read asingle b and pop an a but get ready to read a second one */
((g, b, €), (, €))}. /* Read a b without popping ana */

(c) A PDA that accepts{w : w = W} isjust avariation of the PDA that accepts {ww"} (which you'l findin
Lecture Notes 14). Y ou can modify that PDA by adding two transitions ((s, & €), (f, €)) and ((s, b, €), (f, €)),
which have the effect of making odd length palindromes accepted by skipping their middle symbol.

(d) We've got another counting problem here, but now order doesn't matter -- just numbers. Notice that with
languages of this sort, it's almost always easier to build a PDA than agrammar, since PDAs do a good job of
using their stack for counting, while grammars have to consider the order in which characters are generated. If
you don't believe this, try writing a grammar for this language.

Consider any stringw in L. At any point in the processing of w, one of three conditions holds: (1) We have seen
equal numbers of a'sand b's; (2) We have seen more asthan b's; or (3) We have seen more b'sthan as. What we
need to do is to use the stack to count whichever character we've seen more of. Then, when we see the
corresponding instance of the other character we can "cancel” them by consuming the input and popping off the
stack. Soif we've seen an excess of a's, there will be a's on the stack. If we've seen an excess of b's there will be
b'son the stack. If we're even, the stack will be empty. Then, whatever character comes next, welll start counting
it by putting it on the stack. In fact, we can build our PDA so that the following invariant is always maintained:
(Number of asread so far) - (Number of b'sread so far)

(Number of ason stack) - (Number of b's on stack)

Notice that w (I L if and only if, when we finish reading w,

[(Number of asread so far) - (Number of b'sread so far)] = 0.
So, if webuild M so that it maintains this invariant, then we know that if M consumes w and ends with its stack
empty, it hasseen astringinL. And, if its stack isn't empty, then it hasn't seen astringin L.

Homework 13 Pushdown Automata 2

To make thiswork, we need to be able to tell if the stack is empty, since that's the only case where we might
consider pushing either aor b. Recall that we can't do that just by writing € as the stack character, since that
always matches, even if the stack is not empty. So we'll start by pushing a specia character # onto the bottom of
the stack. We can then check to see if the stack is empty by seeing if #ison top. We can do all the real work in
our PDA inasingle state. But, because we're using the bottom of stack symbol #, we need two additional states:
the start state, in which we do nothing except push # and move to the working state, and the final state, which we
get to once we've popped # and can then do nothing else. Considering all these issues, weget M = ({s, q, f}, {a,
b}, {# a b}, A, s, {f}), where

A={((s & ¢),(q,#), * push # and move to the working state q */
((g, & #), (q, a#)), * the stack is empty and we've got an a, so push it */
((g, & a), (q, aa)), [* the stack is counting a's and we've got another one so push it */
((g, b, &), (q, €)), * the stack is counting a's and we've got b, so cancel aand b */
((g, b, #), (q, b#)), [* the stack is empty and we've got ab, so pushit */
((g, b, b), (g, bby)), * the stack is counting b's and we've got another one so push it */
((g, & b), (g, €)), * the stack is counting b's and we've got a, so cancel band a */
((g, &, %), (f, €))}. /* the stack is empty of dsand b's. Pop the # and quit. */

To convince yourself that M does the job, you should show that M doesin fact maintain the invariant we stated
above.

The only nondeterminism in this machine involves the last transition in which we guess that we're at the end of
theinput. Thereisan alternative way to solve this problem in which we don't bother with the bottom of stack
symbol #. Instead, we substitute a lot of hondeterminism and we sometimes push a's on top of b's, and so forth.
Most of those paths will end up in dead ends. The machine has fewer states but is harder to analyze. Try to
construct it if you like.

(e) Thisoneissimilar to (d) except that there are two asfor every b. Recall the two techniques for matching two
to one that we discussed in our solution to (b). Thistime, though, we do know that there are aways two asto
every b. We don't need nondeterminism to allow for either one or two. But, because we no longer know that all
the a's come first, we do need to consider what to do in the two cases: (1) We're counting b's on the stack; and (2)
We're counting as on the stack. If we're counting b's, let's take the approach in which we push two b's every time
we see one. Then, when we go to cancel as, we can just pop one b for each a. If we see twice as many asasb's,
well end up with an empty stack. Now what if we're counting as? We'll push one afor every one we see. When
we see b, we pop two as. The only special case we need to consider arisesin strings such as "aba’', where well
only have seen asingle a at the point at which we seethe b. What we need to do isto switch from counting asto
counting b's, since the b countstwice. Thusthe invariant that we want to maintain is now

(Number of asread so far) - 2*(Number of b'sread so far)

(Number of ason stack) - (Number of b's on stack)

Wecando al thiswithM = ({s, q, f}, {a b}, {# a b}, A, s, {f}), where

A={((s & ¢€),(q %), /* push # and move to the working state q */
((g, & #), (g, &), /* the stack is empty and we've got an a, so push it */
((g, & &), (g, aa)), /* the stack is counting a's and we've got another one so push it */
((g, b, @), (q, €)), * the stack is counting a's and we've got b, so cancel aaand b */

((g, b, &), (q, b#)), /* the stack contains asingle aand we've got b, so cancel theaand b
and start counting b's, since we have a shortage of onea */

((g, b, #), (g, bb#)), [* the stack is empty and we've got a b, so push two b's */

((g, b, b), (g, bbhy), /* the stack is counting b's and we've got another one so push two */

((g, & b), (g, €)), /* the stack is counting b's and we've got a, so cancel band a */

((g, &, #), (f, €))}. /* the stack is empty of dsand b's. Pop the # and quit. */

Homework 13 Pushdown Automata 3

Y ou should show that M preserves the invariant above.

(f) Theidea hereisto push each aaswe seeit. Then, on thefirst b, moveto a second state and pop an afor each
b. If we get to the end of the string and either the stack is empty (m = n) or there are still as on the stack (m > n)
then we accept. If we find ab and there's no ato pop, then there will be no action and so well fail. This machine
is nondeterministic for two reasons. Thefirst isthat, in case there are no b's, we must be able to guess that we've
reached the end of the input string and go pop al the as off the stack. The second isthat if there were b's but
fewer than the number of a's, then we must guess that we've reached the end of the input string and pop all the a's
off the stack. If we guesswrong, that path will just fail, but it will never cause us to accept something we
shouldn't, since it only pops off extra as, which is what we want anyway. We don't need a separate state for the
final popping phase, since we're willing to accept either m=n or m> n. This contrasts with the example we did
in class, where we required that m > n. In that case, the state where we run out of input and the stack at the same
time (i.e., m = n) had to be argjecting state. Thus we needed an additional accepting state where we popped the
stack.

M=({1 2}, {a b}, {a, 1{2, A=

(1,4 ¢),(1,a) /* push an a on the stack for every input a

((1, b, a), (2,¢) /* pop an afor thefirst b and go to the b-popping state
((1,€,¢€),(2,¢ [* in case there aren't any b's -- guess end of string and go pop any as
((2,b, @), (2,¢) [* for each input b, pop an a off the stack

((2,¢,@,(2,¢) /* if werun out of input while there are till s on the stack,

then pop the as and accept

(g) Theidea here isto create a nondeterministic machine. In the start state (1), it reads a's and b's, and for each
character seen, it pushes an x on the stack. Thusit countsthe length of u. If it seesan a, it may also guess that
thisisthe required separator aand go to state 2. In state 2, it reads a's and b's, and for each character seen, pops
an x off the stack. If there's nothing to pop, the machine will fail. If it seesab, it may also guess that thisisthe
required final b and go to thefinal state, state 3. The machine will then accept if both the input and the stack are
empty.

M=({123} {ab} {x},s{2, A=

(1, & ¢), (1, %) /* push an x on the stack for every input a
((1, b, €), (1,x)) /* push an x on the stack for every input b
(1,4 ¢), (2,¢) /* guess that thisisthe separator a. No stack action
((2,4,%),(2,¢) [* for each input a, pop an x off the stack
((2, b, x), (2, ¢) [* for each input b, pop an x off the stack
((2,b,€),(3,¢) /* guessthat thisisthe final b and go to the final state
3.
alla alb/ (]
ROEENG
bilb b/al [
4, S- ¢
S- a%h
S - aShb

Homework 13 Pushdown Automata 4

CS 341 Homework 14
Pushdown Automata and Context-Free Grammars

1. In class, we described an algorithm for constructing a PDA to accept alanguage L, given a context free
grammar for L. Let L be the balanced brackets language defined by the grammar G=({S, [, I}, {[. 1}, R, 9),
where R =

S-¢6S-5S5S- [
Apply the construction algorithm to this grammar to derive a PDA that acceptsL. Trace the operation of the
PDA you have constructed on the input string [[][]].

2. Consider the following PDA M:

g/l ‘] @
blal
(@) What is L(M)?

(b) Give adeterministic PDA that accepts L(M) (not L(M)$).

alla

3. Write a context-free grammar for L(M), where M is

%) ell —¢&ll —&ll
alla b/al b// b%) c/bl 9 elb/ 9

4. Consider the language L = {ba™bd™b...bad™: n>2, m1, ..., mn =0, and mi # mj for somei, j}
(a) Give anondeterministic PDA that acceptsL.
(b) Write a context-free grammar that generatesL.
(c) Provethat L is not regular.

Solutions

1. Thisisavery simple mechanical process that you should have no difficulty carrying out, and getting the
following PDA, M = ({p, a}, {[, I} . {S, [. I}, A, p, {q}), where
A= {((re) (@),
(9, €, 9),(a,€), ((a, &, 9), (9, S9)), ((q, &, S), (q, []])),
((a, [, D, (@, €), ((a, 1. 1), (a, €))}

2.(a) L(M) ={db"a: n=0}
(b)

Homework 14 Pushdown Automata and Context-Free Grammars

3. Don't even try to use the grammar construction algorithm. Just observethat L = {a'b"b"c’: m=pandnand p
> 0}, or, alternatively {a'b"c’ : m>n+pandnand p=0}. It can be generated by the following rules:

S- SS

S, - aSb [* S; generatesthe a'b" part. */

S - ¢€

S, - bS, [* S, generates the b™c” part. */

S, - bSc

S - ¢

4. (a) s
?@M@%@ FORRG

a,b// a,b//

We use state 2 to skip over an arbitrary number of ba groups that aren't involved in the required mismatch.
We use state 3 to count the first group of a'swe care about.

We use state 4 to count the second group and make sure it's not equal to the first.

We use state 5 to skip over an arbitrary number of ba groups in between the two we care about.

We use state 6 to clear the stack in the case that the second group had fewer a's than the first group did.
We use state 7 to skip over any remaining ba groups that aren't involved in the required mismatch.

(b) S - ADBLA' * L will take care of two groups where the first group has more as */
S - AbRA' /* R will take care of two groups where the second group has more as */
L - ablal |aLa
R - ba|Ra|aRa
A' - bAA' |
A - aAle

(c) LetL,=ba*ba*, whichisobviously regular.
If L isregular then
Lo=L n L;isregular.
L, =badha™, nzm
=L, n Ly must also beregular.
But =L, n Ly =ba'ba", n=m, which can easily be shown, using the pumping theorem, not to be regular.

Homework 14 Pushdown Automata and Context-Free Grammars 2

CS 341 Homework 15
Parsing

1. Show that the following languages are deterministic context free.
(@ {d™": m# n}
(b) {wew® : w O {a, b} *}
(©) {cad™™: m=0} O {da™®™: m= 0}
(d) (@"cb™: m=>0} O {ad"db™: m= 0}

2. Consider the context-free grammar: G=(V, Z, R, S), whereV ={(,), .,a S, A}, Z={(,), },andR=
{S-0.
S-a
S - (A),
A - S
A -5 AS (If you are familiar with the programming language LISP, notice that L(G) contains all
atoms and lists, where the symbol a stands for any non-null atom.)

(a) Apply left factoring and the rule for getting rid of left recursion to G. Let G' be the resulting grammar.
Arguethat G'isLL(1). Construct a deterministic pushdown automaton M that accepts L(G)$ by doing atop
down parse. Study the computation of M on the string ((()).a).

(b) Repeat Part (a) for the grammar resulting from G if onereplacesthefirstruleby A - €.

(c) Repeat Part (a) for the grammar resulting from G if onereplacesthe last ruleby A - SA.

3. Answer each of the following questions True or False. If you choose false, you should be able to state a
counterexample.

(a) If alanguage L can be described by aregular expression, we can be sure it is a context-free language.

(b) If alanguage L cannot be described by aregular expression, we can be sure it is not a context-free
language.

(c) If L isgenerated by a context-free grammar, then L cannot be regular.

(d) If there is no pushdown automaton accepting L, then L cannot be regular.

(e) If L is accepted by a nondeterministic finite automaton, then there is some deterministic PDA accepting L.

(f) If L isaccepted by a deterministic PDA, then L' (the complement of L) must be regular.

(g) If L isaccepted by adeterministic PDA, then L' must be context free.

(h) If, for agiven L in{a, b}*, thereexist x, y, z, such that y # € and xy"z O L for all n> 0, then L must be
regular.

(i) If, for agiven L in{a, b}*, there do not exist u, v, X, y, z such that vy| =1 and uv"xy"z O L foral n>0,
then L cannot be regular.

() IfLisregularandL =L1 n L2for someL1 and L2, then at least one of L1 and L2 must be regular.

(k) If L iscontext freeand L = L1L2 for some L1 and L2, then L1 and L2 must both be context free.

(1) If L iscontext free, then L* must be regular.

(m) If L isan infinite context-free language, then in any context-free grammar generating L there exists at least
onerecursiverule.

(n) If L isan infinite context-free language, then there is some context-free grammar generating L that has no
rule of theform A - B, where A and B are nonterminal symbols.

(o) Every context-free grammar can be converted into an equivalent regular grammar.

(p) Given a context-free grammar generating L, every string in L has a right-most derivation.

4. Recall problem 4 from Homework 12. It asked you to consider the following grammar for alanguage L (the
start symbol is S; the alphabets are implicit in the rules):
S - SS|AAA |&
A - aA |Aa|b
(a) It isnot possible to convert this grammar to an equivalent one in Chomsky Normal Form. Why not?

Homework 15 Parsing 1

(b) Modify the grammar as little as possible so that it generates L - . Now convert this new grammar to
Chomsky Normal Form. Isthe resulting grammar still ambiguous? Why or why not?

(c) From either the original grammar for L - € or the one in Chomsky Normal Form, construct a PDA that
acceptsL - e.
5. Consider the following language : L = {w"w" : w [0 {&, b}* and w" indicates w with each occurrence of a
replaced by b, and vice versa}. In Homework 12, problem 5, you wrote a context-free grammar for L. Then, in
Homework 13, problem 3, you wrote a PDA M that accepts L and traced one of its computations. Now decide
whether you think L is deterministic context free. Defend your answer.

6. Convert the following grammar for arithmetic expressions to Chomsky Normal Form:
E-E+T
E-T
T-T*F
T-F
F - (B)
F-id

7. Again, consider the grammar for arithmetic expressions given in Problem 6. Walk through the process of
doing a top down parse of the following strings using that grammar. Point out the places where a decision hasto
be made about what to do.

(@ id*id+id

(b)id*id* id

Solutions

1. (@) L ={a@"™": m#n}. Toshow that alanguage L is deterministic context free, we need to show a
deterministic PDA that accepts L$. Wedid that for L ={a™": m#n} inclass. (See Lecture Notes 14).

(b) L ={wew®: w O {a, b}*}. In class (again see Lecture Notes 14), we built a deterministic PDA to accept L
={wew" :w O {a, b}*}. It'seasy toturnit into adeterministic PDA that accepts L $.

(9L ={cad"™: m=>0} O{dd"v™: m=0}. Oftenit’shard to build a deterministic PDA for alanguage that is
formed by taking the union of two other languages. For example, {a"™b™: m> 0} O {a"b*™: m = 0} would be
hard (in fact it's impossible) because we have no way of knowing, until we run out of b’s, whether we're
expecting two b's for each aor just one. However, {ca™™: m=> 0} O {da"0®™: m=> 0} isactually quite easy.
Every string startswith ac or ad. If it'sac, then we know to look for one b for each g; if it'sad, then we know
to look for two. So thefirst thing we do isto start our machine like this:

\\ :
The machine that startsin state 1 is our classic machine for a'b", except of course that it must have afinal
transition on $ to its final state.

d

We have two choices for the machine that startsin state 2. 1t can either push one afor every ait sees, and then
pop an afor every pair of b’'s, or it can push two a sfor every ait sees, and then pop one afor every b.

Homework 15 Parsing 2

(d) L =@"ch™: m=0} O{ad"do®™: m=0}. Now we ve got another unioned language. But thistime we don’t
get a clue from the first character which part of the language we' re dealing with. That turns out to be okay
though, because we do find out before we have to start processing the b’ s whether we' ve got two b’sfor each aor
just one. Recall the two approaches we mentioned for machine 2 in the last problem. What we need hereisthe
first, the one that pushes asingle afor each ait sees. Then, when we see ac or d, we branch and either pop an a
for each b or pop an afor every two b's.

2. (a) We need to apply left factoring to thetworulesS - () and S - (A). We also need to eliminate the | eft
recursion fromA - A .S. Applying left factoring, we get the first column shown here. Then getting rid of left
recursion gets us the second column:

S~ (S S~ (S
S -) S -)
S - A) S 5 A)
S-a S-a
A-S A - SA’
A - AS A" - SA'
A S ¢

(b) Notice that the point of thefirst rule, whichwas S - (), wasto get a set of parentheses with no A inside.
An alternative way to do that is to dump that rule but to add therule A - €. Now we alwaysintroduce an A
when we expand S, but we can get rid of it later. If we do this, then there’ s no left factoring to be done. We still
have to get rid of the left recursion on A, just as we did above, however.

(c) If wechange A -~ A.St0oS - S.A, then there’ s no left recursion to get rid of and we can leave the rules
unchanged. Notice, though, that we'll get different parse trees this way, which may or may not be important. To
seethis, consider the string (a.a.a) and parse it using both the original grammar and the one we get if we change
thelast rule.

3. (a) True, since all regular languages are context-free.

(b) False, there exist languages that are context-free but not regular.

(c) False. All regular languages are also context-free and thus are generated by context-free grammars.

(d) True, sinceif L were regular, it would also be context free and thus would be accepted by some PDA.

(e) True, since there must also be a deterministic FSM and thus a deterministic PDA.

(f) False. Consider L =ab". L'={w O {a, b}* : either some b comes before some a or there is an unequal
number of asand b's.}. Clearly thislanguage is not regular since we can't count the a's and b's.

(g) True, since the deterministic context-free languages are closed under complement.

(h) False. SupposelL =a'c*b", whichisclearly not regular. Letx =aa, y=c,andz=bb. xy"zOL.

(i) False. L could befinite.

() False. L1 could bedh" and L2 could be{e 0 dh™: n# m}. Neitherisregular. But L1 n L2 ={¢€}, which
isregular.

(k) False. Let L1=a* and L2 ={d%h"c™: n# m}. L2isnot context free. But L =L1L2 =a*b"c™, whichis
context free.

(I) False. Let L =ww".

(m) True.

(n) True, since we have a procedure for eliminating such unit productions.

(o) False, since there exist context-free languages that are not regular.

(p) True.

4. (a) No grammar in Chomsky Normal Form can generate€, yet € [J L.

Homework 15 Parsing 3

(b) Inthe original grammar, we could generate zero copies of AAA (by letting S go to €), one copy of AAA
(by letting S go to AAA), two copies (by letting S go to SS and then each of them to AAA), three copies of AAA
(by letting Sgo to SS, then one of the S'sgoesto SS, then al three go to AAA), and so forth. We want to make
sure that we can still get one copy, two copies, three copies, etc. We just want to eliminate the zero copies
option. Note that the only role of Sisto determine how many copies of AAA are produced. Once we have
generated A’s we can never go back and apply the Srules again. So all we have to do is to eliminate the
production S - €. The modified grammar to accept L - € isthus:

G=({S A,B,C ab},{ab}, RS, wheeR={
S - SS|AAA
A - aA|Aalb
If we convert this grammar to Chomsky Normal Form, we get:

G=({S A,B,C,ab},{ab},R,S),whereR={

S- SS A - AC

S- AB A-Db

B - AA C-a

A-CA} This grammar is still ambiguous.

(c) (from the grammar of part (b)): M =({p,a},{a b},{S, A,a b}, A p{q})
A={ ((p.&), () ((a, & A), (g, 8A))
(9, €, 9),(q, S9) ((a, & A), (g, Ad))
(0, 9), (a0, AAA) ((9.& A), (a, b))
((a, &), (g, €))
((9,b,b), (a,€)) }

5. L is not deterministic context free for essentially the same reason that ww” is not.

6. The original grammar was: E-E+T

E-T

T-T*F

T-F

F - (E)

F-id
Step 2. Thereareno [rules. We show steps 3, 4, and 5 next to each other, so it's clear where therulesin steps 4
and 5 came from. In each case, thefirst rule that is derived from a step 3 ruleis next to its source. If more than
oneruleis derived from any given step 3 rule, the second and others are shown immediately under the first.
That's why there are some blank linesin the first two columns.

Homework 15 Parsing 4

Step 3. Step 4. Step 5.

E=*T,F
T=>*F
G'= ELE+T E - EPT E- EFE
E - PT
TLT*F T - TMF T-TT
T -MF
F - (B) F - LER F-LF
F-ER
F-id F-id F-id
Then we add:
E-T*F E - TMF E-TT (sinceT' - M F)
E - (B E - LER E - LF (sinceF - ER)
E-id E-id E - id
T - (B) T - LER T-LF (sinceF - ER)
T-id T -id T-id
P- + P_ +
M- * M o *
L - (L - (
R-) R-)

Homework 15 Parsing

CS 341 Homework 16
Languagesthat Areand Are Not Context-Free

1. Show that the following languages are context-free. Y ou can do this by writing a context free grammar or a
PDA, or you can use the closure theorems for context-free languages. For example, you could show that L isthe
union of two simpler context-free languages.

(@ L =4dch"

(b)L={a b}*-{db":n=0}

() L={d'd*:n=qg,orm<porm+n=p+q}

(d) L ={a, b}* - L,, where L, isthe language { babaabaaab...ba™bab : n n>1}.

2. Show that the following languages are not context-free.

@L={a" :n20}

(b) L ={www :w O {a, b}*}

(c)L={wO{a b, c}* : whas equa numbers of as, b's, and c's}
(dL={db™a:n=m}

(e) L ={ah"c"d™™ : m, n> 0}

3. Give an example of acontext free language (# Z*) that contains a subset that is not context free. Describe the
subset.

4. What is wrong with the following "proof" that a’b™d" is context free?
(1) Both {@'b": n= 0} and {b"a": n >0} are context free.
(2) d'b?d" = {a'b{b"a"}
(3) Since the context free languages are closed under concatenation, a'b”™a" is context free.

5. Consider the following context free grammar: G = ({S, A, a, b}, {a b}, R, S), where R ={
S - aAS
S, a
A - SbA
A - SS
A - ba }
(a) Answer each of the following questions True or False:
(i) From the fact that G is context free, it follows that there is no regular expression for L(G).
(ii) L(G) contains no strings of length 3.
(iii) For any stringw O L(G), there exists u, v, X, y, z such that w = uvxyz, |vy| = 1, and uv"xy"z 0 L(G)
foraln=0.
(iv) If there exist languages L1 and L2 such that L(G) = L1 [0 L2, then L1 and L2 must both be context
free.
(v) Thelanguage (L(G))" is context free.
(b) Give aleftmost derivation according to G of aaaabaa.
(c) Give the parse tree corresponding to the derivation in (b).
(d) Give anondeterministic PDA that accepts L(G).

6. Show that the following language is context free:
L ={xx®yy"zz": x,y, z0{a b}*}.

Homework 16 Languages That Are and Are Not Context Free 1

7. Suppose that L is context free and R isregular.
(a) IsL - R necessarily context free?
(b) ISR - L necessarily context free?

8. LetL;={db™:n=>m}. Let Ry ={(al b)* : thereisan odd number of a's and an even number of b's}. Show
apdathat acceptsL; n R;.

Solutions

1. (a) L =a'ch". We can easily do this one by building a CFG for L. Our CFG is almost the same as the one we
didin classfor a'b™:
S - aSB
S-c

(b) L ={a b}* -{adb": n=0}. Inother words, we ve got the complement of a'b". So we look at how a string
could fail to bein a'b". There aretwo ways: either the @' sand b’'s are out of order or there are not equal numbers
of them. So our language L is the union of two other languages:

e L;=(alb)*-a*b* (stringswherethea sand b’'sare out of order)

e L,=db"n#m (stringswherethe a sand b’s are in order but there aren’t matching numbers of them)

L, iscontext free. We gave a context-free grammar for it in class (Lecture 12). L, isthe complement of the
regular language a* b*, so it isalso regular and thus context free. Since the union of two context-free languages
is context free, L is context free.

(©L={d"c’d":n=qorm<porm+n=p+q}. Thisonelooks scary, but it's just the union of three quite
simple context-free languages:
L,=ah'c’d":n=q
L,=a"h"c’d": m<p
L;=a""c’d: m+n=p+q
Y ou can easily write context-free grammars for each of these languages.

(d) L ={a, b}* - Ly, where L, isthe language { babaabaaab...ba™'bab : n n>1}. Thisoneisinteresting. L,
isnot context free. But its complement L is. There are two ways to show this:

1. Wecould build aPDA. Wecan't build a PDA for L,: if we count the first group of a sthen we'll need to
pop them to match against the second. But then what do we do for the third? L is easier though. We don't
need to check that all the agroups areright. We simply have to find one that is wrong. We can do that with a
nondeterministic pda P. P goes through the string making sure that the basic b(a’b)” structure is followed.
Also, it nondeterministically chooses one group of & sto count. It then checks that the following group does
not contain one more a. If any branch succeeds (i.e., it finds a mismatched pair of adjacent a groups) then P
accepts.

2. We could use the same technique we used in (b) and (c) and decompose L into the union of two simpler
languages. Just aswe did in (b), we ask how astring could fail to beinL;and thusbein L. The answer is
that it could fail to have the correct b(a'b)* structure or it could have regions of a s that don’t follow the rule
that each region must contain one more athan did its predecessor. ThusL isthe union of two languages:

e Ly=(alb)* -b(@b)*

o Ly={xbd"aby O0{a, b}* : m+1#n}.

It's easy to show that L, is context free: Since b(a'b)” isregular its complement is regular and thus context
free. Lzisalso context free. You can build either a CFG or aPDA for it. It'svery similar to the simpler
language a'™ n # m that we used in (b) above. SoL; =L, [L3iscontext free.

2. (L ={ a"” :n> 0}. Supposel ={ a” :n> 0} were context free. Then we could pump. Let n=M? Sow
isthe string with M z ,or M* as) Clearly w|=K, sinceM > K. So uvvxyyz must bein L (whatever v and y
Homework 16 Languages That Are and Are Not Context Free 2

are). Butit can't be. Why not? Given our w, the next element of L isthe string with (M*+1)? as. That'sM* +
2M? + 1 (expanding it out). But we know that [vxy| < M, so we can't pump in more than M a's when we pump
only once. Thusthe string we just created can't have more than M* + M as. Clearly not enough.

(b) L ={www : w [{a, b}*}. The easiest way to do thisisnot to prove directly that L = {www : w [{a, b}*}
is not context free. Instead, let'sconsider L1 =L n a*ba*ba*b. If L iscontext free, L1 must alsobe. L1 =
{d'ba'bab : n>0}. Toshow that L1 isnot context free, let's choose w = a"ba'ba'b. First we observe that
neither v nor y can contain b, because if either did, then, when we pump, we'd have more than three b's, which is
not allowed. So both must be in one of the three aregions. We consider the cases:

(1, 1) That group of aswill no longer match the other two, so the stringisnot in L1.

(2,2 i

(3.3) i

(1, 2) At least one of these two groups will have something pumped into it and will no longer match the
onethat isleft out.

(2,3) "

(1, 3) excluded since vxy| < M, so vxy can't span the middle region of a's.

(c)L={wO{a b,c}*. Agan,theeasiest thingtodoisfirsttointersect L = {w {a, b, ¢}* : w hasequal
numbers of as, b's, and c's} with aregular language. Thistimeweconstruct L1 =L n a*b*c*. L1 must be
context freeif L is. But L1 =a'b"c", which we've already proven is not context free. So L isn't either.

(d) L ={db™a": n=m}. Well use the pumping lemmato show that L = {a’b™a" : n>=m} is not context free.
Choosew = a"b"d". We know that neither v nor y can cross aand b regions, because if one of them did, then,
when we pumped, we'd get a's and b's out of order. So we need only consider the cases where each isin one of
the three regions of w (the first group of ass, the b's, and the second group of as.)

(1, 1) Thefirst group of aswill no longer match the second group.

(2, 2) If we pump in b's, then at some point there will be more b's than a's, and that's not allowed.

(3, 3) Analogousto (1, 1)

(1, 2) We must either (or both) pump asinto region 1, which means the two a regions won't match, or,
if y isnot empty, we'll pump in b's but then eventually there will be more b's than as.

(2, 3) Analogousto (1, 2)

(1, 3) Ruled out since jvxy| < M, so vxy can't span the middle region of b's.

(e) L ={ah™c"d™™ : m, n>0}. We can show that L = {a'b™c"d™™ : m, n= 0} is not context free by
pumping. We choosew = a"b"cMd™. Clearly neither v nor y can cross regions and include more than one letter,
since if that happened we'd get letters out of order when we pumped. So we only consider the cases where v and
y fall within asingle region. Well consider four regions, corresponding to a, b, ¢, and d.

(1, 1) Well change the number of as and they won't match the c's any more.

(1, 2) If visnot empty, well change the a's and them won't match the ¢'s. If y is nonempty, well change the
number of b's and then we won't have the right number of d's any more.

(1, 3), (1, 4) areruled out because [vxy| < M, so vxy can't span across any whole regions.

(2, 2) Well change the number of b's but then we won't have the right number of d's.

(2, 3) If visnot empty, well change the b's without changing the d's. If y is not empty, well change the ¢'s and
they'll no longer match the as.

(2, 4) isruled out because [vxy| < M, so vxy can't span across any whole regions.

(3, 3) Well change the number of c's and they won't match the as.

(3, 4) If visnot empty, well change ¢'s and they won't match as. If y is not empty, we'll change d's without
changing b's.

(4, 4) Well change d's without changing asor b's.

Homework 16 Languages That Are and Are Not Context Free 3

3. LetL={adb"c’:n=morm=p}. Lisclearly context free. We can build a nondeterministic PDA M to
accept it. M has two forks, one of which compares n to m and the other of which compares m to p (skipping over
theas). L1={adb"c’:n=mand m=p} isasubset of L. But L1=a"b"c", which we know is not context free.

4. (1) isfine. (2) isfineif we don't over interpret it. In particular, although both languages are defined in terms
of the variable n, the scope of that variable is asingle language. So within each individual language definition,
the two occurrences of n are correctly interpreted to be occurrences of a single variable, and thus the values must
be same both times. However, when we concatenate the two languages, we still have two separate language
definitions with separate variables. So the two n's are different. Thisisthe key. It meansthat we can't assume
that, given {a'b"}{b"d" }, we choose the same value of n for the two strings we choose. For example, we could
get ab’b’a’, which is a?b’a®, which is clearly not in {a'h?'a”.

5.(a) (i) False, sinceall regular languages are also context free.
(it) True.
(iii) False. For examplea U L, but is not long enough to contain pumpabl e substrings.
(iv) False.
(v) True, since the context-free languages are closed under reversal.
(b) S= aAs =aSSS = aaSS = aaaS = aaaaA S — aaaabaS — aaaabaa.

(© S
/l\
a A S
S/\S a/A‘\\S
I | N\ |
a a b a a

(dM=({p,d,{a b} {ab} p{dq} A) whereA=
{((p. & 8),(@,9), (9. & a), (g, £)), (a9, b, b), (q, €)), (a, &,), (9, 8AT)), (0, &, 9), (9, @),
(@, & A), (@, SbA)), (0, & A), (0, S9)), ((a, &, A), (q, ba)) }

6. The easy way to show that L = {xx"yy"zz" : x, y, [0 {a, b} *} is context free isto recall that we've already
shown that {xx™: x 0 {a, b}*} is context free, and the context-free languages are closed under concatenation.
But we can also do this directly by giving agrammar for L:

S - AAA

A - aAa

A - bAD

A-ce

7.(@ L -Riscontextfree. L -R=L n R'(the complement of R). R'isregular (since the regular languages are
closed under complement) and the intersection of a context-free language and aregular language is context-free,
so L - Riscontext free.

(b) R - L need not be context free. R-L =R n L. But L' may not be context free, since the context-free
languages are not closed under complement. (The deterministic ones are, but L may not be deterministic.) If we
let R=2*,then R - L isexactly the complement of L.

8. My, whichacceptsL, = ({1, 2},{a b}, {a},A 1, {2}), A=
(1 a¢), (1, a)
((1, b, &), (2,¢€))
((1,&,¢),(2,¢)
((2,b,), (2,¢)

Homework 16 Languages That Are and Are Not Context Free 4

((2, ¢, @, (2,¢)
M., which accepts R, = ({1, 2, 3,4},{a b}, d,1,{2}), 0=

(1,82
(1, b, 3)
(2,81
(2, b, 4)
(3.a4)
(3,b,2)
(4,873
(4,b,2)

M3, which acceptsL; n Ry = ({(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2,), (2, 3), (2, 4)}, {a b}, {&}, A, (1,1),

{(22)}), A=

(1, 1), &), ((1, 2), &)
(1, 1), b, a), ((2,3), ¥))
(((1,2), a ¢), ((1, 1), &)
(1, 2), b, a), ((2,4), £))
(((1,3), & €), (1, 4), &)
(1, 3), b, a), ((2, 1), ¥))
(((1, 4), a), ((1, 3), &)
(1, 4),b,a),((22),)

Homework 16

(((2, 1), b, a),((2,3), ¥))
(((2,2), b, a), ((2, 4), £))
(((2,3),b,a),((2, 1), ¥))
(((2,4),b,a),((2,2), 8))

Languages That Are and Are Not Context Free

(((1, 1), &,8),((2 1), 8)
(1, 2),¢,8),((2 2), 8)
(1, 3),&,€), ((2.3), 8)
(1, 4), &,€), ((2, 4), 8)
(2, 1), &8, ((2 1), 9)
(((2,2), ¢ 8),((2 2), ¢)
(((2,3), &, 8), (2 3), 8)
(((2,4), ¢ 8),((24), ¢)

CS 341 Homework 17
Turing Machines

lLeM=(K,Z,9,s, {h}), where
K :{q01 qli h}’
>={abQ,0},
S= 0o,

and & is given by the following table,

q o 8(q,0)
Yo a (91, b)
Jo b (91, @
Co Q (h, Q)
Jo 0 (9o, =)
Ch a (%, —)
Ch b (%, —)
Ou a (9o, =)
o} 0 (0, -)

(a) Trace the computation of M starting from the configuration (qo, ¢aabbba).
(b) Describe informally what M does when started in g, on any square of atape.

2. Repeat Problem 1 for the machineM = (K, %, 9, s, {h}), where
K ={do, a1, G, h},
>={ab,0Q,0},
S= 0o,
and & is given by the following table (the transitions on ¢ are &(q, ¢) = (q, ¢), and are omitted).

q o 8(q,0)

o a CR)
o b (%, =)
Qo a (9o,)
Ch a R
L b (%, -)
G a (9, <)
02 a (%, -)
02 b (%, -)
02 Q (h, Q)

Start from the configuration (g, 0abbQbbO0aba).

3. Let M bethe Turing machineM = (K, Z, 9, s, { h}), where

K ={do, O, G, h},
> ={a 0, },
S=Qos
and & is given by the following table.
Let n> 0. Describe carefully what M does when started in the configuration (g, 0Qa’a).

Homework 17 Turing Machines

q o 6(q,0)

o a (%, <)
Jo d (90,)
o 0 (%, —)
Ch a (02,)
ql D (hv D)

L 0 (%, —)
02 a (92, @

02 Qa (Qo, <)
0 0 (%, —)

4. Design and write out in full a Turing machine that scansto the right until it finds two consecutive a's and then
halts. The alphabet of the Turing machine should be {a, b, 14, 0}.

5. Give a Turing machine (in our abbreviated notation) that takes asinput astring w [{a, b} * and squeezes out
the as. Assume that the input configuration is (s, ¢dw) and the output configuration is (h, 0Qw"), wherew' = w
with all the a's removed.

6. Give a Turing machine (in our abbreviated notation) that shiftsits input two characters to the right.
Input: awd
Output: Qaaawd

7. (L & P5.7.2) Show that if alanguage is recursively enumerable, then there is a Turing machine that
enumerates it without ever repeating an element of the language.

Solutions

1. (a) Of - Of - o, Ogabbba
Oz, ¢babbba

y abd/ - o, ¢babbba

q0 \ al G, Obbbbba

alb; b/a 4 o, Obbbbba
o/ Cll

0z, ¢bbabba
o, ¥bbabba
0z, Obbaaba
@ o, Obbaaba
0z, Obbaaaa
o, Obbaaaa
0, Obbaaab

o, Obbagab
h, Obbaasb

(b) Converts al asto b's, and vice versa, starting with the current symbol and moving right.

Homework 17 Turing Machines 2

2. (a) b,a/ - al/ ~ ab/- o, ¢abbQbbO0aba

A 0o, 0abbAbb00aba
N al . bl - (o, 0abbabbO00aba ...
q0 " al @ G, 0abbbbO00aba

i gy, abbbblUaba ...
a

—

= G, 0abbObbaaba
0, ¢abbQbbQ0aba

@ h, ¢abbObbO0aba

(b) M goesright until if finds an a, then left until it finds a b, then right until it finds a blank.

3. Q/Q N go,0ldaaaaa

ala
‘ gl, ¢Qaaaaa
y al \ ald g2, {0aaala
qo0 "\ gl @ 0l - g0, ¥Qaaala
O gl, ¢Qaaala
Ol - Q/a g2, 00abala
g0, ¢0alala
gl, ¢Qalala
@ h, 0Qadala

[

M changes every other a, moving left from the start, to ablank. If nisodd, it loops. If niseven, it halts.

4, M= (K, Z, 9, s, {h}), where
y al - y ala K:{qO,ql, h},
O e O) B 5 5
b,a/ - S=0o
o (T

5. Theideahereisthat first we'll push all b'sto the left, thus squeezing all the asto theright. Then we'll just
replace the aswith blanks. In more detail: scan the string from left to right. Every timewefind an g, if there are
any b'sto theright of it we need to shift them left. So scan right, skipping as many ds as there are. When we
find ab, swap it with thelast a= That squeezes one afurther to the right. Go back to the left end and repeat.
Eventually all the aswill come after all the b's. At that point, when we look for ab following an a, all we'll find
isablank. At that point, we just clean up by rewriting all the as as blanks.

¥ |
>Rag a }Rb,a b E\L bL,
a a

a

Homework 17 Turing Machines 3

6. Theideaisto start with the rightmost character of w, rewrite it as a blank, then move two squaresto the right
and plunk that character back down. Then scan left for the next leftmost character, do the same thing, and so
forth.

- |
>L___az j0R%L L,

g
Ru3

7. Suppose that M isthe Turing machine that enumeratesL. Then construct M* to enumerate L with no
repetitions: M* will begin by simulating M. But whenever M outputs a string, M* will first check to seeif the
string has been output before (see below). If it has, it will just continue looking for strings. If not, it will output
it, and it will also write the string, with #in front of it, at the right end of the tape. To check whether a string has
been output before, M* just scans its tape checking for the string it is about to output.

Homework 17 Turing Machines 4

CS 341 Homework 18
Computing with Turing Machines

1. Present Turing machines that decide the following languages over {a, b}:
(@0
(b) {€}
(©){a
(d) {a}*

2. Consider the simple (regular, in fact) languageL = {w O {ab}* : |w|iseven}
(a) Give a Turing machine that decidesL.
(b) Give a Turing machine that semidecidesL.
3. Give a Turing machine (in our abbreviated notation) that accepts L = {ah™a" : m > n}
4. Give a Turing machine (in our abbreviated notation) that acceptsL = {ww : w [{a, b} *}

5. Give a Turing machine (in our abbreviated notation) that computes the following function from stringsin { a,
b}* to stringsin {a, b} * : f(w) =ww".

6. Give a Turing machine that computes the function f: {a,b,c}* — N (theintegers), where f(w) = the number of
as(inunary) inw.

7. Let w and x be any two positive integers encoded in unary. Show a Turing machine M that computes
f(w, X) =w + Xx.

Represent the input to M as
Oldw; x4

8. Two's complement form provides a way to represent both positive and negative binary integers. Suppose that
the number of bits allocated to each number isk (generally the word size). Then each positive integer is
represented simply asits binary encoding, with leading zeros. Each negative integer n is represented as the result
of subtracting |n| from 2%, where k is the number of bits to be used in the representation. Given afixed k, it is
possible to represent any integer n if -2* < n< 2“*-1. The high order digit of each number indicatesits sign: it
is zero for positive integers and 1 for negative integers.
Examples, for k = 4:
0=0000, 1=0001, 2=0010, 3=0011, 4=0100, 5=0101, 6=0110, 7=0111

-1=1111, -2 =1110, -3 = 1101, -4 = 1100, -5 = 1011, -6 = 1010, -7 = 1001, -8 = 1000
Since Turing machines don't have fixed length words, we'd like to be able to represent any integer. We will
represent positive integers with asingle leading 0. We will represent each negative integer n as the result of
subtracting n from 2, wherei is the smallest value such that 2' = |n|. For example, -65 will be represented as
1111111, since 2’ (128) = 65, so we subtract 65 (01000001 in binary) from 2° (in binary, 100000000). We need
the extra digit (i.e., we subtract from 2** rather than from 2') because, in order for a positive number to be
interpreted as positive, it must have aleading 0, thus consuming an extra digit.

Let w be any integer encoded in two's complement form. Show a Turing machine that computes f(w) = -w.

Homework 18 Computing with Turing Machines 1

Solutions
1 (a) We should rgject everything, since no strings are in the language.

>n

(b) Other than the left boundary symbol, the tape should be blank: ¢QQ0Q

>R
1
y

(c) Just thesinglestringa: ¢Qadd

-0 AN
4

>R__a JR—O)y

(d) Any number of as:

v
>R

) N
n y

2.(a) ab (b) ab

>R —ab—P R >R —ab—pR
s
Ell Ell Q
y n y

Homework 18 Computing with Turing Machines

3. Theideais to make a sequence of passes over theinput. On each pass, we mark off (with d, e, and f) a
matching a b, and a. This corresponds to the top row of the machine shown here. When there are no matching
groups left, then we accept if there is nothing left or if there are b'sin the middle. If there is anything else, we
reject. It turnsout that a great deal of this machineis essentially error checking. We get to the R on the second
row as soon aswe find the first "extra’ b. Wecanloopinitaslong aswefind b's. If wefind asweregject. If we
find a blank, then the string had just b's, which is okay, so we accept. Once we find an f, we have to go to the
separate state R on the third row to skip over the f's and make sure we get to the final blank without either any
more b's or any more as.

d e b
@R —b—pe _}R —a—PfL
f
Q f ab
R

4. The hard part here is that we don't know where the middle of the string is. So we don't know where the
boundary between the first occurrence of w ends and the second begins. We can break this problem into three
subroutines, which will be executed in order:

(1) Find the middle and mark it. If there's alone character in the middle (i.e., the length of the input string isn't
even), then rgject immediately.

(2) Bounce back and forth between the beginning of the first w and the beginning of the second, marking off
charactersif they match and rejecting if they don't.

(3) If we get to the end of the w's and everything has matched, accept.

Let's say alittle more about step (1). We need to put a marker in the middle of the string. The easiest thing to do
isto make a double marker. Well use##. That way, we can start at both ends (bouncing back and forth), moving
amarker one character toward the middle at each step. For example, if we start with the tape 0QaabbaabblA,
after one mark off step well have ¢Qatabbaab#bU10], then 0Qaattbbaatbbd0A, and finally
OQaabb#taabbdQ. So first we shift the whole input string two sgquares to the right on the tape to make room
for the two markers. Then we bounce back and forth, moving the two markers toward the center. If they meet,
we've got an even length string and we can continue. |f they don't, we regject right away.

Homework 18 Computing with Turing Machines 3

5. Theideaisto work from the middle. Well scan right to the rightmost character of w (which we find by
scanning for the first blank, then backing up (left) one square. We'l rewrite it so we know not to deal with it
again (aswill become 1's; b'swill become 2's.) Then we move right and copy it. Now if we scan back left past
any 1'sor 2's, we'lll find the next rightmost character of w. We rewriteitto al or a2, then scan right to a blank
and copy it. We keep this up until, when we scan back to the left, past any 1'sor 2's, we hit ablank. That means
we've copied everything. Now we scan to the right, replacing 1's by asand 2's by b's. Finally, we scan back to
the left to position the read head to the left of w.

>R, L a 1R a 12212
b :, lCI
Rp” b RE—Tn
1
ab x\
b
L

6. Theidea hereisthat we need to write a 1 for every aand we can throw away b'sand c's. We want the 1'sto
end up at the left end of the string, so then al we have to do to clean up at theend is erase @l the b'sand c's to the
right of the areawith the 1's. So, we'll start at the left edge of the string. Welll skip over b'sand c's until we get
toana. At that point, rewrite it asb so we don't count it again. Then (remembering it in the state) scan left until
we get to the blank (if thisisthefirst 1) or we get to a 1. In either case, move one square to the right and write a
1. We arethusoverwriting ab or ac, but we don't care. We're going to throw them away anyway. Now start
again scanning to the right looking for an a. At some point, we'll come to the end of string blank instead. At that
point, just travel leftward, rewriting all the b's and c's to blank, then cross the 1's and land on the blank at the | eft
of the string.

- |
>R__a)bl R1
b,C U&
b.c a
16—

7. All we have to do is to concatenate the two strings. So shift the second one | eft one square, covering up the
semicolon.

>RR_1 L1

|

LUL

Homework 18 Computing with Turing Machines 4

8. Do a couple of examples of the conversion to see what's going on. What you'll observe is that we want to scan
from theright. Initially, we may see some zeros, and those will stay as zeros. If we ever see a1, then we rewrite
thefirst oneasal. After that, we're dealing with borrowing, so we swap al digits: every zero becomes a one and
every one becomes a zero, until we hit the blank at the end of the string and halt.

- I
>R, L 0 }0

Homework 18 Computing with Turing Machines 5

CS 341 Homework 19
Turing Machine Extensions

1. Consider the language L = {ww"}.
(a) Describe a one tape Turing machine to accept L.

(b) Describe atwo tape Turing machine to accept L.
(c) How much more efficient is the two tape machine?

2. Give (in abbreviated notation) a nondeterministic Turing machine that accepts the language
L ={ww"uu®: w, ul{a b}*}

Solutions

(1) (a) The one tape machine needs to bounce back and forth between the beginning of the input string and the
end, marking off matching symbols.

(b) The two tape machine works as follows: If theinput is€, accept. If not, copy the input to the second tape and
record in the state that you have processed an even number of characters so far. Now, start the first tape at the
left end and the second tape at the right end . Check that the symbols on the two tapes are the same. If not,
reject. If so, move thefirst tape head to the right and the second tape head to the left. Also record that you have
processed an odd number and continue, each time using the state to keep track of whether you’' ve seen an even or
odd number of characters so far. When you reach the end of the input tape, accept if you’ ve seen an even number
of characters. Reject if you've seen an odd number. (The even/odd counter is necessary to make sure that you
reject strings such as aba.)

(c) The one tape machine takes time proportional to the square of the length of the input, since for an input of
length n it will make n passes over the input, each of which takes on average n/2 steps. The two tape machine
takes time that's linear in n. It takes n steps to copy, then another n steps to compare.

2. Theideaisjust to use nondeterminism to guess the location of the boundary between the w and u regions.

Each path will choose a spot, shift the u region to the right, and insert a boundary marker #. Once thisis done,
the machine simply checks each region for ww”. If we get astringin L, one of the guessed paths will work.

Homework 19 Turing Machine Extensions 1

CS 341 Homework 20
Unrestricted Grammars

1. Find grammars that generate the following languages:
(@ L={ww:w{a b}*}

yL={a% :n=0}

(©L={db*c:n=1}

(d) L ={w": wisthe social security number of aliving American citizen}

(e) L ={wc"d": w O{a, b}* and m = the number of a'sinw and n equals the number of b'sin w}

2. Find agrammar that computes the function f(w) = ww, wherew O {a, b} *.
Solutions

1.(a L={ww:w0O{a b}*}

Thereisn't any way to generate the two w’ s in the correct order. Suppose we try. Then we could get aSa.
Suppose we want b next. Then we need Sato become bSab, since the new b hasto come after the athat’s
aready there. That could work. Now we have abSab. Let's say we want anext. Now Sab has to become aSaba.
The problem is that, as the length of the string grows, so does the number of rules we'll need to cope with all the
patterns we could have to replace. In afinite number of rules, we can’t deal with replacing S (which we need to
do to get the next character in the first occurrence of w), and adding a new character that is arbitrarily far away
fromS.

The other approach we could try would be havearule S — WW, and then let W generate astring of dsand b's.
But thiswon't work, since we have no way to control the expansion of the two W's so that they produce the same
thing.

So what we need to do is to generate ww" and then, carefully, reverse the order of the charactersin w®. What
we'll doisto start by erecting awall (#) at the right end of the string. Then we' Il generateww®. Then, ina
second phase, we'll take the charactersin the second w and, one at atime, starting with the leftmost, move it right
and then move it past thewall. At each step, we move each character up to the wall and then just over it, but we
don’t reverse characters once they get over thewall. Thefirst part of the grammar, which will generate wTw~,
looks like this:

S_.S# Thisinsertsthe wall at the right.

S - aSa

S, - bSb

ST T will mark the left edge of the portion that needs to be reversed.

At this point, we can generate strings such as abbbTbbba#. What we need to do now isto reverse the string of
asand b'sthat isbetween T and #. To do that, we let T spin off amarker Q, which we can pass rightward
through the string. Asit movesto theright, it will take thefirst aor b it finds with it. It does this by swapping the
character it is carrying (the one just to the right of it) with the next one to the right. It also movesitself one
square to theright. The four rules marked with * accomplish this. When Q’s character getsto the # (the rules
marked **), the a.or b will swap places with the # (thus hopping the fence) and the Q will go away. We can keep
doing thisuntil al the @ sand b’s are behind the fence and in the right order. Then the final T# will drop out.
Here are the rules for this phase:

Homework 20 Unrestricted Grammars 1

T-5TQ
Qaa - aQa
Qab - bQa
Qbb - bQb
Qba - aQb
Qa# _ #a **%

Qb# - #b **

T# - €

So with R as given above, thegrammar G=({S, S, #, T, Q, a b}, {a b}, R, S}

* %k ¥ X

b L={a® :n=0}

Theideahereisfirst to generate the first string, which isjust a. Then think about the next one. Y ou can derive it
by taking the previous one, and, for every a, writetwo a's. So we get aa. Now to get the third one, we do the
samething. Each of the two a s becomes two and we have four, and so forth. So we need arule to get us started
and to indicate the possibility of duplication. Then we need rules to actually do the duplication. To make
duplication happen, we need a symbol that gets generated by S indicating the option to repeat. We'll use P.
Since duplication can happen an arbitrary number of times, we need P to spin off as many individual duplication
commands aswe want. We'll use R for that. The one other thing we need isto make sure, if we start a
duplication step, that we finishit. In other words, suppose we currently have aaaa. If we start duplicating the a's,
we must duplicate all of them. Otherwise, we might end up with, for example, seven as. Sowe'll introduce a
left edge marker, #. Once we fire up a duplication (by creating an R), we'll only stop (i.e., get rid of R) when R
has made it all the way to the other end of the string (namely the left end since it starts at theright). So we get
the following rules:

S - #aP P lets us start up duplication processes as often as we like.

P-e When we' ve done as many as we want, we get rid of P.

P- RP R will actually do a duplication by moving leftward, duplicating every ait sees.

aR - Raa Actually duplicates one a, and moves R one square to the left so it moves on to the next a
#R - # Get rid of R onceit's made it all the way to the | eft

#o € Get of # at the end

So with R as given above, thegrammar G=({S, P, R, #, a, b}, {a, b}, R, S}

(L={db*c™:n=1}

Thisoneisvery similar to a'b"c". The only differenceisthat we will churn out b'sin pairs and c'sin triples each
time we expand S. So we get:

S - aBSccc

S - aBccc

Ba - aB

Bc - bbc

Bb - bbb

So with R as given above, thegrammar G= ({S, B, a, b, ¢}, {a b, c}, R, S}

(d) L ={w": wisthe social security number of aliving American citizen}

Thisoneisregular. Thereisafinite number of such social security numbers. So we need one rule for each
number. Eachruleisof theform S — <valid number>. So with that collection of rules as R, the grammar G =
({s,0,1,2,3/4,56,7,89},{0,1,2,3,4,56,7,8 9,R, S}

(e) L ={wc"d": w O{a, b}* and m = the number of a'sinw and n equals the number of b'sin w}

Theidea here isto generate a c every time we generate an a and to generate ad every time we generate ab. Welll
do this by generating the nonterminals C and D, which we will use to generate ¢'s and d's once everything isin
theright place. Once we've finished generating all the ds and b's we want, the next thing we need to do isto get

Homework 20 Unrestricted Grammars 2

al the D'sto the far right of the string, all the C's next, and then have the a's and b's |eft alone at the left. We
guarantee that everything must line up that way by making sure that C can't become ¢ and D can't become d
unlessthings areright. To do this, we requirethat D can only become d if it'sall the way to theright (i.e, it's
followed by #) or it'sgot ad toitsright. Similarly with C. We can do thiswith the following rules;

S S#
S - aSC
S, - bS,D
S - ¢€
DC - CD
D# - d
Dd - dd
C#-c
Cd - cd
Cc - cc
o€

So with R as given above, thegrammar G=({S, S, C, D, #,a,b,c,d},{a b,c, d},R, S}

2. We need to find agrammar that computes the function f(w) = ww. So we'll get inputs such as SabaS. Think of
the grammar we'll build as a procedure, which will work as described below. At any given time, the string that
has just been derived will be composed of the following regions:

<the part of w that S <the part of w that T (inserted when the <the part of the W (also
has already been has not yet been first character moves second w that has
inserted
copied> copied, which may into the copy region) been copied so far, when T
have within it a which may have is)
character (preceded by #) within it a character
that is currently being (preceded by %) that
copied by being moved iscurrently being
through the region> moved through the
region>

Most of the rules come in pairs, one dealing with an a, the other with b.

SS - ¢ Handles the empty string.

Sa - aSta Move S past the first ato indicate that it has already been copied. Then start copying it by
introducing a new a, preceded by the special marker #, which well use to push the new ato the
right end of the string.

Sb - bSHb Same for copying b.

#aa - afta Move the awe're copying past the next character if it'san a.

#ab - b#a Move the awe're copying past the next character if it'sab.

#ba - &b Same two rules for pushing b.

#bb - b#b "

#aS - #aTW Weve gotten to the end of w. Thisisthefirst character to be copied, so theinitial Sis at the end
of w. We need to create a boundary between w and the copied w. T will be that boundary. We
also need to create a boundary for the end of the copied w. W will be that boundary. T and W
are adjacent at this point because we haven't copied any charactersinto the copy region yet.

#0S - #aTW Sameif we get to the end of w pushing b.

#al - T%a Jump the awe're copying into the copy region (i.e., to theright of T). Get rid of #, since we're
donewith it. Introduce %, which we'll use to push the copied a through the copy region.

#OT - T%b Sameif we're pushing b.

Homework 20 Unrestricted Grammars 3

%aa — a%a

%ab - b%a
%ba - a%b
%bb - b%b
%aW - aw
%bW - bw
ST - ¢

Push ato the right through the copied region in exactly the same way we pushed it through w,
except we're using % rather than # as the pusher. Thisrule pushesapast a

Pushes a past b.

Same two rules for pushing b.

We've pushed an a all the way to the right boundary, so get rid of %, the pusher.

Same for a pushed b.

All the characters from w have been copied, so they're al to the left of S, which causes Sto be
adjacent to the middle marker T. We can now get rid of our special walls. Herewe get rid of S
and T.

Gid rid of W. Notethat if we do this before we should, there's no way to get rid of %, so any
derivation path that doesthiswill fail to produce astringin {a, b}*.

So with R as given above, the grammar G = ({S, T, W, #, %,a, b}, {a, b}, R, S}

Homework 20

Unrestricted Grammars 4

CS 341 Homework 21
Undecidability

1. Which of the following problems about Turing machines are solvable, and which are undecidable? Explain
your answers carefully.

(a) To determine, given a Turing machine M, a state g, and a string w, whether M ever reaches state g when
started with input w from itsinitia state.

(b) To determine, given a Turing machine M and a string w, whether M ever moves its head to the left when
started with input w.

(c) To determine, given two Turing machines, whether one semidecides the complement of the language
semidecided by the other.

(d) To determine, given a Turing machine M, whether the language semidecided by M isfinite.

2. Show that it is decidable, given a pushdown automaton M with one state, whether L(M) = 2*. (Hint: Show
that such an automaton accepts all strings if and only if it accepts all strings of length one.)

3. Which of the following problems about context-free grammars are solvable, and which are undecidable?
Explain your answers carefully.

(a) To determine, given a context-free grammar G, is€ [L(G)?

(b) To determine, given a context-free grammar G, is{e} = L(G)?

(c) To determine, given two context-free grammars G, and G, isL(G,) 0 L(Gy)?

4. The nonrecursive languages L that we have discussed in class all have the property that either L or the
complement of L isrecursively enumerable.

(a) Show by a counting argument that there is alanguage L such that neither L nor its complement is recursively
enumerable.

(b) Give an example of such alanguage.

Solutions
1. (a) To determine, given a Turing machine M, a state g, and a string w, whether M ever reaches state g when
started with input w from itsinitial state. Thisisnot solvable. We can reduce H to it. Essentialy, if we can tell
whether amachine M ever reaches some state g, then let g be M's halt state (and we can massage M so it has only
one halt state). If it ever getsto q, it must have halted. More formally:

L,=H= {s="M""w" : M halts on input string w}

U 1

(M, L,= {s:"M" "w" "q" : M reaches state g when started with input w from itsinitial state}
Let T’ create, from M the machine M* asfollows. Initially M* equals M. Next, anew halting state H is created in
M*. Then, from each state that was a halting statein M, we create transitionsin M* such that for all possible
values of the current tape square, M* goesto H. We create no other transitionsto H. Notice that M* will end up
in H in precisely the same situations in which M halts.

NOW Iet T("M" "W") = '['("M") "Wll "HII

So, if M, exists, then M, exists. It invokes T' to create M*. Then it passes"M*", "w", and "H" to M, and returns
whatever M, returns. But M4 doesn't exist. So neither does M.

Homework 21 Undecidability 1

(b) To determine, given a Turing machine M and a string w, whether M ever moves its head to the left when
started with input w. Thisoneis solvable. We will assume that M is deterministic. We can build the deciding
machine D asfollows. D starts by simulating the operation of M onw. D keeps track on another tape of each
configuration of M that it has seen so far. Eventually, one of the following things must happen:

1. M movesitshead to theleft. Inthis case, we say yes.

2. M isstuck on some square s of the tape. In other words, it isin some state p looking at some square s on the
tape and it has been in this configuration before. If this happensand M didn't go left yet, then M simply
hasn't moved off of s. And it won't from now on, since it's just going to do the same thing at this point asit
did the last time it was in this configuration. So we say no.

3. M moves off the right hand edge of the input w. So it isin some state p looking at a blank. Within k steps (if
k isthe number of statesin M), M must repeat some state p. If it does this without moving left, then again we
know that it never will. In other words, if the last time it was in the configuration in which it was in state p,
looking at a blank, there was nothing to the right except blanks, and it can't move left, and it isagain in that
same situation, it will do exactly the same thing again. So we say no.

(c) To determine, given two Turing machines, whether one semidecides the complement of the language
semidecided by the other. Thisoneis not solvable. We can reduce to it the problem, "Given a Turing machine
M, isthere any string at all on which M halts?' (Whichisequivaent to"IsL(M) = 0?7") In the book we show
that this problem is not solvable. What well do isto build a machine M* that semidecides the language >*,
which is the complement of the language [J. If we could build a machine to tell, given two Turing machines,
whether one semidecides the complement of the language semidecided by the other, then to find out whether any
given machine M accepts anything, we'd pass M and our constructed M* to this new machine. If it saysyes, then
M accepts . If it says no, then M must accept something. Formally:

L;= {s="M"M haltson some string w}
U 1
(My) L= {s="M;""M,;": M, decides the complement of the language semidecided by M}

M accepts strings over someinput alphabet 2. Let T construct a machine M* that semidecides the language >*.
Thent("M") ="M" "T'(M)".

So, if M, exists, then M, exists. It invokesT' to create M*. Then it passes"M" and "M*" to M, and returns the
opposite of whatever M, returns (since M2 saysyesif L(M) = [and M1 wantsto say yesif L(M) # [J). But M,
doesn't exist. So neither does M.

(d) To determine, given a Turing machine M, whether the language semidecided by M isfinite. Thisoneisn't
solvable. We can reduce to it the problem, "Given a Turing machine M, does M halt on €?7' We'll construct,
from M, a new machine M*, which erases itsinput tape and then simulates M. M* haltson al inputsiff M halts
one. If M doesn't halt on g, then M* halts on no inputs. So there are two situations: M* haltson all inputs (i.e.,
L(M*) isinfinite) or M* haltson no inputs (i.e., L(M*) isfinite). So, if we could build a Turing machine M, to
decide whether L(M*) isfinite or infinite, we could build a machine M, to decide whether M haltson .
Formally:

L= {s="M"M hdtson g}
U 1

(M) L= {s="M"isfinite}

Homework 21 Undecidability 2

Let T construct the machine M* from "M" as described above.

So, if M; exists, then M, exists. It invokest to create M* which accepts a finite language precisely if M accepts
€. But M; doesn't exist. So neither does M.

2. M only hasone state S. If Sisnot afinal state, then L(M) = [0, which is clearly not equal to *, so we say no.
Now suppose that Sisafinal state. Then M acceptse. Doesit aso accept anything else? To accept any single
character cin Z, there must be atransition ((S, c, €), (S, €)). In other words, we must be ableto end up in Swith
an empty stack if, looking at an empty stack, we see c. If thereisnot such atransition for every element c of Z,
then we say no, since we clearly cannot get even al the one character stringsin >*. Now, suppose that all those
required transitions do exist. Then, we can stay in S with an empty stack (and thus accept) no matter what
character we see next and no matter what is on the stack (since these transitions don't check the stack). So, if M
accepts all stringsin Z* of length one, then it accepts all stringsin *. Notethat if M is deterministic, then if it
does have all the required transitions it will have no others, since al possible configurations are accounted for

3. () To determine, given a context-free grammar G, is€ [1 L(G) Thisis solvable by using either top down or
bottom up parsing on the string €.

(b) To determine, given a context-free grammar G, is{€} =L(G) Thisissolvable. By the context-free
pumping theorem, we know that, given a context-free grammar G generating alanguage L(G), if thereisastring
of length greater than BT in L, then vy can be pumped out to create a shorter string also in L (the string must be
shorter since vy| >0). We can, of course, repeat this process until we reduce the original string to one of length
lessthan B'. Thismeansthat if there any stringsin L, there are some strings of length lessthan B™. So, to see
whether L ={¢}, we do the following: First see whether € 0 L(G) by parsing. If not, wesay no. If eisinL, then
we need to determine whether any other stringsarealsoinL. To do this, wetest al stringsin >* of length up to
B™. If wefind one, wesay no, L # {¢}. If wedon' find any, we can assert that L = {€}. Why? If thereisa
longer string in L and we haven't found it yet, then we know, by the pumping theorem, that we could pump out vy
until we got a string of length B” or less. If € werenot in L, we could just test up to length B™ and if we didn't
find any elements of L at all, we could stop, sinceif there were bigger ones we could pump out and get shorter
ones but there aren't any. However, because € isin L, what about the case where we pump out and get €? That's
why we go up to B™. If there are any long strings that pump out to €, then there is a shortest such string, which
can't be longer than B™ since that's the longest string we can pump out (by the strong version of the pumping
theorem).

(c) To determine, given two context-free grammars G, and G,, isL(G,) [0 L(G;) Thisisn't solvable. If it were,
then we could reduce the unsolvable problem of determining whether L(G,) = L(G,) toit. Noticethat L(G;) =
L(Gy) iff L(Gy) U L(G,) and L(G,) O L(Gy). So, if we could solve the subset problem, then to find out whether
L(Gy) = L(Gy), dl wedo is ask whether the first language is a subset of the second and vice versa. If both
answers are yes, we say yes. Otherwise, we say no. Formally:

Li= {s:s=G; G, G; and G, are context-free grammars, and L(G;) = L(Gy) }

U 1
(My) Lo={s:s=G; G, G;and G, are context-free grammars, and L(G,) I L(G,) }
If M, exists, then M (G, Gy) = Myx(G; Gy) AND My(G;, G;). To write thisout in our usual notation so that the last

function that gets applied is M, is sort of tricky, but it can, of course be done: Don't worry about doing it. If you
can write any function for M, that is guaranteed to be recursive if M, exists, then you've done the proof.

Homework 21 Undecidability 3

4. (a) If any language L isrecursively enumerable, then there is a Turing machine that semidecidesit. Every
Turing machine has a description of finite length. Therefore, the number of Turing machines, and thus the
number of recursively enumerable languages, is countably infinite (since the power set of a countable set is
countably infinite). If, for some language L, its complement isre, then it must have a semideciding Turing
machine, so there is a countably infinite number of languages whose complement is recursively enumerable. But
there is an uncountable number of languages. So there must be languages that are not recursively enumerable
and do not have recursively enumerable complements.

(b) L ={"M" : M haltson the input 0 and M doesn't halt on the input 1}.

The complement of L ={"M" : M doesn't halt on the input O or M halts on the input 1}. Neither of these
languages is recursively enumerable because of the doesn't halt piece.

Homework 21 Undecidability 4

CS 341 Homework 22
Review

1. Given the following language categories:

L isfinite.

L isnot finite but isregular.

L isnot regular but is deterministic context free

L isnot deterministic context free but is context free

L isnot context free but is Turing decidable

L isnot Turing decidable but is Turing acceptable

L isnot Turing acceptable

Assign the appropriate category to each of the following languages. Make sure you can justify your answer.
a___ {dbP":k=1lork=2n=0}

b. {db":k=0ork=1,n=0}
c.__ {dbc": n=0}

d._ {dbc": n=0,m=0}

e {db":nz=00a

f.__ {d@D™: nisprimeand miseven}
g {db"c™ : n=0,m=0}

h. {db"¢™ : n=0,m=0}
i
b

K.

l.

m.

n.
o_

S SR
q___

QFWQQWP

{abm :n=0,m=0}

{xy : xOa*,yOb* x| =y}

_ {xy:xDOa,yda, xl=1ly}

_ Ax:x0O{ab,c}*, andx has5 or more a's}

___{"M": M accepts at least 1 string}

____{"M":MisaTuring machinethat halts on input € and ['M"| < 1000}

{"M" : M isaTuring machine with < 50 states}

{"M" : M isaTuring machine such that L (M) = a*}

{x: xO{A,B,C,D,E,F, G}, and x isthe answer you write to this question}

Solutions

a_D {db":k=1lork=2n=0}

We haven't discussed many techniques for proving that a context free language isn’'t deterministic, so we can’t
prove that thisoneisn’'t. But essentially the reason thisoneisn’t is that we don’t know what to do when we see
b's. Clearly, we can build apdaM to accept thislanguage. AsM reads each a, it pushesit onto the stack. When
it starts seeing b's, it needs to start popping &s. But there’ s no way to know, until either it runsout of b's or it
gets to the n+1% b, whether to pop an afor each b or hold back and pop an afor every other b. So M is not
deterministic.

b. C {db":k=0ork=1,n=0}

Thisoneislooks very similar to a, but it's different in one key way. Remember that the definition of
deterministic context freeisthat it is possible to build a deterministic pdato accept L$. So now, we can build a
deterministic pda M asfollows: Push each a onto the stack. When we run out of a's, the next character will
either be $ (in the case where k = 0) or b (in the case where k = 1). So we know right away which case we're
dealing with. If M seesab, it goesto a state where it pops one b for each aand acceptsif it comes out even. If it
sees $, it goes to a state where it clears the stack and accepts.

c. _E {dbc": n=0}

We proved that thisis recursive by showing a grammar for it in Lecture Notes 24. We used the pumping theorem
to provethat it isn't context free in Lecture Notes 19.

Homework 22 Review 1

d._ _C {db'c™: n=0,m=0}
This oneis context free. We need to compare the @ sto the b’s, but the ¢’ s are independent. So a grammar to
generate thisoneis:

S-AC

A - aAb

A-ce

C-cC

C-c¢
It's deterministic because we can build a pda that always knows what to do: push a's, pop an afor each b, then
simply scan thec'’s.
ee_C {db":n=0r0a
Thisoneisequivalent to b, since a* = a'b™.
f. _E _{db™: nisprimeand miseven}
This oneis recursive because we can write an algorithm to determine whether a number is prime and another one
to determine whether anumber is even. The proof that it is essentially the same as the one we did in class that a™:
nisprimeisnot context free.
g_C {db"¢™ :n=0 m=0}
This oneis context free. A grammar for itis:

S - aSc

S-bSc

S- ¢
It’s deterministic because we can build a deterministic pdaM for it: M pushes each aonto its stack. It also
pushes an afor each b. Then, when it startsseeing C's, it pops one afor each c. If it runsout of @ sand ¢’'s at the
sametime, it accepts.
h. E {db"¢™ : n=0,m=0}
Thisoneissimilar to g, but because the number of ¢’'sisequal to the product of n and m, rather than the sum,
there is no way to know how many ¢’ sto generate until we know both how many a s there are and how many b's.
Clearly we can write an algorithm to do it, so it’srecursive. To provethis, we need to use the pumping theorem.
Letw = a"b"c"M. Call thea's, region 1, the b’ sregion 2, and the ¢’sregion 3. Clearly neither v nor y can span
regions since, if they did, we'd get a string with letters out of order. So we need only consider the following
possibilities:

(1, 1) The number of ¢’swill no longer be the product of n and m.

(1, 2) The number of ¢’swill no longer be the product of n and m.

(1, 3) Ruled out by [vxy| < M.

(2, 2) The number of ¢’swill no longer be the product of n and m.

(2, 3) The number of ¢’swill no longer be the product of n and m.

(3, 3) The number of ¢’swill no longer be the product of n and m.
i. B {db":n=0,m=0}
Thisoneisregular. Itisdefined by the regular expression a*b*. It isn’t finite, which we know from the presence
of Kleene star in the regular expression.
J._C {xy:xOa,ydb*, x =}
Thisoneis equivalent to a'b", which we' ve already shown is context free and not regular. W showed a
deterministic pdato accept it in Lecture Notes 14.
k. B {xy:xOa",yUOar, Xl =}
Thisoneis{w =& : |w|iseven}. We ve shown asimple two state FSM for this one.
I._ B {x:x0O{ab,c}*, andxhas5 or moreads}
This one also hasasimple FSM F that acceptsit. F has six states. It simply countsa’s, up to five. If it ever gets
to 5, it accepts.

Homework 22 Review 2

m.__F {"M":M acceptsat least 1 string}
Thisoneisn’t recursive. We know from Rice’'s Theorem that it can’t be, since another way to say thisis

{"M" : L(M) contains at least 1 string}
We can also show that this oneisn't recursive by reduction, which is done in the Supplementary Materials.
n._ A {"M":MisaTuring machinethat halts oninput € and ['M"| < 1000}
Thisoneisfinite because of the limit on the length of the strings that can be used to describe M. Soit’sfinite
(and thus regular) completely independently of the requirement that M must halt on €. 'Y ou may wonder whether
we can actually build afinite state machine F to accept this language. What we know for sureisthat F exists. It
must for any finite language. Whether we can build it or not is a separate question. The undecidability of the
halting problem tells us that we can’t build an algorithm to determine whether an arbitrary TM M haltson €. But
that doesn’t mean that we can’t look at most Turing Machines and tell. So, here, it islikely that we could write
out al the TMs of length less than 1000 and figure out which ones accept . We could then build adeciding
FSM F. But evenif we can't, that doesn’t mean that no such FSM exists. It just means that we don’t know what
itis. Thisisno different from the problem of building an FSM to accept al strings of the form mm/dd/yy, such
that mm/dd/yy is your birthday. A simple machine F to do this exists. Y ou know how to writeit. | don’t
because | don’t know when your birthday is. But that fact that | don’t know how to build F says nothing about its
existence.
o_ E {"M":M isaTuring machine with < 50 states}
This one looks somewhat similar to n. But it's different in akey way. Thisset isn't finite because thereisno
[imit on the number of tape symbols that M can use. So we can't do the same trick we can do in n, where we
could simply list all the machines that met the length restriction. With even asingle state, | can build aTM
whose description is arbitrarily long. | simply tell it what to do in state one if it’ s reading character 1. Then what
todoif it’sreading character 2. Then character 3, and so forth. There' s no limit to the number of characters, so
there' s no limit to the length of the string | must write to consider all of them. Given that the language is not
finite, we need a TM to decide it. Why? What we need to do isto check to make sure that the string isa
syntactically valid encoding of a Turing Machine. Recall the syntax of an encoding. When we see the first a???
symbol that encodes a tape symbol, we know how many digitsit has. All the others must have the same number
of digits. So we have to remember that number. Since there's no limit to it, we can't remember it in afinite
number of states. Since we need to keep referring to it, we can't remember it on astack. Soweneed aTM. But
the TM is astraightforward program that will always halt. Thusthe languageis recursive.
p_ G {"M":M isaTuring machinesuch that L(M) = a*}
Thisoneisn't recursive. Again, we know that from Rice's Theorem. And we can proveit by reduction, which
we did in the supplementary materials for the more general case of any aphabet >. But thislanguage is even
harder than many we have considered, such asH. Itisn't even recursively enumerable. Why? Informally, the
TM languages that are re are the ones where we can discover positive instances by simulation (like, H, where we
ask whether M halts on a particular w?). But how can we try all stringsin a*? Proving thisformally is beyond
the scope of this class.
g._ A {x: xO{A,B,C,D,E,F G}, and x isthe answer you write to this question}
Thisoneisfinite. Infact, itisalanguage of cardinality 1. Thusit’sregular and there exists an FSM F that
acceptsit. You may feel that there’'s some sort of circularity here. Thereredlly isn't, but even if there were, we
can use the same argument here that we used in n. Even if we didn’t know how to build F, we still know that it
exists.

Homework 22 Review 3

l1l. Supplementary
Materials

The Three Hour Tour Through Automata Theory

Analyzing Problems as Opposed to Algorithms

In CS336 you learned to analyze algorithms. This semester, we're going to analyze problems.
WEe're going to see that there is a hierarchy of problems: easy, hard, impossible.

For each of thefirst two, we'll see that for any problem, there are infinitely many programsto
solve the problem.

By the way, thisistrivial. Take one program and add any number of junk steps. Well
formalize this later once we have some formalisms to work with.

Some may be better than others. But in some cases, we can show some sort of boundary on how
good an algorithm we can attempt to find for a particular problem.

Let's Look at Some Problems

Let'slook at a collection of problems, all which could arise in considering one piece of C++
code. [dlide- Let'sLook at Some Problems]

Aswe move from problem 1 to problem 5, things get harder in two key ways. Thefirstisthat it
seems we'll need more complicated, harder to write and design programs. In other words, it's
going to take more time to write the programs. The second is that the programs are going to take
alot longer to run. Aswe get to problems 4 and 5, it's not even clear there is a program that will
do thejob. Infact, in general for problem 4 thereisn't. For problem 5, in general we can't even
get aformal statement of the problem, much less an agorithmic solution.

Languages

Characterizing Problems as Language Recognition Tasks
In order to create aformal theory of problems (as opposed to algorithms), we need a single,

relatively straightforward framework that we can use to describe any kind of possibly computable
function. The onewe'll useislanguage recognition.

What is a Language?

A languageis a set of strings over an aphabet, which can be any finite collection of symbols.
[Slide - Languages]

Defining a Problem as a Language Recognition Task

We can define any problem as a language recognition task. In other words, we can output just a
boolean, True or False. Some problems seem naturally to be described as recognition tasks. For

Supplementary Materials The Three Hour Tour Through Automata Theory 1

example, accept grammatical English sentences and reject bad ones. (Although the truth is that
Englishis so squishy it's nearly impossible to formalize this. So let's pick another example --
accept the syntactically valid C programs and reject the others.)

Problems that you think of more naturally as functions can also be described thisway. We define
the set of input strings to consist of strings that are formed by concatenating an input to an

output. Then we only accept strings that have the correct output concatenated to each input.
[Slide - Encoding Output]

Branching Out -- Allowing for Actual Output

Although it is ssimpler to characterize problems simply as recognition problems and it is possible
to reformulate functional problems as recognition problems, we will see that we can augment the
formalisms welll develop to allow for output as well.

Defining Languages Using Grammars

Now what we need is a general mechanism for defining languages. Of course, if we have afinite
language, we can just enumerate all the stringsinit. But most interesting languages are infinite.
What we need is afinite mechanism for specifying infinite languages. Grammars can do this.

The standard way to write a grammar is as a production system, composed of rules with a left
hand side and aright hand side. Each side contains a sequence of symbols. Some of these
symbols are terminal symboals, i.e., symbolsin the language we're defining. Others are drawn
from afinite set of nonterminal symbols, which are internal symbols that we use just to help us
define the language. Of these nonterminal symbols, oneis special -- we'll cal it the start symbol.
[Slide- Grammars1]

If thereisagrammar that defines alanguage, then there is an infinite number of such grammars.
Some may be better, from various points of view than others. Consider the grammar for odd
integers. What different grammars could we write? One thing we could do would be to introduce
the idea of odd and even digits. [Slide - Grammar s 2]

Sometimes we use single characters, digoint from the characters of the target language, in our
rules. But sometimes we need more symbols. Then we often use < and > to mark multiple
character nonterminal symbols. [Slide - Grammar s 3]

Notice that we've also introduced a notation for OR so that we don't have to write as many
separate rules. By the way, there are lots of ways of writing a grammar of arithmetic expressions.
Thisoneissimple but it's not very good. It doesn't help us at al to determine the precedence of
operators. Later we'll see other grammars that do that.

Grammars as Generators and as Acceptors

So far, we've defined problems as language recognition tasks. But when you look at the
grammars we've considered, you see that there's a sense in which they seem more naturally to be
generators than recognizers. If you start with S, you can generate all the strings in the language

Supplementary Materials The Three Hour Tour Through Automata Theory 2

defined by the grammar. We'l see later that we'll use the idea of a grammar as a generator (or an
enumerator) as one way to define some interesting classes of languages.

But you can aso use grammars as acceptors, as we've suggested. There are two ways to do that.
Oneistop-down. By that we mean that you start with S, and apply rules. [work thisout for a
simple expression for the Language of Simple Arithmetic Expressions] At some point, you'll
generate a string without any nonterminals (i.e., a string in the language). Check and seeiif it's
the one you want. If so accept. If not, try again. If you do this systematicaly, then if the string is
in the language, you'll eventually generate it. If it isn't, you may or may not know when you
should give up. More on that later.

The other approach is bottom up. In this approach, we simply apply the rules sort of backwards,
i.e., we run them from right to left, matching the string to the right hand sides of the rules and
continuing until we generate S and nothing else. [work thisout for a ssmple expression for the
Language of Simple Arithmetic Expressions| Again, there are lots of possibilities to consider
and there's no guarantee that you'll know when to stop if the string isn't in the language.
Actualy, for this simple grammar there is, but we can't assure that for all kinds of grammars.

The Language Hierarchy

Remember that our whole goal in this exercise is to describe classes of problems, characterize
them as easy or hard, and define computational mechanisms for solving them. Since we've
decided to characterize problems as languages to be recognized, what we need to do isto create a
language hierarchy, in which we start with very simple languages and move toward more
complex ones.

Regular Languages

Regular languages are very simple languages that can be defined by a very restricted kind of
grammar. Inthese grammars, the left side of every ruleis a single nonterminal and the right side
isasingle terminal optionally followed by asingle nonterminal. [dlide - Regular Grammarg] If
you look at what's going on with these simple grammars, you can see that as you apply rules,
starting with S, you generate aterminal symbol and (optionally) have a new nonterminal to work
with. But you can never end up with multiple nonterminals at once. (Recall our first grammar for
Odd Integers [dlide - Grammars 1]).

Of course, we also had another grammar for that same language that didn't satisfy this restriction.
But that's okay. If it is possible to define the language using the restricted formalism, then it falls
into the restricted class. The fact that there are other, less restricted ways to define it doesn't
matter.

It turns out that there is an equivalent, often useful, way to describe this same class of languages,
using regular expressions. [Slide Regular Expressions and L anguages] Regular expressions
don't look like grammars, in the sense that there are no production rules, but they can be used to
define exactly the same set of languages that the restricted class of regular grammars can define.
Here's aregular expression for the language that consists of odd integers, and one for the

Supplementary Materials The Three Hour Tour Through Automata Theory 3

language of identifiers. We can try to write aregular expression for the language of matched
parenthesis, but we won't succeed.

Intuitively, regular languages are ones that can be defined without keeping track of more than a
finite number of things at once. S0, looking back at some of our example languages [dlide
L anguages], thefirst isregular and none of the othersis.

Context Free Languages

To get more power in how we define languages, we need to return to the more general production
rule structure.

Suppose we allow rules where the left hand side is composed of a single symbol and the right
hand side can be anything. We then have the class of context-free grammars. We define the
class of context-free languages to include any language that can be generated by a context-free
grammar.

The context-free grammar formalism allows us to define many useful languages, including the
languages of matched parentheses and of equal numbers of parentheses but in any order [slide -
Context-Free Grammars]. We can aso describe the language of simple arithmetic expressions
[slide- Grammars 3].

Although this system is alot more powerful (and useful) than regular languages are, it is not
adequate for everything. We'll see some quite ssmple artificial language it won't work for in a
minute. But it's also inadequate for things like ordinary English. [slide- English Isn't Context-
Free].

Recursively Enumerable Languages

Now suppose we remove all restrictions from the form of our grammars. Any combination of
symbols can appear on the left hand side and any combination of symbols can appear on the
right. Theonly real restriction isthat there can be only a finite number of rules. For example, we
can write agrammar for the language that contains strings of the form a"b"c". [dlide-
Unrestricted Grammar |

Once we remove all restrictions, we clearly have the largest set of languages that can be
generated by any finite grammar. We'll call the languages that can be generated in this way the
class of recursively enumerable languages. This means that, for any recursively enumerable
language, it is possible, using the associated grammar, to generate all the strings in the language.
Of course, it may take an infinite amount of time if the language contains an infinite number of
strings. But any given string, if it isenumerated at all, will be enumerated in a finite amount of
time. So | guesswe could sit and wait. Unfortunately, of course, we don't know how long to
wait, which is aproblem if we're trying to decide whether a string is in the language by
generating al the strings and seeing if the one we care about shows up.

Supplementary Materials The Three Hour Tour Through Automata Theory 4

Recursive Languages

Thereis one remaining set of languages that it is useful to consider. What about the recursively
enumerable languages where we could guarantee that, after afinite amount of time, either agiven
string would be generated or we would know that it isn't going to be. For example, if we could
generate all the strings of length 1, then all the strings of length 2, and so forth, we'd either
generate the string we want or we'd just wait until we'd gone past the length we cared about and
then report failure. From apractical point of view, this classis very useful since we like to deal
with solutions to problems that are guaranteed to halt. We'll call this class of languages the
recursive languages. This means that we can not only generate the strings in the language, we
can actually, via some algorithm, decide whether a string isin the language and halt, with an
answer, either way.

Clearly the class of recursive languagesis a subset of the class of recursively enumerable ones.
But, unfortunately, this time we're not going to be able to define our new class by placing
syntactic restrictions on the form of the grammars we use. There are some useful languages,

such, as a"b"c", that are recursive. There are some others, unfortunately, that are not.

The Whole Picture

[Slide - The Language Hierarchy]

Computational Devices

Formal Models of Computational Devices

If we want to make formal statements about the kinds of computing power required to solve
various kinds of problems, then we need simple, precise models of computation.

We're looking for models that make it easy to talk about what can be computed -- we're not
worrying about efficiency at this point.

When we described languages and grammars, we saw that we could introduce several different
structures, each with different computational power. We can do the same thing with machines.
Let's start with really ssmple devices and see what they can do. When we find limitations, we can
expand their power.

Finite State Machines

The only memory consists of the ability to be in one of afinite number of states. The machine
operates by reading an input symbol and moving to a new state that is determined solely by the
stateit isin and the input that it reads. Thereis aunique start state and one or more final states.
If the input is exhausted and the machineisin afina state, then it accepts the input. Otherwise it
regjectsit.

Supplementary Materials The Three Hour Tour Through Automata Theory 5

Example: An FSM to accept odd integers. [Slide - Finite State M achines 1]
Example: An FSM to accept valid identifiers. [Slide - Finite State Machines 2]
Example: How about an FSM to accept strings with balanced parentheses?

Notice one nice feature of every finite state machine -- it will always halt and it will always
provide an answer, one way or another. Aswe'll seelater, not all computational systems offer
these guarantees.

But we've got thisat aprice. Thereisonly afinite amount of memory. So, for example, we can't
count anything. We need a stronger device.

Push Down Automata

Deterministic PDAs

Add asingle stack to an FSM. Now the action of the machine is afunction of its state, the input
it reads, and the values at the top of the stack.

Example: A PDA to accept strings with balanced parentheses. [Slide - Push Down Automata]
Notice that this really simple machine only has one state. It's not using the states to remember
anything. All itsmemory isin the stack.

Example: A PDA to accept strings of the form w#w®, wherew O {a,b} * [slide - Pushdown
Automaton 2].

Example: How about a PDA to accept strings with some number of a's, followed by the same
number of b's, followed by the same number of c's? [slide- PDA 3] It turns out that thisisn't
possible. The problem isthat we could count the as on the stack, then pop for b's. But how
could we tell if there isthe right number of c's. Well seein abit that we shouldn't be too
surprised about this result. We can create PDA's to accept precisely those languages that we can
generate with CFGs. And remember that we had to use an unrestricted grammar to generate this
language.

Nondeterministic PDAs

Example: How about a PDA to accept strings of the form w w?? We can do this one if we
expand our notion of a PDA to allow it to be nondeterministic. The problem isthat we don't
know when to imagine that the reversal starts. What we need to do isto guess. In particular, we
need to try it at every point. We can do this by adding an epsilon transition from the start state
(in which we're pushing w) to the final state in which we're popping as we read wR [dlide - A
Nondeter ministic PDA] Adding this kind of nondeterminism actually adds power to the PDA
notion. And actually, it is the class of nondeterministic PDA's that is equivalent to the class of
context-free languages. No surprise, since we were able to write a context free grammar for this
language

Supplementary Materials The Three Hour Tour Through Automata Theory 6

By the way, it also makes sense to talk about nondeterministic finite state machines. But it turns
out that adding nondeterminism to finite state machines doesn't increase the class of things they
can compute. It just makesit easier to describe some machines. Intuitively, the reason that
nondeterminism doesn't buy you anything with finite state machinesis that we can simulate a
nondeterministic machine with a deterministic machine. We just make states that represent sets
of states in the nondeterministic machine. So in essence, we follow all paths. If one of them
accepts, we accept.

Then why can't we do that with PDA's? For finite state machines, there must be a finite number
of states. DAH. So thereisafinite number of subsets of states and we can just make them the
states of our new machine. Clunky but finite. Once we add the stack, however, thereis no
longer afinite number of states of the total machine. So thereis not afinite number of subsets of
states. So we can't simulate being in several states at once just using states. And we only have
one stack. Which branch would get it? That's why adding nondeterminism actually adds power
for PDAS.

Turing Machines

Clearly there are still some things we cannot do with PDAs. All we haveisasingle stack. We
can count one thing. If we need to count more than one thing (such as as and b'sin the case of
languages defined by a"b"c"), we'rein trouble.

So we need to define a more powerful computing device. The formalism we'll useis called the
Turing Machine, after itsinventor, Alan Turing. There are many different (and equivalent) ways
to write descriptions of Turing Machines, but the basic ideais the same for all of them [dlide -
Turing Machines]. In this new formalism, we allow our machines to write onto the input tape.
They can write on top of the input. They can also write past the input. This makesit easier to
define computation that actually outputs something besides yes or no if we want to. But, most
importantly, because we view the tape as being of infinite length, al limitations of finiteness or
limited storage have been removed, even though we continue to retain the core idea of afinite
number of statesin the controller itself.

Notice, though, that Turing Machines are not guaranteed to halt. Our example one always does.
But we could certainly build one that scans right until it finds a blank (writing nothing) and then
scans left until it finds the start symbol and then scans right again and so forth. That'salegal (if
stupid) Turing Machine. Unfortunately, (see below) it's not always possibleto tell, given a
Turning Machine, whether it is guaranteed to halt. Thisisthe biggest difference between Turing
Machines and the FSMs and PDAS, both of which will always halt.

Extensions to Turing Machines

Y ou may be thinking, wow, this Turing Machine idea sure is restrictive. For example, suppose
we want to accept all stringsin the simple language {w #w "}. We saw that this was easy to do
in one pass with a pushdown automaton. But to do this with the sort of Turing Machine we've
got so far would be really clunky. [work thisout on a dlide] We'd have to start at the left of the
string, mark a character, move all the way to the right to find the corresponding character, mark

Supplementary Materials The Three Hour Tour Through Automata Theory 7

it, scan back left, do it again, and so forth. We've just transformed alinear process into an n?
one.

But suppose we had a Turing Machine with 2 tapes. The first thing we'll do is to copy the input
onto the second tape. Now start the read head of the first tape at the left end of the input and the
read head of the second tape at the right end. At each step in the operation of the machine, we
check to make sure that the characters being read on the two tapes are the same. And we move
the head on tape 1 right and the head on tape 2 to the left. We run out of input on both machines
at the same time, we accept. [slide-A Two Head Turing Machine]

The big question now is, "Have we created a new notational device, one that makes it easier to
describe how amachine will operate, or have we actually created a new kind of device with more
power than the old one? The answer isthe former. We can prove that by showing that we can
simulate a Turing Machine with any finite number of tapes by a machine that computes the same
thing but only has one tape. [dlide - Simulating k Heads with One] The key idea hereisto use
the one tape but to think of it has having some larger number of tracks. Since thereisafinite
tape alphabet, we know that we can encode any finite number of symbolsin afinite (but larger)
symbol aphabet. For example, to simulate our two headed machine with atape alphabet of 3
symbols plus start and blank, we will need 2* 2*5*5 or 100 tape symbols. So to do this
simulation, we must do two main things. Encode all the information from the old, multi-tape
machine on the new, single tape machine and redesign the finite state controller so that it
simulates, in several moves, each move of the old machine.

It turns out that any "reasonable" addition you can think of to our idea of a Turing Machineis
implementable with the ssmple machine we already have. For example, any nondeterministic
Turing Machine can be simulated by adeterministic one. Thisisrealy significant. Inthis, in
some ways trivial, machine, we have captured the idea of computability.

Okay, so our Turing Machines can do everything any other machine can do. It also goesthe
other way. We can propose alternative structures that can do everything our Turing Machines
can do. For example, we can simulate any Turing Machine with a deterministic PDA that has
two stacks rather than one. What this machine will do isread its input tape once, copying onto
the first stack all the nonblank symbols. Then it will pop all those symbols off, one at atime, and
move them to the second stack. Now it can move aong its simulated tape by transfering symbols
from one stack to the other. [slide- Simulating a Turing Machine with Two Stacks|

The Universal Turing Machine

So now, having shown that we can simulate anything on a simple Turing Machine, it should
come as no surprise that we can design a Turing Machine that takes as its input the definition of
another Turing Machine, along with an input for that machine. What our machine doesis to
simulate the behavior of the machineit is given, on the given input.

Remember that to simulate a k-tape machine by a 1 tape machine we had first to state how to

encode the multiple tapes. Then we had to state how the machine would operate on the
encoding. We have to do the same thing here. First we need to decide how to encode the states

Supplementary Materials The Three Hour Tour Through Automata Theory 8

and the tape symbols of the input machine, which well call M. There's no upper bound on how
many states or tape symbols there will be. So we can't encode them with single symbols. Instead
welll encode states as strings that start with a"g" and then have a binary encoding of the state
number (with enough leading zeros so all such encodings take the same number of digits). Well
encode tape symbolsas an "a" followed by a binary encoding of the count of the symbol. And
we'll encode "move left”" as 10, "moveright” as 01, and stay put as 00. We'l use # as adelimiter
between transitions. [slide - Encoding States, Symbols, and Transitions]

Next, we need a way to encode the simulation of the operation of M. Well use athree tape
machine as our Universal Turing Machine. (Remember, we can always implement it on aone
tape machine, but thisisalot easier to describe.) WEell use one tape to encode the tape of M, the
second tape contains the encoding of M, and the third tape encodes the current state of M during
the ssimulation. [slide - The Universal Turing Machine]

A Hierarchy of Computational Devices

These various machines that we have just defined, fall into an inclusion hierarchy, in the sense
that the simpler machines can always be simulate by the more powerful ones. [Slide- A
Machine Hierar chy]

The Equivalence of the Language Hierarchy and the Computational
Hierarchy

Okay, this probably comes as no surprise. The machine hierarchy we've just examined exactly
mirrors the language hierarchy. [Slide - L anguages and Machines]

Actually, thisis an amazing result. It seems to suggest that there's something quite natural about
these categories.

Church's Thesis

If we really want to talk about naturalness, can we say anything about whether we've captured
what it means to be computable? Church's Thesis (also sometimes called the Church-Turing
Thesis) asserts that the precise concept of the Turing Machine that halts on all inputs corresponds
to the intuitive notion of an algorithm. Think about it. Clearly a Turing Machine that halts
defines an algorithm. But what about the other way around? Could there be something that is
computable by some kind of algorithm that is not computable by a Turing Machine that halts?
From what we've seen so far, it may seem unlikely, since every extension we can propose to the
Turing Machine model turns out possibly to make things more convenient, but it never extends
the formal power. It turns out that people have proposed various other formalisms over the last
50 years or so, and they aso turn out to be no more powerful than the Turing Machine. Of
course, something could turn up, but it seems unlikely.

Supplementary Materials The Three Hour Tour Through Automata Theory 9

Technigues for Showing that a Problem (or Language) Is Not in a
Particular Circle in the Hierarchy

Counting
a"b" isnot regular.

Closure Properties

L={a"b™c’: m#n or m# p} isnot deterministic context-free. [slide- Using Closure

Properties| Noticethat L' containsall strings that violate at least one of the requirementsfor L.
So they may be strings that aren't composed of a string of as, followed by a string of b's,
followed by a string of c's. Or they may have that property but they violate the rule that m, n, and
p cannot all be the same. In other words, they are all the same. So if we intersect L' with the
regular expression a* b*c*, we throw away everything that isn't astring of asthen b'sthenc's,
and we're left with strings of n as, followed, by n b's, followed by nc's.

Diagonalization

Remember the proof that the power set of the integersisn't countable. If it were, there would be
away of enumerating the sets, thus setting them in one to one correspondence with the integers.
But suppose there is such away [dlide - Diagonalization]. Then we could represent it in atable
where element (i, j) is 1 precisely in case the number j is present in the set i. But now construct a
new set, represented as a new row of thetable. In thisnew row, element i will be 1 if element
(i,i) of the original table was 0, and vice versa. Thisrow represents anew set that couldn't have
been in the previous enumeration. Thus we get a contradiction and the power set of the integers
must not be countable.

We can use this technique for perhaps the most important result in the theory of computing.

The Unsolvability of the Halting Problem

There are recursively enumerable languages that are not recursive. In other words, there are sets
that can be enumerated, but there is no decision procedure for them. Any program that attempts
to decide whether a string isin the language may not halt.

One of the most interesting such setsisthe following. Consider sets of ordered pairs where the
first element isadescription of a Turing Machine. The second element is an input to the
machine. We want to include only those ordered pairs where the machine halts on the input.
This set is not recursively enumerable. In other words, there's no way to write an algorithm that,
given amachine and an input, determines whether or not the machine halts on the input. [slide -
The Unsolvability of the Halting Problem]

Suppose there were such amachine. Let'scall it HALTS. HALTS(M,x) returnstrue if Turing
machine M haltson input x. Otherwiseit returnsfalse. Now we write a Turing Machine
program that implements the TROUBLE algorithm. Now what happensif we invoke
HALTS(TROUBLE,TROUBLE)? If HALTS says true, namely that TROUBLE will halt on

Supplementary Materials The Three Hour Tour Through Automata Theory 10

itself, then TROUBLE loops (i.e., it doesn't halt, thus contradicting our assumption that HALTS
could do thejob). But if HALTS says FALSE, namely that TROUBLE will not halt on itself,
then TROUBLE promptly halts, thus again proving our supposed oracle HALTS wrong. Thus
HALTS cannot exist.

We've used a sort of stripped down version of diagonalization here [slide - Viewing the Halting
Problem as Diagonalization] in which we don't care about the whole row of the item that
creates the contradiction. We're only invoking HALTS with two identical inputs. It's just the
single element that we care about and that causes the problem.

Let's Revisit Some Problems

Let'slook again at the collection of problems that we started this whole process with. [dlide -
Let's Revisit Some Problems|

Problem 1 can be solved with afinite state machine.

Problem 2 can be solved with a PDA.

Problem 3 can be solved with a Turing Machine.

Problem 4 can be semi solved with a Turning Machine, but it isn't guaranteed to halt.
Problem 5 can't even be stated.

So What's Left?

Supplementary Materials The Three Hour Tour Through Automata Theory 11

Review of Mathematical Concepts

1 Sets

1.1 What is a Set?

A set issimply a collection of objects. The objects (which we call the elements or members of the set) can be anything:
numbers, people, fruits, whatever. For example, all of the following are sets:

A ={13,11, 8,23}

B ={8, 23,11, 13}

C={8§,8, 23,23 11, 11, 13, 13}

D = {apple, pear, banana, grape}

E = {January, February, March, April, May, June, July, August, September, October, November, December}
F={x:x 0OEand x has 31 days}

G = {January, March, May, July, August, October, December}

N = the nonnegative integers (We will generally call this set N, the natural numbers.)
H={i:xONandi=2x}

1={0,2,4,6,8, ...}

J = the even natural numbers

K =the syntactically valid C programs

L ={x:x 0K and x never getsinto an infinite loop}

Z =theintegers(... -3,-2,-1,0,1, 2,3, ...)

In the definitions of F and H, we have used the colon notation. Read it as "such that". We've aso used the standard
symbol O for "element of". We will also use O for "not an element of". So, for example, 17 0 A istrue.

Remember that a set is simply a collection of elements. So if two sets contain precisely the same elements (regardless of
the way we actually defined the sets), then they areidentical. ThusF and G are the same set, asare H, |, and J.

An important aside: Zero isan even number. This falls out of any reasonable definition we can give for even numbers.
For example, the one we used to define set H above. Or consider: 2 is even and any number that can be derived by
adding or subtracting 2 from an even number is also even. In order to construct a definition for even numbers that does
not include zero, we'd have to make a special case. That would make for an inelegant definition, which we hate. And, as
we'll see down the road, we'd also have to make corresponding special cases for zero in awide variety of algorithms.

Since a set is defined only by what elements it contains, it does not matter what order we list the elementsin. Thus A and
B are the same set.

Our definition of a set considers only whether or not an element is contained within the set. It does not consider how
many times the element is mentioned. In other words, duplicates don't count. So A, B, and C are all equal.

Whenever we define a set, it would be useful if we could also specify a decision procedure for it. A decision procedure
for aset Sisan agorithm that, when presented with an object O, returns True if O [0 S and False otherwise. Consider set
K above (the set of all syntactically valid C programs). We can easily decide whether or not an object is an element of K.
First, of course, it hasto be a string. If you bring me an apple, | immediately say no. If itisastring, then| canfeedittoa
C compiler and let it tell me whether or not the object isin K. But now consider the set L (C programs that are guaranteed
to halt on all inputs). Again, | can reject apples and anything else that isn't even in K. | can also reject some programs
that clearly do loop forever. And | can accept some C programs, for example ones that don't contain any loops at all. But
what about the general problem. Can | find away to look at an arbitrary C program and tell whether or not it belongsin L.
It turns out, as we'll see later, that the answer to thisis no. We can prove that no program to solve this problem can exist.

But that doesn’t mean that the set L doesn't exist. It's a perfectly fine set. There just isn't a decision procedure for it.

Supplementary Materials Review of Mathematical Concepts 1

The smallest set is the set that contains no elements. It is called the empty set, and iswritten O or {}.

When you are working with sets, it is very important to keep in mind the difference between a set and the elements of a
set. Given a set that contains more than one element, this not usually tricky. It'sclear that {1, 2} is distinct from either the
number 1 or the number 2. It sometimes becomes a bit trickier though with singleton sets (sets that contain only a single
element). But it is equally true here. So, for example, {1} is distinct from the number 1. As another example, consider
{0}. Thisisaset that contains one element. That element isin turn a set that contains no elements (i.e., the empty set).

1.2 Relating Sets to Each Other

We say that A is a subset of B (which we write as A O B) if every element of A isalso an element of B. The symbol we
use for subset ((0) looks somewhat like <. Thisis no accident. If A 00 B, then there is a sense in which the set A is"less
than or equal to" the set B, since all the elements of A must be in B, but there may be elements of B that are not in A.

Given this definition, notice that every set is a subset of itself. This fact turns out to offer us a useful way to prove that
two sets A and B are equal: First prove that A isasubset of B. Then prove that B isa subset of A. Well have more to say
about this later in Section 6.2.

We say that A is proper subset of B (written A 00 B) if A 0 B and A # B. The following Venn diagram illustrates the
proper subset relationship between A and B:

()

Notice that the empty set is a subset of every set (since, trivially, every element of [, all hone of them, is also an element
of every other set). And the empty set isaproper subset of every set other than itself.

It is useful to define some basic operations that can be performed on sets:

The union of two sets A and B (written A [0 B) contains all elements that are contained in A or B (or both). We can
easily visualize union using aVenn diagram. The union of sets A and B is the entire hatched area:

The intersection of two sets A and B (written A n B) contains all elements that are contained in both A and B. In the
Venn diagram shown above, the intersection of A and B is the double hatched areain the middle.

The difference of two sets A and B (written A - B) contains all elements that are contained in A but not in B. In both of
the following Venn diagrams, the hatched region represents A - B.

Supplementary Materials Review of Mathematical Concepts 2

/ A iy,
8

The complement of a set A with respect to a specific domain D (written as A or = A) contains all elements of D that are
not contained in A (i.e, A =D - A). For example, if D isthe set of residents of Austin and A isthe set of Austin residents
who like barbeque, then A is the set of Austin residents who don't like barbeque. The complement of A is shown as the
hatched region of the following Venn diagram:

9/

Two sets are digoint if they have no elements in common (i.e, their intersection is empty). In the following Venn

diagram, A and B are digoint:

So far, we've talked about operations on pairs of sets. But just aswe can extend binary addition and sum up awhole set of
numbers, we can extend the binary operations on sets and perform then on sets of sets. Recall that for summation, we
have the notation

DA

Similarly, welll introduce
UA and NA

to indicate the union of a set of sets and the intersection of a set of sets, respectively.

Now consider aset A. For example, let A = {1, 2, 3}. Next, let'senumerate the set of all subsets of A:

{0.{1}. {2}, {3}.{1. 2. {1, 3},{2,3},{1, 2 3}}
We call this set the power set of A, and we write it 2*. The power set of A is interesting because, if we're working with
the elements of A, we may well care about all the ways in which we can combine those elements.

Now for one final property of sets. Again consider the set A above. But this time, rather than looking for all possible
subsets, let's just ook for a single way to carve A up into subsets such that each element of A isin precisely one subset.
For example, we might choose any of the following sets of subsets:
{1.{23} or {{1.3}.2 or {{1.2 3}}

We call any such set of subsets a partition of A. Partitions are very useful. For example, suppose we have a set S of
students in a school. We need for every student to be assigned to precisely one lunch period. Thus we must construct a
partition of S: a set of subsets, one for each lunch period, such that each student isin precisely one subset. More formally,
we say that M is a partition of a set A if and only if (@) no element of M is empty; (b) al members of M are digoint
(alternatively, each element of A is in only one element of M); and (c¢) UM = A (alternatively, each element of A isin

some element of N and no element not in A isin any element of).

Supplementary Materials Review of Mathematical Concepts 3

This notion of partitioning a set is fundamental to programming. Every time you analyze the set of possible inputs to your
program and consider the various cases that must be dealt with, you're forming a partition of the set of inputs: each input
must fall through precisely one path in your program. So it should come as no surprise that, as we build formal models of
computational devices, we'll rely heavily on the idea of a partition on a set of inputs as an analytical technique.

2 Relations and Functions

In the last section, we introduced some simple relations that can hold between sets (subset and proper subset) and we
defined some operations (functions) on sets (union, intersection, difference, and complement). But we haven't yet defined
formally what we mean by arelation or afunction. Let's do that now. (By the way, the reason we introduced relations and
functions on sets in the last section is that we're going to use sets as the basis for our formal definitions of relations and
functions and we will need the simple operations we just described as part of our definitions.)

2.1 Relations

An ordered pair is a sequence of two objects. Given any two objects, x and y, there are two ordered pairs that can be
formed. We write them as (X, y) and (y, X). Asthe name implies, in an ordered pair (as opposed to in a set), order matters
(unless x and y happen to be equal).

The Cartesian product of two sets A and B (written A x B) isthe set of all ordered pairs (a, b) such that a1 A and b [B.
For example, let A be a set of people { Dave, Sue, Billy} and let B be a set of desserts { cake, pie, ice cream}. Then
A x B ={ (Dave, cake), (Dave, pi€), (Dave, ice cream),
(Sue, cake), (Sue, pi€), (Sue, ice cream),
(Billy, cake), (Billy, pie), (Billy, ice cream)}
As you can see from this example, the Cartesian product of two sets contains elements that represent all the ways of
pairing someone from the first set with someone from the second. Note that A x B is not the same as B x A. In our
example,
B x A ={ (cake, Dave), (pie, Dave), (ice cream, Dave),
(cake, Sue), (pie, Sue), (ice cream, Sue),
(cake, Billy), (pie, Billy), (ice cream, Billy)}

WEe'll have more to say about the cardinality (size) of sets later, but for now, let's make one simple observation about the
cardinality of a Cartesian product. If A and B are finite and if there are p elementsin A and q elements in B, then there
are p*q elementsin AxB (and in BxA).

We're going to use Cartesian product a lot. It's our basic tool for constructing complex objects out of simpler ones. For

example, we 're going to define the class of Finite State Machines as the Cartesian product of five sets. Each individual

finite state machine then will be afivetuple (K, Z , §, s, F) drawn from that Cartesian product. The setswill be:

1. Thesetof al possible sets of states: {{ql}, {ql, g2}, {ql, 92, g3}, ...}. Wemust draw K from this set.

2. The set of al possible input alphabets: {{a}, {a b, c}, {a, B, v}, {1, 2, 3, 4}, {1, w, h, j, k}, {q, a f}, {a B, 3,],
f}...}. Wemust draw X from this set.

3. The set of all possible transition functions, which tell us how to move from one state to the next. We must draw o
from this set.

4. Theset of dl possible start states. We must draw s from this set.

5. The set of all possible sets of final states. (If we land in one of these when we've finished processing an input string,
then we accept the string, otherwise we reject.) We must draw F from this set.

Let's return now to the simpler problem of choosing dessert. Suppose we want to define a relation that tells us, for each
person, what desserts he or she likes. We might write the Dessert relation, for example as

{(Dave, cake), (Dave, ice cream), (Sue, pi€), (Sue, ice cream)}
In other words, Dave likes cake and ice cream, Sue likes pie and ice cream, and Billy hates desserts.

We can now define formally what arelationis. A binary relation over two sets A and B isa subset of A x B. Our dessert
relation clearly satisfies this definition. So do lots of other relations, including common ones defined on the integers. For

Supplementary Materials Review of Mathematical Concepts 4

example, Less than (written <) is a binary relation on the integers. It contains an infinite number of elements drawn from
the Cartesian product of the set of integers with itself. It includes, for example:
{(1,2),(23), (3, 9), ...}

Notice several important properties of relations as we have defined them. First, arelation may be equal to the empty set.
For example, if Dave, Sue, and Billy all hate dessert, then the dessert relation would be {} or O.

Second, there are no constraints on how many times a particular element of A or B may occur in the relation. In the
dessert example, Dave occurs twice, Sue occurs twice, Billy doesn't occur at al, cake occurs once, pie occurs once, and
ice cream occurs twice.

If we have two or more binary relations, we may be able combine them via an operation we'll call composition. For
example, if we knew the number of fat grams in a serving of each kind of dessert, we could ask for the number of fat
grams in a particular person's dessert choices. To compute this, we first use the Dessert relation to find all the desserts
each person likes. Next we get the bad news from the FatGrams relation, which probably looks something like this:
{(cake, 25), (pie, 15), (ice cream, 20)

Finally, we see that the composed relation that relates people to fat grams is {(Dave, 25), (Dave, 20), (Sue, 15), (Sue,
20)}. Of course, this only worked because when we applied the first relation, we got back desserts, and our second
relation has desserts asiits first component. We couldn't have composed Dessert with Less than, for example.

Formally, we say that the composition of two relationsR; 0 A x B and R, 0 B x C, written R, ° Ry is{(ac) : O(a b) O
R; and (b, ¢) O Ry}. Note that in this definition, we've said that to compute R, ° Ry, we first apply Ry, then R,. In other
words we go right to left. Some definitions go the other way. Obviously we can define it either way, but it's important to
check carefully what definition people are using and to be consistent in what you do. Using this notation, we'd represent
the people to fat grams composition described above as FatGrams ° Dessert.

Now let's generalize a bit. An ordered pair is a sequence (where order counts) of two elements. We could also define an
ordered triple as a sequence of three elements, an ordered quadruple as a sequence of four elements, and so forth. More
generaly, if nisany positive integer, then an ordered n-tuple is a sequence of n elements. For example, (Ann, Joe, Mark)
isa3-tuple.

We defined binary relation using our definition of an ordered pair. Now that we've extended our definition of an ordered
pair to an ordered n-tuple, we can extend our notion of a relation to allow for an arbitrary number of elements to be
related. We define an n-ary relation over sets Aj, A,, ... Ay asasubset of A; x A, x ... x A, The n sets may be
different, or they may be the same. For example, let A be a set of people:
A ={Dave, Sue, Billy, Ann, Joe, Mark, Cathy, Pete}
Now suppose that Ann and Dave are the parents of Billy, Ann and Joe are the parents of Mark, and Mark and Sue are the
parents of Cathy. Then we could define a 3-ary (or ternary) relation Child-of as the following subset of A x A x A:
{(Ann, Dave, Billy), (Ann, Joe, Mark), (Mark, Sue, Cathy)}

2.2 Functions

Relations are very general. They allow an object to be related to any number of other objects at the same time (as we did
in the dessert example above). Sometimes, we want a more restricted notion, in which each object is related to a unique
other object. For example, (at least in an ideal world without criminals or incompetent bureaucrats) each American
resident is related to a unique social security number. To capture thisideawe need functions. A function from aset A to
aset B isaspecia kind of a binary relation over A and B in which each element of A occurs precisely once. The dessert
relation we defined earlier is not a function since Dave and Sue each occur twice and Billy doesn't occur at al. We
haven't restricted each person to precisely one dessert. A simple relation that is a function is the successor function Succ
defined on the integers:
Succ(n) =n+ 1.
Of course, we cannot write out all the elements of Succ (since there are an infinite number of them), but Succ includes:
{....(-3,-2), (-2,-1), (-1, 0), (0, 1), (1, 2), (2, 3), ...}

Supplementary Materials Review of Mathematical Concepts 5

It's useful to define some additional terms to make it easy to talk about functions. We start by writing

f:A 5 B,
which means that f is a function from the set A to the set B. We call A the domain of f and B the codomain or range. We
may also say that f isafunction from A to B. If all A, then we write

f(a),
which weread as"f of &' to indicate the element of B to which aisrelated. We call this element the image of a under f or
the value of f for a. Note that, given our definition of afunction, there must be exactly one such element. Well also call a
the argument of f. For example we have that

Succ(1) = 2, Succ (2) = 3, and so forth.
Thus 2 isthe image (or the value) of the argument 1 under Succ.

Succ is a unary function. It maps from a single element (a number) to another number. But there are lots of interesting
functions that map from ordered pairs of elements to a value. We call such functions binary functions. For example,
integer addition is a binary function:

+(Zx2) - Z
Thus + includes elements such as ((2, 3), 5), since 2 + 3is5. We could also write

+((23)) =5
We have double parentheses here because we're using the outer set to indicate function application (as we did above
without confusion for Succ) and the inner set to define the ordered pair to which the function is being applied. But thisis
confusing. So, generally, when the domain of afunction is the Cartesian product of two or more sets, asit is here, we drop
the inner set of parentheses and simply write

+(2,3) =5.
Alternatively, many common binary functions are written in infix notation rather than the prefix notation that is standard
for all kinds of function. Thisallows usto write

2+3=5
So far, we've had unary functions and binary functions. But just as we could define n-ary relations for arbitrary values of
n, we can define n-ary functions. For any positive integer n, an n-ary function f isafunction is defined as

F: (Dlx D,...x Dn) - R
For example, let Z be the set of integers. Then

QuadraticEquation: (ZxZ x Z) - F
is a function whose domain is an ordered triple of integers and whose domain is a set of functions. The definition of
Quadratic Equation is:

QuadraticEquation(a, b, ¢) (x) = ax* + bx + ¢

What we did here is typical of function definition. First we specify the domain and the range of the function. Then we
define how the function is to compute its value (an element of the range) given its arguments (an element of the domain).
QuadraticEquation may seem a bit unusual since its range is a set of functions, but both the domain and the range of a
function can be any set of objects, so sets of functions qualify.

Recall that in the last section we said that we could compose binary relations to derive new relations. Clearly, since
functions are just special kinds of binary relations, if we can compose binary relations we can certainly compose binary
functions. Because a function returns a unique value for each argument, it generally makes a lot more sense to compose
functions than it does relations, and you'll see that although we rarely compose relations that aren't functions, we compose
functions all the time. So, following our definition above for relations, we define the composition of two functions F, [
AxBandF, 0B x C, written F, ° Fy is{(ac) : [b (a b) O F, and (b, ¢) O F;}. Notice that the composition of two
functions must necessarily also be a function. We mentioned above that there is sometimes confusion about the order in
which relations (and now functions) should be applied when they are composed. To avoid this problem, let's introduce a
new notation F(G(x)). We use the parentheses here to indicate function application, just as we did above. So this notation
is clear. Apply F to the result of first applying G to X. This notation reads right to left as does our definition of the °
notation.

A function is a special kind of arelation (one in which each element of the domain occurs precisely once). There are also
special kinds of functions:

Supplementary Materials Review of Mathematical Concepts 6

A functionf : D - Ristotal if it isdefined for every element of D (i.e., every element of D isrelated to some element of
R). The standard mathematical definition of a function requires totality. The reason we haven't done that here is that, as
we pursue the idea of "computable functions', we'll see that there are total functions whose domains cannot be effectively
defined (for example, the set of C programs that always halt). Thusit is useful to expand the definition of the function's
domain (e.g., to the set of al C programs) and acknowledge that if the function is applied to certain elements of the
domain (e.g., programs that don't halt), its value will be undefined. We call this broader class of functions (which does
include the total functions as a subset) the set of partial functions. For the rest of our discussion in this introductory unit,
we will consider only total functions, but be prepared for the introduction of partial functions later.

A functionf: D - Risonetooneif no element of the range occurs more than once. In other words, no two elements of
the domain map to the same element of the range. Succ is one to one. For example, the only number to which we can
apply Succ and derive 2 is 1. QuadraticEquation is also one to one. But + isn't. For example, both +(2,3) and +(4,1)
equal 5.

A functionf: D - R isonto if every element of R is the value of some element of D. Another way to think of thisisthat
afunction is onto if al of the elements of the range are "covered" by the function. As we defined it above, Succ is onto.
But let's define a different function Succ' on the natural numbers (rather than the integers). So we define

Succ': N - N.
Succ' is not onto because there is no natural number i such that Succ'(i) = 0.

The easiest way to envision the differences between an arbitrary relation, a function, a one to one function and an onto
function is to make two columns (the first for the domain and the second for the range) and think about the sort of
matching problems you probably had on tests in elementary school.

Let's consider the following five matching problems and let's look at various ways of relating the elements of column 1
(the domain) to the elements of column 2 (the range):

1 2 3 4 5
A X A;; X A—Pp X A><IX A><x
B y B B—»y B y B y
C z C\z C;;z C—»z

q D

The relationship in example 1 is a relation but it is not a function, since there are three values associated A. The second
example is a function since, for each object in the first column, there is a single value in the second column. But this
function is neither one to one (because x is derived from both A and B) nor onto (because z can't be derived from
anything). The third example is a function that is one to one (because no element of the second column is related to more
than one element of the first column). But it still isn't onto because z has been skipped: nothing in the first column derives
it. The fourth example is a function that is onto (since every element of column two has an arrow coming into it), but it
isn't oneto one, since z is derived from both C and D. The fifth and final example is afunction that is both one to one and
onto. By the way, see if you can modify either example 3 or example 4 to make them both one to one and onto. You're
not allowed to change the number of elementsin either column, just the arrows. You'll notice that you can't do it. In order
for afunction to be both one to one and onto, there must be equal numbers of elements in the domain and the range.

The inverse of a binary relation R is simply the set of ordered pairs in R with the elements of each pair reversed.
Formally, if RO A xB,thenR* 0B x A ={(b, a): (a b) O R}. If arelationisaway of associating with each element of
A a corresponding element of B, then think of its inverse as a way of associating with elements of B their corresponding
elements in A. Every relation has an inverse. Every function also has an inverse, but that inverse may not also be a
function. For example, look again at example two of the matching problems above. Although it is a function, its inverse
is not. Given the argument x, should we return the value A or B? Now consider example 3. Itsinverse is aso not a
(total) function, since there is no value to be returned for the argument z. Example four has the same problem example

Supplementary Materials Review of Mathematical Concepts 7

two does. Now look at example five. Its inverse is a function. Whenever a function is both one to one and onto, its
inverse will also be afunction and that function will be both one to one and onto.

Inverses are useful. When a function has an inverse, it means that we can move back and forth between columns one and
two without loss of information. Look again at example five. We can think of ourselves as operating in the {A, B, C}
universe or inthe {x, y, z} universe interchangeably since we have a well defined way to move from one to the other. And
if we move from column one to column two and then back, we'll be exactly where we started. Functions with inverses
(alternatively, functions that are both one to one and onto) are called bijections. And they may be used to define
isomorphisms between sets, i.e., formal correspondences between the elements of two sets, often with the additional
requirement that some key structure be preserved. We'll use thisidea alot. For example, there exists an isomorphism
between the set of states of a finite state machine and a particular set of sets of input strings that could be fed to the
machine. In thisisomorphism, each state is associated with precisely the set of stringsthat drive the machine to that state.

3 Binary Relations on a Single Set

Although it makes sense to talk about n-ary relations, for arbitrary values of n (and we have), it turns out that the most
useful relations are often binary ones -- ones where nistwo. In fact, we can make a further claim about some of the most
useful relations we'll work with: they involve just asingle set. So instead of being subsets of A x B, for arbitrary values of
A and B, they are subsets of A x A, for some particular set of A of interest. So let's spend some additional time looking at
thisrestricted class of relations.

3.1 Representing Binary Relations on a Single Set

If were going to work with some binary relation R, and, in particular, if we are going to compute with it, we need some
way to represent the relation. We have several choices. We could:
1) List the elementsof R.
2) Encode R as a computational procedure. There are at least two ways in which a computational procedure can define
R. It may:
a) enumerate the elements of R, or
b) return aboolean value, when given an ordered pair. True meansthat the pair isin R; False meansit is not.
3) Encode R as adirected graph.
4) Encode R as an incidence matrix.

For example, consider the mother-of relation M in a family in which Doreen is the mother of Ann, Ann is the mother of
Catherine, and Catherine is the mother of Allison. To exploit approach 1, we just write

M = {(Doreen, Ann), (Ann, Catherine), (Catherine, Allison)}.
Clearly, this approach only works for finite relations.

The second approach simply requires code appropriate to the particular relation we're dealing with. One appeal of this
approach is that it works for both finite and infinite relations, although, of course, a program that enumerates elements of
an infinite relation will never halt.

Next we consider approach 3. Assuming that we are working with a finite relation R 0 A x A, we can build a directed
graph to represent R as follows:

1) Construct a set of nodes, one for each element of A that appearsin any element of R.

2) For each ordered pair in R, draw an edge from the first element of the pair to the second.

The following directed graph represents our example relation M defined above:

Gom > Cam > Cae CAlen

Supplementary Materials Review of Mathematical Concepts 8

And, finally, approach 4: Again assuming afinite relation R 0 A x A, we can build an incidence matrix to represent R as

follows:

1) Construct a square boolean matrix S whose number of rows and columns equals the number of elements of A that
appear in any element of R.

2) Label one row and one column for each such element of A.

3) For each element (p, q) of R, set S(p, q) to 1(or True). Set all other elements of Sto 0 (or False).

The following boolean matrix represents our example relation M defined above:

Doreen | Ann | Catherine | Allison
Doreen 0 1 0 0
Ann 0 0 1 0
Catherine | 0 0 0 1
Allison 0 0 0 0

3.2 Properties of Relations

Many useful binary relations have some kind of structure. For example, it might be the case that every element of the
underlying set is related to itself. Or it might happen that if a is related to b, then b must necessarily be related to a
There's one special kind of relation, called an equivalence relation that is particularly useful. But before we can define it,
we need first to define each of the individual properties that egquivalence relations possess.

A relation R O A x A isreflexive if, for eacha O A, (a, @ O R. In other words arelation R on the set A is reflexive if
every element of A isrelated to itself. For example, consider the relation Address defined as "lives at same address as”.
Addressis arelation over a set of people. Clearly every person lives at the same address as him or herself, so Addressis
reflexive. So is the Less than or equal to relation on the integers. Every integer is Less than or equal to itself. But the
Less than relation is not reflexive: in fact no number is Less than itself. Both the directed graph and the matrix
representations make it easy to tell if arelation is reflexive. In the graph representation, every node will have an edge
looping back to itself. In the graph representation, there will be ones along the major diagonal:

DEBRS 1

1

A relation R 0 A x A is symmetric if, whenever (a, b) O R, so is (b, 8. In other words, if aisrelated to b, then b is
related to a. The Address relation we described above is symmetric. If Joe lives with Ann, then Ann lives with Joe. The
Less than or equal relation is not symmetric (since, for example, 2 < 3, but it is not true that 3 < 2). The graph
representation of a symmetric relation has the property that between any two nodes, either there is an arrow going in both
directions or there is an arrow going in neither direction. So we get graphs with components that ook like this:

L N

If we choose the matrix representation, we will end up with a symmetric matrix (i.e., if you flip it on its major diagonal,
you'll get the same matrix back again). In other words, if we have a matrix with 1's wherever there is a number in the
following matrix, then there must also be 1'sin all the squares marked with an *:

Supplementary Materials Review of Mathematical Concepts 9

A relation R O A x A is antisymmetric if, whenever (a, b) 0 R and a # b, then (b, @ O R The Mother-of relation we
described above is antisymmetric: if Ann isthe mother of Catherine, then one thing we know for sure is that Catherineis
not also the mother of Ann. Our Address relation is clearly not antisymmetric, since it is symmetric. There are, however,
relations that are neither symmetric nor antisymmetric. For example, the Likes relation on the set of people: If Joe likes
Bob, then it is possible that Bob likes Joe, but it is also possible that he doesn't.

A relation R O A x A istransitive if, whenever (a, b) D Rand (b, c) O R, (a ¢) O R. A simple example of atransitive
relation is Less than. Address is another one: if Joe lives with Ann and Ann lives with Mark, then Joe lives with Mark.
Mother-of is not transitive. But if we change it slightly to Ancestor-of, then we get a transitive relation. If Doreen is an
ancestor of Ann and Ann is an ancestor of Catherine, then Doreen is an ancestor of Catherine.

The three properties of reflexivity, symmetry, and transitivity are ailmost logically independent of each other. We can find
simple, possibly useful relationships with seven of the eight possible combinations of these properties:

Domain Example
None of the properties people M other-of
Just reflexive people W ould-recognize-picture-of
Just symmetric people Has-ever-been-married-to
Just transitive people Ancestor-of
Reflexive and symmetric | people Hangs-out-with (assuming we can say one hangs out with oneself)

Reflexive and transitive numbers | Lessthan or equal to
Symmetric and transitive
All three numbers | Equality
people Address

To see why we can't find a good example of arelation that is symmetric and transitive but not reflexive, consider asimple
relation Ron {1, 2, 3, 4}. Assoon asR contains asingle element that relates two unequal objects (e.g., (1, 2)), it must, for
symmetry, contain the matching element (2, 1). So now we have R ={(1, 2), (2, 1)}. To make R transitive, we must add
(1, 1). But that also makes R reflexive.

3.3 Equivalence Relations

Although all the combinations we just described are possible, one combination is of such great importance that we give it
a special name. A relation is an equivalence relation if it is reflexive, symmetric and transitive. Equality (for numbers,
strings, or whatever) is an equivalence relation (what a surprise, given the name). So is our Address (lives at same
address) relation.

Equality is a very specia sort of equivalence relation because it relates an object only to itself. It doesn't help us much to

carve up alarge set into useful subsets. But in fact, equivalence relations are an incredibly useful way to carve up a set.
Why? Let'slook at aset P, with five elements, which we can draw as a set of nodes as follows:

Supplementary Materials Review of Mathematical Concepts 10

5

Now let's build an equivalence relation E on P. The first thing we have to do is to relate each node to itself, in order to
make the relation reflexive. So we've now got:

“ O

2

o Y9

Now let's add one additional element (1,2). As soon as we do that, we must also add (2,1), since E must be symmetric. So
now we've got:

“L0
= O
O ‘)

Suppose we now add (2,3). We must also add (3,2) to maintain symmetry. In addition, because we have (1, 2) and (2, 3),
we must create (1,3) for transitivity. And then we need (3, 1) to restore symmetry. That gives us

*\) <)

Notice what happened here. As soon aswe related 3 to 2, we were also forced to relate 3to 1. If we hadn't, we would no
longer have had an equivalence relation. See what happens now if you add (3, 4) to E.

What we've seen in this example is that an egquivalence relation R on aset S carves S up into a set of clusters, which we'll
call equivalence classes. This set of equivalence classes has the following key property:
Forany s, t [0S, if sOClass and (s, t) O R, thent [0 Class.

In other words, all elements of S that are related under R are in the same equivalence class. To describe equivalence
classes, we'll use the notation [a] to mean the equivalence class to which a belongs. Or we may just write [description],
where description is some clear property shared by all the members of the class. Notice that in general there may be lots
of different ways to describe the same equivalence class. In our example, for instance, [1], [2], and [3] are different names
for the same equivalence class, which includes the elements 1, 2, and 3. In this example, there are two other equivalence
classes aswell: [4] and [5].

It is possible to prove that if R is an equivalence relation on a nonempty set A then the equivalence classes of R constitute
a partition of A. Recall that N is a partition of a set A if and only if () no element of N is empty; (b) al members of I
are digoint; and (c) UM = A. In other words, if we want to take a set A and carve it up into a set of subsets, an
equivalence relation is a good way to do it.

For example, our Address relation carves up a set of people into subsets of people who live together. Let'slook at some
more examples:

Supplementary Materials Review of Mathematical Concepts 11

e Let A be the set of all strings of letters. Let SameLength O A x A relate strings whose lengths are the same.
Samel_ength is an equivalence relation that carves up the universe of all strings into a collection of subsets, one for
each natural number (i.e., strings of length O, strings of length 1, etc.).

* Let Zbethe set of integers. Let EqualMod3 [0 Z x Z relate integers that have the same remainder when divided by 3.
EqualMod3 has three equivalence classes, [0], [1], and [2]. [0] includes O, 3, 6, etc.

e Let CP be the set of C programs, each of which accepts an input of variable length. Well call the length of any
specific input n. Let SameComplexity [CP x CP relate two programs if their running-time complexity is the same.
More specificaly, (ci, ¢;) [0 SameComplexity precisely in case:

O0my, my, k [On > k, RunningTime(c;) < m;* RunningTime(c,) AND RunningTime(c,) < my* RunningTime(c,)]

Not every relation that connects "similar” things is an equivalence relation. For example, consider SimilarCost(x, V),
which holds if the price of x is within $1 of the price of y. Suppose A costs $10, B costs $10.50, and C costs $11.25.
Then SimilarCost(A, B) and SimilarCost(B, C), but not SimilarCost(A, C). So SimilarCost is not transitive, although it is
reflexive and symmetric.

3.4 Orderings

Important as equivalence relations are, they're not the only special kind of relation worth mentioning. Let's consider two
more.

A partial order is arelation that is reflexive, antisymmetric, and transitive. |f we write out any partial order as a graph,
welll see a structure like the following one for the relation SubstringOf. Notice that in order to make the graph relatively
easy to read, we'll adopt the convention that we don't write in the links that are required by reflexivity and transitivity.
But, of course, they are there in the relation itself:

yxab bed bce
xab

ab bc
" (the empty string)
Read an arrow from x to y as meaning that (X, y) is an element of the relation. So, in this example, "a" is a substring of
"ab", which is a substring of "xab", and so forth. Note that in a partial order, it is often the case that there are some
elements (such as"ab" and "bc") that are not related to each other at all (since neither is a substring of the other).
Sometimes a partial order on adomain D defines a mininal and/or a maximal element. In this example, thereis aminimal
element, the empty string, which is a substring of every string. There appears from this picture to be a maximal element,

but that's just because we drew only atiny piece of the graph. Every string is a substring of some longer string, so thereis
in fact no maximal element.

Supplementary Materials Review of Mathematical Concepts 12

Let's consider another example based on the subsumption relation between pairs of logical expressions. A logical
expression A subsumes another expression B iff (if and only if), whenever A istrue B must be true regardless of the values
assigned to the variables and functions of A and B. For example: Ox P(x) subsumes P(A), since, regardless of what the
predicate P is and independently of any axioms we have about it, and regardless of what object A represents, if [x P(x) is
true, then P(A) must be true. Why is this a useful notion? Suppose we're building a theorem proving or reasoning
program. If we already know [Ox P(x), and we are then told P(A), we can throw away this new fact. It doesn't add to our
knowledge (except perhaps to focus our attention on the object A) since it is subsumed by something we already knew. A
small piece of the subsumption relation on logical expressions is shown in the following graph. Notice that now thereisa
maximal element, False, which subsumes everything (in other words, if we have the assertion False in our knowledge base,
we have a contradiction even if we know nothing else). Thereisaso aminimal element, True, which tells us nothing.

44 Ox R(X) Dm

P(B) P(i) \ /

P(A) OQ(A) Ux R(x)

—mee S

True

A total order R0 A x A isapartial order that has the additional property that (a, b 00 A, either (a, b) or (b, @ O R. In
other words, every pair of elements must be related to each other one way or another. The classic example of atotal order
is< (or 2, if you prefer) on theintegers. The < relation isreflexive since every integer is equal to itself. It's antisymmetric
sinceif a<band a# b, then for sureitisnot dsotruethat b < a. It'stransitive: if a<sbandb < ¢, thena<c. And, given

any two integersaand b, either a< b or b < a. If we draw any total order as a graph, we'll get something that looks like
this (again without the reflexive and transitive links shown):

wPsrPoPo

This is only atiny piece of the graph, of course. It continues infinitely in both directions. But notice that, unlike our

earlier examples of partial orders, there is no splitting in this graph. For every pair of elements, one is above and one is
below.

4 Important Properties of Binary Functions

Any relation that uniquely maps from all elements of its domain to elements of its range is a function. The two sets
involved can be anything and the mapping can be arbitrary. However, most of the functions we actually care about behave
in some sort of regular fashion. It isuseful to articulate a set of properties that many of the functions that we'll study have.
When these properties are true of a function, or a set of functions, they give us techniques for proving additional
properties of the objectsinvolved. In the following definitions, we'll consider an arbitrary binary function # defined over a
set well call A with elements welll call a, b, and c. As examples, we'll consider functions whose actual domains are sets,
integers, strings, and boolean expressions.

Supplementary Materials Review of Mathematical Concepts 13

A binary function # is commutative iff
Examples: atb=b+a
anb=bna
aAND b=bAND a

A binary function # is associative iff

Examples: (atb)+c=a+(b+c)
(anbync=an(bnc)
(@AND b) AND c=aAND (b AND ¢)

(@llb) flc=all(bllc)

A binary function # isidempotent iff Oa a#ta=a.
Examples: min(a, @ = a
ana=a
aANDa=a

Oab a#tb=b#a

integer addition
set intersection
boolean and

Oab,c (a#tb)#c=a#(b#c)

integer addition

set intersection
boolean and

string concatenation

integer min
set intersection
boolean and

The distributivity property relates two binary functions: A function # distributes over another function ! iff
Oab,c a#(b!c)=(a#b)! (a#c)and(b!c)#a=(b#a)! (c#a)

Examples: a*(b+c)=(a*b)+(a*c)

al(bnc)=(@aldb)yn (aldc)

integer multiplication over addition
Set union over intersection

aAND (b OR c)=(aAND b) OR (aAND ¢) boolean AND over OR

The absorption laws also relate two binary functions to each other: A function # absorbs another function ! iff

Oab a#(a!'b)=a

Examples: an(allb)=a

aOR (aANDb)=a

set intersection absorbs union
boolean OR absorbs AND

It is often the case that when a function is defined over some set A, there are special elements of A that have particular
properties with respect to that function. In particular, it is worth defining what it meansto be an identity and to be a zero:

An element ais an identity for the function # iff

b*1=b
b+0=b
bOO=b
bORFase=b
b =b

Examples:

Ox OA, x#a=xanda#x =X

1isanidentity for integer multiplication

O isanidentity for integer addition

O isanidentity for set union

Falseis an identity for boolean OR

"" isan identity for string concatenation

Sometimes it is useful to differentiate between a right identity (one that satisfies the first requirement above) and a left
identity (one that satisfies the second requirement above). But for al the functions we'll be concerned with, if thereis a
left identity, it is also aright identity and vice versa, so we will talk simply about an identity.

An element ais azero for the function # iff

Ox OA,x#a=aanda#x=a

b*0=0
bnO=0
b AND FALSE = FALSE

Examples:

O isazero for integer multiplication

0 isazero for set intersection
FALSE is azero for boolean AND

Just as with identities, it is sometimes useful to distinguish between left and right zeros, but we won't need to.

Supplementary Materials

Review of Mathematical Concepts 14

Although we're focusing here on binary functions, there's one important property that unary functions may have that is
worth mentioning here:

A unary function % is a self inverse iff Ox %(%x)) = x. In other words, if we compose the function with itself (apply it
twice), we get back the original argument. Note that thisis not the same as saying that the function isits own inverse. In
most of the cases well consider (including the examples given here), it is not. A single application of the function
produces a new value, but if we apply the function a second time, we get back to where we started.

Examples: -(-(@)=a Multiplying by -1 is a self inverse for integers
1/(1/a) Dividing into 1 isa self inverse for integers
a=a Complement isa self inverse for sets
a(-a=a Negation isa self inverse for booleans
(@)R=a Reversal isa salf inverse for strings

5 Relations and Functions on Sets

In the last two sections, we explored various useful properties of relations and functions. With those tools in hand, let's
revisit the basic relations and functions on sets.

5.1 Relations

We have defined two relations on sets: subset and proper subset. What can we say about them? Subset is a partial order,
sinceit isreflexive (every set is a subset of itself), transitive (if A 0 B and B [0 C, then A OO C) and antisymmetric (if A O
B and A # B, then it must not be true that B [0 A). For example, we see that the subset relation imposes the following
partial order if you read each arrow as"is a subset of":

Z (theintegers)

Odd numbers Even numbers

T

Prime numbers excluding 2

T

{3, 17, 29} {4, 10}

\/

O
What about proper subset? It isnot a partial order sinceit is not reflexive.
5.2 Functions

All of the functional properties we defined above apply in one way or another to the functions we have defined on sets.
Further, as we saw above, there some set functions have a zero or an identity. We'll summarize here (without proof) the
most useful properties that hold for the functions we have defined on sets:

Commutativity AOB=BOA
AnB=BnA
Associativity (AOB)OC=A0BOC)

(AnB)nC=An(BnCQC)

Supplementary Materials Review of Mathematical Concepts 15

| dempotency AOA=A

AnA=A

Distributivity (AOB)nC=(AnC)OBNC
(AnB)OC=(A0OC)n(BOC)

Absorption (AOB)n A=A
(AnB)OA=A

| dentity AOO=A

Zero AnO=0

Self Inverse A=A

In addition, we will want to make use of the following theorems that can be proven to apply specifically to sets and their
operations (as well as to boolean expressions):

De Morgan'slaws AOB
AnB

>I>|
[solNush|

N
O

6 Proving Properties of Sets

A great deal of what we do when we build a theory about some domain is to prove that various sets of objects in that

domain are equal. For example, in our study of automata theory, we are going to want to prove assertions such as these:

e The set of strings defined by some regular expression E is identical to the set of strings defined by some second
regular expression E'.

* The set of strings that will be accepted by some given finite state automaton M is the same as the set of strings that
will be accepted by some new finite state automaton M' that is smaller than M.

e The set of languages that can be defined using regular expressions is the same as the set of languages that can be
accepted by afinite state automaton.

» The set of problems that can be solved by a Turing Machine with a single tape is the same as the set of problems that
can be solved by a Turing Machine with any finite number of tapes.

So we become very interested in the question, "How does one prove that two sets are identical"? There are lots of ways

and many of them require special techniques that apply in specific domains. But it's worth mentioning two very general
approaches here.

6.1 Using Set Identities and the Definitions of the Functions on Sets

Sometimes we want to compare apples to apples. We may, for example, want to prove that two sets of strings are
identical, even though they may have been derived differently. In this case, one approach is to use the set identity
theorems that we enumerated in the last section. Suppose, for example, that we want to prove that

AOBNn(ANC) =A
We can prove this as follows:

AOBNn(ANC) =(AOB)Nn(AOANCQ) Distributivity
=(AOB)n((AnC)OA) Commutativity
=(AOB)n A Absorption
=A Absorption

Sometimes, even when we're comparing apples to apples, the theorems we've listed aren't enough. In these cases, we need
to use the definitions of the operators. Suppose, for example, that we want to prove that

A-B =AnB
We can prove this as follows (where U stands for the Universe with respect to which we take complement):

Supplementary Materials Review of Mathematical Concepts 16

A-B ={x:xOAandxOB}
={x:xOAand(x OUandx B)}
={x:xOAandxOU - B}
={x:xOA andx 0B}
=AnB

6.2 Showing Two Sets are the Same by Showing that Each is a Subset of
the Other

Sometimes, though, our problem is more complex. We may need to compare apples to oranges, by which | mean that we
are comparing sets that aren't even defined in the same terms. For example, we will want to be able to prove that A: the
set of languages that can be defined using regular expressions is the same as B: the set of languages that can be accepted
by afinite state automaton. This seemsvery hard: Regular expressions look like

a* (b O ba)*
Finite state machines are a collection of states and rules for moving from one state to another. How can we possibly prove
that these A and B are the same set? The answer is that we can show that the two sets are equal by showing that each isa
subset of the other. For example, in the case of the regular expressions and the finite state machines, we will show first
that, given a regular expression, we can construct a finite state machine that accepts exactly the strings that the regular
expression describes. That givesus A [B. But there might still be some finite state machines that don't correspond to
any regular expressions. So we then show that, given a finite state machine, we can construct a regular expression that
defines exactly the same strings that the machine accepts. That givesusB 0 A. Thefinal step isto exploit the fact that

AOBandBOA=A=B

7 Cardinality of Sets

It seems natural to ask, given some set A, "What is the size of A?" or "How many elements does A contain?' In fact,
we've been doing that informally. We'll now introduce formal techniques for discussing exactly what we mean by the size
of aset. WEIl use the term cardinality to describe the way we answer such questions. So we'll reply that the cardinality
of A is X, for some appropriate value of X. For simple cases, determining the value of X is straightforward. In other
cases, it can get quite complicated. For our purposes, however, we can get by with three different kinds of answers. a
natural number (if A is finite), "countably infinite" (if A has the same number of elements as there are integers), and
"uncountably infinite" (if A has more elements than there are integers).

We write the cardinality of aset A as|A|.

A set A isfinite and has cardinality n 0 N (the natural numbers) if either A = O or thereisabijection fromA to {1, 2, ...
n}, for some value of n. In other words, a set is finite if either it is empty or there exists a one-to-one and onto mapping
from it to a subset of the positive integers. Or, aternatively, a set is finite if we can count its elements and finish. The
cardinality of afinite set is simply a natural number whose value is the number of elementsin the set.

A set isinfinite if it is not finite. The question now is, "Are al infinite sets the same size?' The answer isno. And we
don't have to venture far to find examples of infinite sets that are not the same size. So we need some way to describe the
cardinality of infinite sets. To do this, we need to define a set of numbers well call the cardinal numbers. Welll use these
numbers as our measure of the size of sets. Initially, welll define all the natural numbers to be cardinal numbers. That lets
us describe the cardinality of finite sets. Now we need to add new cardinal numbers to describe the cardinality of infinite
sets.

Let's start with a simple infinite set N, the natural numbers. We need a new cardinal number to describe the (infinite)

number of natural numbers that there are. Following Cantor, we'll call this number [f,. (Read this as "aleph null". Aleph
isthe first symbol of the Hebrew al phabet.)

Supplementary Materials Review of Mathematical Concepts 17

Next, we'll say that any other set that contains the same number of members as N does also has cardinality [, WEell also
call a set with cardinality [J, countably infinite. And one more definition: A set is countable if it is either finite or
countably infinite.

To show that a set has cardinality (o, we need to show that there is a bijection between it and N. The existence of such a
bijection proves that the two sets have the same number of elements. For example, the set E of even natural numbers has
cardinality [J,. To prove this, we offer the bijection:

Even:E - N

Even(x) = x/2
So we have the following mapping from E to N:

N

ol|~|N|o|m
w|N|k|o

This one was easy. The hijection was obvious. Sometimes it's less so. In harder cases, a good way to think about the
problem of finding a bijection from some set A to N is that we need to find an enumeration of A. An enumeration of A is
simply alist of the elements of A in some order. Of courseg, if A isinfinite, the list will be infinite, but as long as we can
guarantee that every element of A will show up eventually, we have an enumeration. But what is an enumeration? Itisin
fact a bijection from A to the positive integers, since there is a first element, a second one, a third one, and so forth. Of
course, what we need is a bijection to N, so we just subtract one. Thus if we can devise a technique for enumerating the
elements of A, then our bijection to N issimply

Enum:A - N

Enum(x) = x's position in the enumeration - 1

Let's consider an example of this technique;
Theorem: The union of a countably infinite number of countably infinite setsis countably infinite.

To prove this theorem, we need a way to enumerate all the elements of the union. The simplest thing to do would be to
start by dumping in all the elements of the first set, then all the elements of the second, etc. But, since the first set is
infinite, we'll never get around to considering any of the elements of the other sets. So we need another technique. If we
had a finite number of setsto consider, we could take the first element from each, then the second element from each, and
so forth. But we also have an infinite number of sets, so if we try that approach, we'll never get to the second element of
any of the sets. So we follow the arrows as shown below. The numbers in the squares indicate the order in which we
select elements for the enumeration. This process goes on forever, but it is systematic and it guarantees that, if we wait
long enough, any element of any of the setswill eventually be enumerated.

Setl Set 2 Set 3 Set 4
Element 1 1+ 3 _» —p 4 — — A
Element2 |2 5 < 4
Element 3 6* 4

7

It turns out that a lot of sets have cardinality [J,. Some of them, like the even natural numbers, appear at first to contain
fewer elements. Some of them, like the union of a countable number of countable sets, appear at first to be bigger. But in
both cases there is a bijection between the elements of the set and the natural numbers, so the cardinality is [J,.

However, thisisn't true for every set. There are sets with more than 7, elements. There are more than 7, real humbers,
for example. Asanother case, consider an arbitrary set Swith cardinality /7,. Now consider the power set of S (the set of
all subsets of S). This set has cardinality greater than [J,. To prove this, we need to show that there exists no bijection

Supplementary Materials Review of Mathematical Concepts 18

between the power set of S and the integers. To do this, we will use atechnique called diagonalization. Diagonalization
isakind of proof by contradiction. It works asfollows:

Let's start with the original countably infinite set S. We can enumerate the elements of S (since it's countable), so there'sa
first one, a second one, etc. Now we can represent each subset SS of S as a binary vector that contains one element for
each element of the original set S. If SS contains element 1 of S, then the first element of its vector will be 1, otherwise 0.
Similarly for al the other elements of S. Of course, since S is countably infinite, the length of each vector will also be
countably infinite. Thuswe might represent a particular subset SS of S as the vector:

Elemlof S| Elem20of S| Elen30of S| Elem4of S| Elen50f S | Elem60of S|
1 0 0 1 1 o ...

Next, we observe that if the power set P of S were countably infinite, then there would be an enumeration of it that put its
elements in one to one correspondence with the natural numbers. Suppose that enumeration were the following (where
each row represents one element of P as described above. Ignore for the moment the numbers enclosed in parentheses.):

Elemlof S| Elem20of S | Elen30of S | Elem4of S | Elen50f S | Elem60of S|

ElemlofP | 1 O |0 0 0 0 o ...
Elem2of P | O 1 2 |0 0 0 o ...
Elem3of P | 1 1 0 3 |0 0 o ...
Elem4of P | O 0 1 0 @ |0 o ...
Elem50f P | 1 0 1 0 0 G |0 ...
Elem6ofP | 1 1 1 0 0 0 ®) |

o

o

If thisreally is an enumeration of P, then it must contain all elements of P. But it doesn't. To prove that it doesn't, we will
congtruct an element L [0 P that is not on the list. To do this, consider the numbers in parentheses in the matrix above.
Using them, we can construct L:

@) -2 [-(3) | -4 [-(5) [-(6) [..o |

What we mean by - (1) is that if (1) isa 1 then O; if (1) isa0, then 1. So we've constructed the representation for an
element of P. It must be an element of P since it describes a possible subset of S. But we've built it so that it differs from
the first element in the list above by whether or not it includes element 1 of S. It differs from the second element in the list
above by whether or not it includes element 2 of S. And so forth. In the end, it must differ from every element in the list
above in at least one place. Yet it isclearly an element of P. Thus we have a contradiction. The list above was not an
enumeration of P. But since we made no assumptions about it, no enumeration of P can exist. In particular, if wetry to
fix the problem by simply adding our new element to the list, we can just turn around and do the same thing again and
create yet another element that 's not on the list. Thus there are more than 7, elementsin P. Well say that sets with more
than [J, elements are uncountably infinite.

The real numbers are uncountably infinite. The proof that they are is very similar to the one we just did for the power set
except that it's a bit tricky because, when we write out each number as an infinite sequence of digits (like we wrote out
each set above as an infinite sequence of O's and 1's), we have to consider the fact that several distinct sequences may
represent the same number.

Not all uncountably infinite sets have the same cardinality. Thereisan infinite number of cardinal numbers. But we won't
need any more. All the uncountably infinite sets we'll deal with (and probably all the ones you can even think of unless
you keep taking power sets) have the same cardinality as the reals and the power set of a countably infinite set.

Thus to describe the cardinality of all the sets we'll consider, we will use one of the following:
* Thenatural numbers, which we'll use to count the number of elements of finite sets,

Supplementary Materials Review of Mathematical Concepts 19

* [J, whichisthe cardinality of al countably infinite sets, and
» uncountable, which is the cardinality of any set with more than [, members.

8 Closures

Imagine some set A and some property P. If we care about making sure that A has property P, we are likely to do the
following:

1. Examine A for P. If it has property P, we're happy and we quit.

2. If it doesn't, then add to A the smallest number of additional elements required to satisfy P.

Let's consider some examples:

* Let A be aset of friends you're planning to invite to a party. Let P be "A should include everyone who is likely to
find out about the party" (since we don't want to offend anyone). Let's assume that if you invite Bill and Bill has a
friend Bob, then Bill may tell Bob about the party. This means that if you want A to satisfy P, then you have to invite
not only your friends, but your friends friends, and their friends, and so forth. If you move in afairly closed circle,
you may be able to satisfy P by adding a few people to the guest list. On the other hand, it's possible that you'd have
to invite the whole city before P would be satisfied. It depends on the connectivity of the FriendsOf relation in your
social setting. The problem is that whenever you add a new person to A, you have to turn around and look at that
person's friends and consider whether there are any of them who are not aready in A. If there are, they must be
added, and so forth. There's one positive feature of this problem, however. Notice that there is a unique set that does
satisfy P, given theinitial set A. There aren't any choices to be made.

e Let A beasetof 6 people. Let Pbe"A can enter abaseball tournament”. This problem is different from the last in
two important ways. First, thereisaclear limit to how many elements we have to add to A in order to satisfy P. We
need 9 people and when we've got them we can stop. But notice that there is not a unique way to satisfy P (assuming
that we know more than 9 people). Any way of adding 3 people to the set will work.

* Let A bethe Address relation (which we defined earlier as "lives at same address as*). Since relations are sets, we
should be able to treat Address just as we've treated the sets of people in our last two examples. We know that
Address is an equivaence relation. So we'll let P be the property of being an equivalence relation (i.e., reflexive,
symmetric, and transitive). But suppose we are only able to collect facts about living arrangements in a piecemeal
fashion. For example, we may learn that Address contains { (Dave, Mary), (Sue, Pete), (John, Bill)}. Immediately we
know, because Address must be reflexive, that it must also contain {(Dave, Dave), (Mary, Mary), (Sue, Sue), (Pete,
Pete), (John, John), (Bill, Bill)}. And, since Address must also be symmetric it must contain {(Mary, Dave), (Pete,
Sue), (Bill, John)}. Now suppose that we discover that Mary lives with Sue. We add {(Mary, Sue)}. To make
Address symmetric again, we must add { (Sue, Mary)}. But now we also have to make it transitive by adding { (Dave,
Sue), (Sue, Dave)}.

e Let A be the set of natural numbers. Let P be "the sum of any two elements of A isasoin A" Now weve got a
property that is already satisfied. The sum of any two natural numbers is a natural number. Thistime, we don't have
to add anything to A to establish P.

* Let A bethe set of natural numbers. Let P be "the quotient of any two elements of A isalsoin A." Thistime we have
aproblem. 3/5 is not anatural number. We can add elementsto A to satisfy P. If we do, we end up with exactly the
rational numbers.

In al of these cases, we're going to want to say that A is closed with respect to P if it possesses P. And, if we have to add

elementsto A in order to satisfy P, well call a smallest such expanded A that does satisfy P aclosure of A with respect to
P. What we need to do next isto define both of these terms more precisely .

8.1 Defining Closure

The first set of definitions of closure that well present is very general, although it does require that we can describe
property P as an n-ary relation (for some value of n). We can use it to describe what we did in al but one of the examples
above, although in afew casesit will be quite cumbersome to do so.

Let n be an integer greater than or equal to 1. Let R be an n-ary relation on aset D. Thus elements of R are of the form
(dy, do, ..., dy). Wesay that asubset Sof D isclosed under R if, whenever:

Supplementary Materials Review of Mathematical Concepts 20

1. dy,d,,...d,1OS, (al of thefirst n-1 elements are already in the set S) and
2. (di, dy, ...dn 1, dy) OR (thelast element isrelated to the n-1 other elementsviaR)
itisalsotruethat d, 0 S.

A set S'isaclosure of Swith respect to R (defined on D) iff:

1. sOS,

2. Sisclosed under R, and

3. OT (TODandTisclosed under R) = |S|<[T].

In other words, S is a closure of S with respect to R if it is an extension of S that is closed under R and if there is no
smaller set that also meets both of those requirements. Note that we can't say that S' must be the smallest set that will do
the job, since we do not yet have any guarantee that there is a unique such smaller set (recall the softball example above).

These definitions of closure are a very natural way to describe our first example above. Drawing from a set A of people,
you start with S equal to your friends. Then, to compute your invitee list, you simply take the closure of S with respect to
the relation FriendOf, which will force you to add to A your friends' friends, their friends, and so forth.

Now consider our second example, the case of the baseball team. Here there is no relation R that specifies, if one or more
people are already on the team, then some specific other person must also be on. The property we care about is a property
of the team (set) as a whole and not a property of patterns of individuals (elements). Thus this example, although similar,
is not formally an instance of closure as we have just defined it. This turns out to be significant and leads us to the
following definition:

Any property that asserts that a set Sis closed under some relation R isaclosure property of S. It is possible to prove that
if Pisaclosure property, asjust defined, on aset A and Sis asubset of A, then the closure of S with respect to R exists
and is unique. In other words, there exists a unique minimal set S that contains S and is closed under R. Of all of our
examples above, the baseball example is the only one that cannot be described in the terms of our definition of a closure
property. The theorem that we have just stated (without proof) guarantees, therefore, that it will be the only one that does
not have a unique minimal solution.

The definitions that we have just provided also work to describe our third example, in which we want to compute the
closure of arelation (since, after all, arelation is a set). All we have to do is to come up with relations that describe the
properties of being reflexive, symmetric, and transitive. To help us see what those relations need to be, let's recall our
definitions of symmetry, reflexivity, and transitivity:

« AvreaionROA x Aisreflexiveif, foreachaOA, (a,a OR.

« AvreaionROA x Aissymmetricif, whenever (a, b) O R, sois (b, a).

« Avrelation ROA x Aistransitive if, whenever (a, b) D Rand (b,c) OR, (a ¢c) OR.

Looking at these definitions, we can come up with three relations, Reflexivity, Symmetry, and Transitivity. All three are
relations on relations, and they will enable us to define these three properties using the closure definitions we've given so
far. All three definitions assume a base set A on which the relation we are interested is defined:

« [OaOA, ((a d) O Reflexivity. Notice the double parentheses here. Reflexivity is a unary relation, where each
element isitself an ordered pair. It doesn't really "relate” two elements. It is simply alist of ordered pairs. To see
how it works to define reflexive closure, imagine a set A = {x, y}. Now suppose we start with arelation R on A =
{(x, y)}. Clearly Risn't reflexive. And the Reflexivity relation tells us that it isn't because the reflexivity relation on
A contains {((X, X)), ((y, ¥))}. Thisisaunary relation. So n, in the definition of closure, is 1. Consider the first
element ((x, X)). We consider al the components before the nth (i.e., first) and see if they're in A. This means we
consider the first zero components. Trivialy, al zero of them are in A. So the nth (the first) must also be. This
means that (X, X) must bein R. But it isn't. Soto compute the closure of R under Reflexivity, we add it. Similarly for
v,).

e HOabOA,azb=[((a b), (b, @) O Symmetry]. Thisoneisalot easier. Again, suppose we start with aset A = {Xx,
y} and arelation Ron A = {(x, y)}. Clearly R isn't symmetric. And Symmetry tellsusthat. Symmetry on A = {((x,
y), (¥, X)), (Y, X), (X, ¥))}. But look at the first element of Symmetry. It tellsus that for R to be closed, whenever (x,
y)isinR, (y, X) must also be. Butitisn't. To compute the closure of R under Symmetry, we must add it.

Supplementary Materials Review of Mathematical Concepts 21

e [OabcOA [azbOb#c = [((& b), (b, ¢), (& ¢) O Transitivity]. Now we will exploit a ternary relation.
Whenever the first two elements of it are present in some relation R, then the third must also beif R istransitive. This
time, let's start with aset A = {X, y, z} and arelation Ron A = {(x,), (y, 2}. Clearly R is not transitive. The
Transitivity relation on A is {((x, ¥), (v, 2), (x, 2)), (X, 2), (z, ¥), (X, ¥)), ((¥, %), (X, 2), (¥, 2)), (¥, 2), (2, %), (¥, X)),
((z, x), X,), (Z,), ((Z,Y), (v, X), (z,X))}. Look at the first element of it. Both of the first two components of it are
in R. But thethird isn't. To make R transitive, we must add it.

These definitions also work to enable us to describe the closure of the integers under division as the rationals. Following
the definition, A isthe set of rationals. S (asubset of A) istheintegersand R is QuotientClosure, defined as:
» [OabcOA,[ab=c] = [(a b, c) O QuotientClosure].

So we've got a quite general definition of closure. And it makes it possible to prove the existence of a unique closure for
any set and any relation R. The only constraint is that this definition works only if we can define the property we care
about as an n-ary relation for some finite n. There are cases of closure where thisisn't possible, as we saw above, but we
won't need to worry about them in this class.

So we don't really need any new definitions. We've offered a general definition of closure of a set (any set) under some
relation (which is the way we use to define a property). But most of the cases of closure that we'll care about involve the
special case of the closure of a binary relation given some property that may or may not be naturaly describable as a
relation. For example, one could argue that the relations we just described to define the properties of being reflexive,
symmetric, and transitive are far from natural. Thus it will be useful to offer the following alternative definitions. Don't
get confused though by the presence of two definitions. Except when we cannot specify our property P as arelation (and
we won't need to deal with any such cases), these new definitions are simply special cases of the one we already have.

We say that a binary relation B onaset T is closed under property P if B possesses P. For example, LessThanOrEqual is
closed under transitivity sinceit istransitive. Simple enough. Next:

Let B beabinary relationonaset T. A relation B'isaclosure of B with respect to some property P iff:
1. BOB,

2. B'isclosed under P, and

3. Thereisno smaller relation B" that contains B and is closed under P.

So, for example, the transitive closure of B = {(1, 2), (2, 3)} is the smallest new relation B' that contains B but is
transitive. SoB'= {(1, 2), (2, 3), (1, 3)}.

You'll generaly find it easier to use these definitions than our earlier ones. But keep in mind that, with the earlier
definitions it is possible to prove the existence of a unique closure. Since we went through the process of defining
reflexivity, symmetry, and transitivity using those definitions, we know that there aways exists a unique reflexive,
symmetric, and transitive closure for any binary relation. We can exploit that fact that the same time that we use the
simpler definitions to help us find algorithms for computing those closures.

8.2 Computing Closures

Suppose we are given a set and a property and we want to compute the closure of the set with respect to the property.

Let's consider two examples:

e Compute the symmetric closure of a binary relation B on a set A. Thisis trivia. Simply make sure that, for all
elementsx of A, (x, x) O B.

e Compute the transitive closure of a binary relation B on aset A. Thisisharder. We can't just add a fixed number of
elements to B and then quit. Every time we add a new element, such as (x, y), we have to look to see whether there's
some element (y, z) so now we also have to add (x, z). And, similarly, we must check for any element (w, x) that
would force usto add (w, y). If A isinfinite, there is no guarantee that this process will ever terminate. Our theorem
that guaranteed that a unique closure exists did not guarantee that it would contain a finite number of elements and
thus be computable in a finite amount of time.

Supplementary Materials Review of Mathematical Concepts 22

We can, however, guarantee that the transitive closure of any binary relation on a finite set is computable. How? A very
simple approach is the following algorithm for computing the transitive closure of a binary relation B with N elements on
aset A:

Set Trans = B; /* Initially Transisjust the original relation.
/* We need to find all caseswhere (x, y) and (y, z) arein Trans. Then we must insert (x, z) into Transif
/¥ itisn't aready there.
Boolean AddedSomething = True; /* Welll keep going until we make one whole pass through
without adding any new elementsto Trans.
while AddedSomething = True do
AddedSomething = False;
Xcounter :=0;
Foreach element of Transdo
xcounter := xcounter + 1;
X = Trang[xcounter][1] /* Pull out the first element of the current element of Trans
y = Trang xcounter][2] /* Pull out the second element of the i'th element of Trans
/* So if the first element of Transis (p, g), then
/* x = p andy = q thefirst time through.
zcounter := 0;
foreach element of Trans do
zcounter := zcounter + 1;
if Trangzcounter][1] =y thendo /* We've found another element (y, ?) and we may need to
z = Trang zcounter][2]; /* add (x, ?) to Trans.
if (x,z) O Transthendo /* we haveto add it
Insert(Trans, (X, 2))
AddedSomething = True;
end; end; end; end; end;

This agorithm works. Try it on some simple examples. But it's very inefficient. There are much more efficient
algorithms. In particular, if we represent a relation as an incidence matrix, we can do a lot better. Using Warshall's
agorithm, for example, we can find the transitive closure of a relation of n elements using 2n° bit operations. For a
description of that algorithm, see, for example, Kenneth Rosen, Discrete Mathematics and its Applications, McGraw-Hill.

9 Proof by Mathematical Induction

In the last section but one, as a sideline to our main discussion of cardinality, we presented diagonalization as a proof
technique. In this section, we'll present one other very useful proof technique.

Mathematical induction is a technique for proving assertions about the set of positive integers. A proof by induction of

assertion A about some set of positive integers greater than or equal to some specific value has two steps:

1. Prove that A holds for the smallest value we're concerned with. Well call this value v. Generally v = 0 or 1, but
sometimes A may hold only once we get past some initial unusual cases.

2. Provethat Onz=v, A(n) = A(n+1)

WEell call A(n) the induction hypothesis. Since we're trying to prove that A(n) = A(n+1), we can assume the induction
hypothesis as an axiom in our proof.

Let's do a simple example and use induction to prove that the sum of the first n odd positive integersisn®. Notice that this
appears to be true;
(n=1)1 =1
(n=2)1+3 =4
(h=3)1+3+5 =9=3
(n=4)1+3+5+7=16=4% and soforth.

To prove it, we need to follow the two steps that we just described:

Supplementary Materials Review of Mathematical Concepts 23

Letv=1 1=12
2. Provethat, On =0,

=

n n+l
(O.0dd, =n*) = (>_0dd, = (n+1)?)
i=1 i=1
To do this, we observe that the sum of the first n+1 odd integersis the sum of the first n of them plusthe n+1's, i.e.,

n+l n

z Odd. = z Odd, +Odd,..,

i=1 i=1
=n’+0dd, ., (Using the induction hypothesis)
=n*+2n+1 (Odd, ,, is2n+1)
=(n+1)?

Thus we have shown that the sum of the first n+1 odd integers must be equivalent to (n+1)? if it is known that the sum of
the first n of them is equivalent to .

Mathematical induction lets us prove properties of positive integers. But it also lets us prove properties of other things if
the properties are described in terms of integers. For example, we could talk about the size of finite sets, or the length of
finite strings. Let's do one with sets: For any finite set A, [2*| = 2%, In other words, the cardinality of the power set of A
is 2 raised to the power of the cardinality of A. WEell prove this by induction on the number of elements of A (JA). We
follow the same two steps:

1. Letv=0. SoAisO, |A|=0, and A's power setis{}, whose cardinality is 1 = 2° = 2/,

2. Provethat, On= 0, if [2*| = 2" istrue for all sets A of cardinality n, then it is also true for all sets S of cardinality n+1.
We do this as follows. Since n = 0, and any such Shasn + 1 elements, S must have at least one element. Pick one
and call it a Now consider the set T that we get by removing a from S. [T| must be n. So, by the induction
hypothesis (namely that [2*| = 2! if |A| = n), our claim is true for T and we have [27] = 2. Now let's return to the
power set of the original set S. It has two parts: those subsets that include a and those that don't. The second part is
exactly 27, so we know that it has 2™ = 2" elements. The first part (all the subsets that include a) is exactly all the
subsets that don't include a with a added in). Since there are 2" subsets that don't include a and there are the same
number of them once we add a to each, we have that the total number of subsets of our original set Sis 2" (for the
ones that don't include a) plus 2" (for the ones that do include a), for atotal of 2(2n) = 2™*, which is exactly 2.

Why does mathematical induction work? It relies on the well-ordering property of the integers, which states that every
nonempty set of nonnegative integers has a least element. Let's see how that property assures us that mathematical
induction is valid as a proof technique. Well use the technique of proof by contradiction to show that, given the well-
ordering property, mathematical induction must be valid. Once we have done an induction proof, we know that A(v)
(where v is 0 or 1 or some other starting value) is true and we know that On = 0, A(n) = A(n+1). What we're using the
technique to enable us to claim is that, therefore, 0n = v, A(n). Suppose the technique were not valid and there was a set
S of nonnegative integers = v for which A(n) is False. Then, by the well-ordering property, there is a smallest element in
thisset. Call it x. By definition, x must be equal to or greater than v. But it cannot actually be v because we proved A(v).
So it must be greater than v. But now consider x - 1. Since x - 1 islessthan x, it cannot be in S (since we chose x to be
the smallest value in S). If it'snot in S, then we know A(x - 1). But we proved that OIn = 0, A(n) = A(n+1), so A(X - 1)
= A(X). But weassumed - A(x). So that assumption led us to a contradiction; thusit must be false.

Sometimes the principle of mathematical induction is stated in a dightly different but formally equivalent way:

1. Provethat A holdsfor the smallest value v with which we're concerned.

2. State the induction hypothesis H, which must be of the form, "There is some integer n = v such that A is true for all
integersk wherev <k <n."

3. Provethat (On=v, A(n) = A(n+ 1). In other words prove that whenever A holds for al nonnegative integers
starting with v, up to an including n, it must also hold for n + 1.

Y ou can use whichever form of the technique is easiest for a particular problem.

Supplementary Materials Review of Mathematical Concepts 24

Regular Languages and Finite State Machines

1 Regular Languages

The first class of languages that we will consider is the regular languages. As well see later, there are severa quite
different ways in which regular languages can be defined, but we'll start with one simple technique, regular expressions.

A regular expression is an expression (string) whose "value" is a language. Just as 3 + 4 and 14/2 are two arithmetic
expressions whose values are equal, so are (al b)* and a* O (a0 b)*b(a 0 b)* two regular expressions whose values are
equal. We will use regular expressions to denote languages just as we use arithmetic expressions to denote numbers. Just
as there are some numbers, like M, that cannot be expressed by arithmetic expressions of integers, so too there are some
languages, like a'b", that cannot be expressed by regular expressions. In fact, we will define the class of regular
languages to be precisely those that can be described with regular expressions.

Let's continue with the analogy between arithmetic expressions and regular expressions. The syntax of arithmetic
expressions is defined recursively:

Any numeral in{0, 1,2, ...} isan arithmetic expression.

If o and 3 are expressions, so is (o + (3).

If o and 3 are expressions, sois(a * B).

If o and 3 are expressions, sois(a -).

If o and 3 are expressions, so is (a/p3).

If o isan expression, sois-a.

ok wpdpE

These operators that we've just defined have associated with them a set of precedence rules, so we can write -3 + 4*5
instead of (-3 + (4*5)).

Now let's return to regular expressions. The syntax of regular expressionsis also defined recursively:
1. 0 and each member of X isaregular expression.

2.1f a, B areregular expressions, then so isaf

3.1f a, B areregular expressions, then soisalp .

4. If a isaregular expression, then soisa*.

5. If a isaregular expression, then so is (a).

6. Nothing elseisaregular expression.

Similarly there are precedence rules for regular expressions, so we can write a* [bc instead of (a* [(bc)). Note that *
binds more tightly than does concatenation, which binds more tightly than .

In both cases (arithmetic expressions and regular expressions) there is a distinction between the expression and its value.
5 + 7 is not the same expression as 3 * 4, even though they both have the same value. (Y ou might imagine the expressions
being in quotation marks. "5 + 7" is clearly not thesame as "3 * 4". Similarly, "John's agood guy" is a different sentence
from "John is nice", even though they both have the same meaning, more or less.) The rules that determine the value of an
arithmetic expression are quite familiar to us, so much so that we are usually not consciously aware of them. But regular
expressions are less familiar, so we will explicitly specify the rules that define the values of regular expressions. We do
this by recursion on the structure of the expression. Just remember that the regular expression itself is a syntactic object
made of parentheses and other symbols, whereas its value is a language. We define L() to be the function that maps
regular expressionsto their values. We might analogously define L() for arithmetic expressions and say that L(5 + 7) = 12
=L(3* 4). L() isan example of a semantic interpretation function, i. e, it is a function that maps a string in some
language to its meaning. In our case, of course, the language from which the arguments to L() will be drawn is the
language of regular expressions as defined above.

L() for regular expressionsis defined as follows:

1. L(O)=0andL(a ={a} foreachal Xz
2. If a, B areregular expressions, then

Supplementary Materials Regular Languages and Finite State Machines 1

L((@B)) =L(o) L(B)
= all strings that can be formed by concatenating to some string from a some string from 3.
Note that if either a or B is [, then itslanguage is [1, so there is nothing to concatenate and the result is 1.
If a, B areregular expressions, then L((aB)) =L(a) O L(B)
4. |If aisaregular expression, then L(a*) =L(a)*
5. L((a))=L(a)

w

So, for example, let's find the meaning of the regular expression (ad b)*b:

L((al b)*b)

L((a 0 b)*) L(b)

L(ad b)* L(b)

(L(a) O L(b))* L(b)

({a 0 {b})* {b}

{a b}* {b}

which isjust the set of all stringsendinginb. Another exampleisL(((ad b)(aO b))a(ad b)*) ={xay: x and y are strings
of asand b'sand [x| = 2}. The distinction between an expression and its meaning is somewhat pedantic, but you should
try to understand it. We will usually not actually write L() because it is generally clear from context whether we mean the
regular expression or the language denoted by it. For example, a0 (a0 b)* istechnically meaningless since (a[l b)* isa
regular expression, not a set. Nonetheless, we use it as a reasonable abbreviation for a0 L((a O b)*), just as we write 3 +
4 =4 + 3to mean that the values of "3 + 4" and "4 + 3", not the expressions themselves, are identical.

Here are some useful facts about regular expressions and the languages they describe:

e (al b)* = (a*b*)* = (b*a*)* = set of all strings composed exclusively of asand b's (including the empty string)

e (alOb)c=(acbc) Concatenation distributes over union

« c(aldb)=(calch) "

e a Ob*#(alb)* Theright-hand expression denotes a set containing strings of mixed a's and b's, while the | eft-
hand expression does not.

o (ab)* #a*b* In the right-hand expression, all a's must precede al b's. That's not true for the left-hand
expression.

e aU0O*=a*Ue=a*

There is an algebra of regular expressions, but it is rather complex and not worth the effort to learn it. Therefore, we will
rely primarily on our knowledge of what the expressions mean to determine the equivalence (or non-equivalence) or
regular expressions.

We are now in a position to state formally our definition of the class of regular languages: Given an alphabet %, the set of
regular languages over X is precisely the set of languages that can be defined using regular expressions with respect to 2.
Another equivalent definition (given our definition of regular expressions and L()), isthat the set of regular languages over
an alphabet > is the smallest set that contains [0 and each of the elements of %, and that is closed under the operations of
concatenation, union, and Kleene star (rules 2, 3, and 4 above).

Supplementary Materials Regular Languages and Finite State Machines 2

2 Proof of the Equivalence of Nondeterministic and Deterministic FSAs
In the lecture notes, we stated the following:

Theorem: For each NDFSA, there is an equivalent DFSA.

Thisis an extremely significant theorem. It saysthat, for finite state automata, nondeterminism doesn't add power. It adds
convenience, but not power. Aswe'll see later, thisis not true for all other classes of automata.

In the notes, we provided the first step of a proof of this theorem, namely an algorithm to construct, from any NDFSA, an
equivalent DFSA. Recall that the algorithm we presented was the following: Given anondeterministic FSA M (K, Z, A, s,
F), we derive an equivalent deterministic FSA M' = (K", 2, &', s, F) asfollows:

1. Compute E(q) foreachqin K. OgOK, E(q) ={p 0K :(q,€) |*m (p, €)}. Inother words, E(q) isthe set of states
reachable from q without consuming any input.

2. Compute s = E(9).

3. Compute &, which is defined as follows: 0QO2X and DalX , &'(Q, a) = O{E(p) : p 0 K and (q, a, p) 0 A for someq

0 Q}. Recall that the elements of 2 are sets of states from the original machine M. So what we've just said is that

to compute the transition out of one of these "set" states, find al the transitions out of the component states in the

original machine, then find al the states reachable from them via epsilon transitions. The new state is the set of al

states reachable in thisway. Well actually compute &' by first computing it for the new start state s and each of the

elements of Z. Each state thus created becomes an element of K', the set of states of M'. Then we compute &' for

any new states that were just created. We continue until there are no additional reachable states. (so although &' is

defined for all possible subsets of K, well only bother to compute it for the reachable such subsets and in fact we'll

define K' to include just the reachable configurations.)

Compute K' = that subset of 2 that is reachable, via &', as defined in step 3, from s.

5. Compute F ={Q OK': Q n F# O}. Inother words, each constructed "set" state that contains at least one final
state from the original machine M becomes afinal statein M.

e

However, to complete the proof of the theorem that asserts that there is an equivalent DFSA for every NDFSA, we need
next to prove that the algorithm we have defined does in fact produce a machine that is (1) deterministic, and (2)
equivalent to the original machine.

Proving (1) istrivial. By the definition in step 3 of &', we are guaranteed that &' is defined for all reachable elements of K'
and that it is single valued.

Next we must prove (2). In other words, we must prove that M' accepts a string w if and only if M accepts w. We
constructed the transition function &' of M' so that each step of the operation of M' mimics an "all paths' simulation of M.
So we believe that the two machines are identical, but how can we prove that they are? Suppose we could prove the
following:

Lemma: For any string w [0 2* and any states p, g O K, (g, w) |-*m (p, €) iff (E(Q), W) |-*m (P, €) for some P O
K' that contains p. In other words, if the original machine M starts in state q and, after reading the string w, can
land in state p, then the new machine M' must behave as follows: when started in the state that corresponds to the
set of states the original machine M could get to from g without consuming any input, M' reads the string w and
lands in one of its new "set" states that contains p. Furthermore, because of the only-if part of the lemma, M'
must end up in a"set" state that contains only states that M could get to from q after reading w and following any
available epsilon transitions.

If we assume that this lemmais true, then the proof that M' is equivalent to M is straightforward: Consider any string w [

>*, If wOL(M) (i.e, theoriginal machine M accepts w) then the following two statements must be true;

1. The original machine M, when started in its start state, can consume w and end up in afina state. This must be true
given the definition of what it means for a machine to accept a string.

Supplementary Materials Regular Languages and Finite State Machines 3

2. (E(s), W) |*m (Q, €) for some Q containing some f [0 F. In other words, the new machine, when started in its start
state, can consume w and end up in one of its final states. This follows from the lemma, which is more general and
describes a computation from any state to any other. But if we use the lemma and let q equal s (i.e., M beginsin its
start state) and p = f for somef O F (i.e,, M endsin afinal state), then we have that the new machine M', when started
in its start state, E(s), will consume w and end in a state that contains f. But if M' does that, then it has ended up in
one of itsfinal states (by the definition of K' in step 5 of the algorithm). So M' accepts w (by the definition of what it
means for a machine to accept a string). Thus M' accepts precisely the same set of strings that M does.

Now all we have to do is to prove the lemma. What the lemmais saying is that we've built M' from M in such a way that
the computations of M*' mirror those of M and guarantee that the two machines accept the same strings. But of course we
didn't build M' to perform an entire computation. All we did was to describe how to construct &'. In other words, we
defined how individual steps of the computation work. What we need to do now is to show that the individual steps, when
taken together, do the right thing for strings of any length. The obvious way to do that, since we know what happens one
step at atime, isto prove the lemma by induction on [w].

We must first prove that the lemmais true for the base case, where jw| =0 (i.e.,, w = €). To do this, we actually have to do
two proofs, one to establish theif part of the lemma, and the other to establish the only if part:

Basis step, if part: Prove (g, w) [*m (p, €) if (E(q), W) [*m (P, €) for some P O K' that contains p. Or, turning it around to
make it alittle clearer,

[(E(q), w) [-*m (P, €) for some P O K' that containsp] = (g, W) |*m (p, €)
If \w| =0, then M" makes no moves. So it must end in the same state it started in, namely E(q). If we'retold that it endsin
some state that contains p, then p O E(g). But, given our definition of E(x), that means exactly that, in the original
machine M, p is reachable from q just be following € transitions, which is exactly what we need to show.

Basis step, only if part: Recall that only if is equivalent to implies. So now we need to show:

[(@,wW)|*m (p, €)] = (E(Q), W) |*m (P, €) for some P O K' that contains p
If w| = 0, and the original machine M goes from g to p with only w as input, it must go from q to p following just €
transitions. In other words p O E(g). Now consider the new machine M'. It starts in E(q), the set state that includes all
the states that are reachable from q via € transitions. Since the new machine is deterministic, it will make no moves at all
if itsinputise. So it will halt in exactly the same state it started in, namely E(q). Since we know that p O E(q), we know
that M" has halted in a set state that includes p, which is exactly what we needed to show.

Next we'll prove that if the lemmais true for all strings w of length k, k = O, then it is true for all strings of length k + 1.
Considering strings of length k + 1, we know that we are dealing with strings of a least one character. So we can rewrite
any such string as zx, where x is a single character and z is a string of length k. The way that M and M' process z will thus
be covered by the induction hypothesis. We'll use our definition of &', which specifies how each individual step of M’
operates, to show that, assuming that the machines behave correctly for the first k characters, they behave correctly for the
last character also and thus for the entire string of length k + 1. Recall our definition of &":

0'(Q,a={E(p): pO0K and (g, a, p) 0Afor someq [Q}.

To prove the lemma, we must show a relationship between the behavior of:
M: (@ W) F*m (p,), and
M": (E(q), W) |-*m (P, €) for some P O K' that contains p

Rewriting w as zx, we have
M: @ 23) Im (p, €)

M": (E(Q), 2X) |*m (P, €) for some P [0 K' that contains p

Breaking each of these computations into two pieces, the processing of z followed by the processing of x, we have:
M: @ 2x) Fm (s, X) Fm (P, €)

M": (E(@), 2¥) |F*m (S, X) |-*m (P, €) for some P [0 K' that contains p

Supplementary Materials Regular Languages and Finite State Machines 4

In other words, after processing z, M will be in some set of states 5, and M' will be in some state, which well call S.
Again, welll split the proof into two parts:

Induction step, if part:
[(E(@), 2¥) [-*m (S, X) |-*m (P, €) for some P 0 K that contains p] = (g, zx) [*u (S, X) [-*m (P, €)

If, after reading z, M" isin state S, we know, from the induction hypothesis, that the original machine M, after reading z,
must be in some set of states s and that Sis precisely that set. Now we just have to describe what happens at the last step
when the two machines read x. If we have that M', starting in S and reading x lands in P, then we know, from the
definition of &' above, that P contains precisely the states that M could land in after starting in any § and reading x. Thus
if pOP, pmust be astatethat M could land in.

Induction step, only if part:
(@, 29) |-*m (S, X) F*m (P, €) = (E(Q), 2X) F*m (S, X) |-*m (P, €) for some P [0 K' that contains p

By the induction hypothesis, we know that if M, after processing z, can reach some set of states s, then S (the state M' isin
after processing z) must contain precisely al the §'s. Knowing that, and our definition of &', we know that from S, reading
X, M' must be in some set state P that contains precisely the states that M can reach starting in any of the s's, reading x,
and then following all € transitions. So, after consuming w (zx), M', when started in E(q) must end up in a state P that
contains all and only the states p that M, when started in g, could end up in.

This theorem is a very useful result when we're dealing with FSAs. It's true that, by and large, we want to build
deterministic machines. But, because we have provided a constructive proof of this theorem, we know that we can design
a deterministic FSA by first describing a nondeterministic one (which is sometimes a much simpler task), and then
applying our algorithm to construct a corresponding deterministic one.

Supplementary Materials Regular Languages and Finite State Machines 5

3 Generating Regular Expressions from Finite State Machines
I. Preparations (Note: FA may be non-deterministic in general)

I a) there is more than one final state
or b) there is just one final state but it 1ies on a loop,

then a) create a new final state

b) run e-transitions from the old final state(s) to the new one
and c) make the old final state(s) non-final

Example:

If the initial state is part of a loop,

then a) create a new initial state

b) run an e-transition from the new initial state to the old ohe
and c) make the old initial state non~initial

Example:

(Note: nothing needs to be done to the final state here because it does

not lie on a loop. Similarly, nothing needs to be done to the imtial state in
the first example.)

Supplementary Materials Regular Languages and Finite State Machines 6

Il. Eliminating states

One by one, remove states which are neither initial nor final, replacing
the connections between remaining states in such a way that the .
transitions are preserved. In general, the reconstructed transitions may

be labelled with reqular expressions rather than just by strings.

1. Example:
a ba.
D= @—@
g2 can be ellminated and the connection between 'ql and q3 becomes:

In general, If r! and r2 are any reguiar expressions, produced perhaps
by other steps in the algorithm, and occur in the configuration:

then this can be replaced by

@ \'\or‘?._@

2) If the eliminated state happens to contain a "simple” loop, e.g.:

bb
E‘—% = 5(32)—2=@)

when g2 is eliminated, the transition becomes:

@ a(bb) ba '
In general, r2
@ i _)@ *‘34

becomes

@redr: g

Supplementary Materials Regular Languages and Finite State Machines

3) Parallel transitions can be coalesced into a single transition
labelled by an expression which is the union of the originals:

=0 = @U=@

a(ba)’b *
a (ba) bUaLanb)
Q=P = @leiovng
ob

In general: ,
- @mnyg
T

One proceeds in this manner, eliminating states one by one, until only
a single transition remains connecting the initial and the one final state.
The label on this transition is a‘regular expression for the original
automaton.

The order of elimination of states doesn't matter; equivalent regular
expressions will be obtained so long as the procedure is done correctly.

Note that coalescing paraliel transitions doesn't eliminate a state but
reduces the number of transitions. In general, one should perform this

step before eliminating a state that has parallel transitions into or out of
it :

Supplementary Materials Regular Languages and Finite State Machines

eliminate state q4:

Q0
@ Ly

ba (bU ba)
coalesce transitions from q2 to q2
Q) avb
O b .
=®/”‘
ba.(bu ba) ~
eliminate q2:
a(a Ub)”b
q1
ba(bUba)

coalesce parallel transitions:

. :
@Q(‘Nb}hu ba(bvba))@

This is a regular expression for the FA. Check against the original. -

More complicated cases:
a.

q1 93

1)
> @y b
suppose we eliminate g3. Then the path from g2 to q! becomes:
¥
ba(ab)
< D)
but we have also destroyed a path from q! back to q1, namely:

b
ab = Ak (abYa

so the net result is:

Supplementary Materials Regular Languages and Finite State Machines

4 The Pumping Lemma for Regular Languages

4.1 What Does the Pumping Lemma Tell Us?

The pumping lemma is a powerful technique for showing that a language is not regular. The lemma describes a property
that must be true of any language if it is regular. Thus, if we can show that some language L does not possess this
property, then we know that L is not regular.

The key idea behind the pumping lemma derives from the fact that every regular language is recognizable by some FSM

M (actualy an infinite number of finite state machines, but we can just pick any one of them for our purposes here). So

we know that, if a language L is regular, then every string sin L must drive M from the start state to some final state.

There are only two ways this can happen:

1. scould be short and thus drive M from the start state to a final state without traversing any loops. By short we mean
that if M has N states, then |s| < N. If s were any longer, M would have to visit some state more than once while
processing s; in other words it would loop.

2. scould be long and M could traverse at least one loop. If it does that, then observe that another way to take M from
the start state to the same final state would be to skip the loop. Some shorter string w in L would do exactly that. Still
further ways to take M from the start state to the final state would be to traverse the loop two times, or three times, or
any number of times. Aninfinite set of longer stringsin L would do this.

Given some regular language L, we know that there exists an infinite number of FSMs that accept L, and the pumping
lemma relies on the existence of at least one such machine M. |n fact, it needs to know the number of statesin M. But
what if we don't have M handy? No problem. All we need isto know that M exists and that it has some number of states,
which well call N. Aslong as we make no assumptions about what N is, other than that it is at least 1, we can forge ahead
without figuring out what M isor what N is.

The pumping lemmatells usthat if alanguage L is regular, then any sufficiently long (as defined above) string sin L must
be "pumpable”. In other words, there is some substring t of s that corresponds to a loop in the recognizing machine M.
Any string that can be derived from s either by pumping t out once (to get a shorter string that will go through the loop one
fewer times) or by pumping t in any humber of times (to get longer strings that will go through the loop additional times)
must also be in L since they will drive M from its start state to its final state. If we can show that there is even one
sufficiently long string s that isn't pumpable, then we know that L must not be regular.

You may be wondering why we can only guarantee that we can pump out once, yet we must be able to pump in an
arbitrary number of times. Clearly we must be able to pump in an arbitrary number of times. If there's aloop in our
machine M, there is no limit to the number of times we can traverse it and still get to afina state. But why only once for
pumping out? Sometimes it may in fact be possible to pump out more. But the lemma doesn't require that we be able to.
Why? When we pick a string s that is "sufficiently long", al we know isthat it is long enough that M must visit at least
one state more than once. In other words, it must traverse at least one loop of length one at least once. It may do more,
but we can't be sure of it. So the only thing we're guaranteed is that we can pump out the one pass through the loop that
we're sure must exist.

Pumping Lemma:
If L isregular, then
ON = 1, such that
O stringsw, where jw| = N,
0x,y,z suchthat w=xyz and
[xy| <N, and
y#¢€, and
0g=0,xy%isinL.

Supplementary Materials Regular Languages and Finite State Machines 10

The lemma we've just stated is sometimes referred to as the Strong Pumping Lemma. That's because there is a weaker
version that is much less easy to use, yet no easier to prove. We won't say anything more about it, but at least now you
know what it means if someone refers to the Strong Pumping Lemma.

4.2 Using the Pumping Lemma

The key to using the pumping lemma correctly to prove that a language L is not regular is to understand the nested
guantifiers in the lemma. Remember, our goal is to show that our language L fails to satisfy the requirements of the
lemma (and thus is not regular). In other words, were looking for a counterexample. But when do we get to pick any
example we want and when do we have to show that there is no example? The lemma contains both universal and
existential quantifiers, so we'd expect some of each. But the key is that we want to show that the lemma does not apply to
our language L. So we're essentially taking the not of it. What happens when we do that? Remember two key results
fromlogic:

=0x P(x) = X = P(x)

=[x P(X) = Ox = P(X)
So if the lemma says something must be true for al strings, we show that there exists at least one string for which it's false.
If the lemma says that there exists some object with some properties, we show that all possible objects fail to have those
properties. More specifically:

At the top level, the pumping lemma states

L regular = [N =1, P(L, N), where Pistherest of the lemma (think of P as the Pumpable property).
To show that the lemma does not correctly describe our language L, we must show

= (NN =1, P(L, N)), or, equivalently,

ON = P(L, N)
The lemma asserts first that there exists some magic number N, which defines what me mean by "sufficiently long." The
lemma doesn’t tell us what N is (although we know it derives from the number of states in some machine M that accepts
L). We need to show that no such N exists. So we don't get to pick a specific N to work with. Instead:

We must carry N through the rest of what we do as a variable and make no assumptions about it.

Next, we must look inside the pumpable property. The lemma states that every string that is longer than N must be
pumpable. To prove that that isn't true of L, all we haveto doisto find asingle long string in L that isn't pumpable. So:
We get to pick a string w.

Next, the lemma asserts that there is a way to carve up our string into substrings x, y, and z such that pumping works. So
we must show that there is no such x, y, z triple. This is the tricky part. To show this, we must enumerate all logicaly
possible ways of carving up w into x, y, and z. For each such possihility, we must show that at least one of the pumping
requirementsis not satisfied. So:

We don't get to pick x, y, and z. We must show that pumping failsfor all possible x, y, ztriples.
Sometimes, we can show this easily without actually enumerating ways of carving up w into x, y, and z. But in other
cases, it may be necessary to enumerate two or more possibilities.

Let's look at an example. The classic one is L = &b* is not regular. Intuitively, we knew it couldn't be. To decide
whether astring isin L, we have to count the a's, and then compare that number to the number of b's. Clearly no machine
with a finite number of states can do that. Now we're actually in a position to prove this. We show that for any value of N
welll get a contradiction. We get to choose any w we want as long as it's length is greater than or equal to N. Let's choose
w to be be a'b". Next, we must show that thereisno x, y, z triple with the required properties:

Xyl<N,

YZE,

0g=0,xy%isinL.

Suppose there were. Then it might look something like this (thisis just for illustration):

1 | 2
aaaaaaaaaabbbbbbbbbb

Supplementary Materials Regular Languages and Finite State Machines 11

X y z

Don't take this picture to be making any claim about what X, y, and z are. But what the picture does show is that w is
composed of two regions:

1. Theinitia segment, whichisall as.

2. Thefinal segment, whichisall b's.

Typically, as we attempt to show that there is no x, vy, z triple that satisfies all the conditions of the pumping lemma, what
welll do isto consider the ways that y can be spread within the regions of w. In this example, we observe immediately that
since [xy| £ N, y must be & for some g = 1. (In other words, y must lie completely within the first region.) Now there'sjust
one case to consider. Clearly we'll add just a's as we pump, so there will be more as than b's, so we'll generate strings that
arenotin L. Thusw is not pumpable, we've found a contradiction, and L is not regular.

The most common mistake people make in applying the pumping lemma is to show a particular x, vy, z triple that isn't
pumpable. Remember, you must show that all such triplesfail to be pumpable.

Suppose you try to apply the pumping lemmato alanguage L and you fail to find a counterexample. In other words, every
string w that you examine is pumpable. What does that mean? Does it mean that L isregular? No. It'struethat if L is
regular, you will be unable to find a counterexample. But if L isn't regular, you may fail if you just don't find the right w.
In other words, even in a non regular language, there may be plenty of strings that are pumpable. For example, consider
L =ab*0 &. Inother words, if there are any b's there must be the same number of them as there are a's, but it's also okay
just to have a's. We can prove that this language is not pumpable by choosingw = a'b", just as we did for our previous
example, and the proof will work just asit did above. But suppose that were less clever. Let's choosew = a". Now again
we know that y must be & for some g = 1. But now, if we pump y €either in or out, we still get stringsin L, since all strings
that just contain asarein L. We haven't proved anything.

Remember that, when you go to apply the pumping lemma, the one thing that is in your control is the choice of w. Asyou

get experience with this, you'll notice afew useful heuristics that will help you find aw that is easy to work with:

1. Choose w so that there are distinct regions, each of which contains only one element of ~. When we considered L =
ab*, we had no choice about this, since every element of L (except €) must have a region of a's followed by a region
of b's. But suppose we were interested in L' = {w O {a, b}*: w contains an equal number of asand b's}. We might
consider choosing w = (ab)". But now there are not clear cut regions. We won't be able to use pumping successfully
because if y = ab, then we can pump to our hearts delight and we'll keep getting stringsin L. What we need to do isto
choose a'b", just as we did when we were working on L. Sure, L' doesn't require that all the a's come first. But
strings in which all the as do come first are fine elements of L', and they produce clear cut regions that make the
pumping lemma useful.

2. Choose w so that the regions are big enough that there is a minimal number of configurations for y across the regions.
In particular, you must pick w so that it has length at least N. But there's no reason to be parsimonious. For example,
when we were working on ab*, we could have chosen w = a¥?b"2, That would have been long enough. But then we
couldn't have known that y would be a string of as. We would have had to consider several different possibilities for
y. (You might want to work this one out to see what happens.) It will generally help to choose w so that each region
isof length at least N.

3. Whenever possible, choose w so that there are at |east two regions with a clear boundary between them. In particular,
you want to choose w so that there are at least two regions that must be related in some way (e.g., the aregion must be
the same length as the b region). If you follow this rule and rule 2 at the same time, then you'll be assured that as you
pump vy, you'll change one of the regions without changing the other, thus producing strings that aren't in your
language.

The pumping lemma is a very powerful tool for showing that a language isn't regular. But it does take practice to use it

right. As you're doing the homework problems for this section, you may find it helpful to use the worksheet that appears
on the next page.

Supplementary Materials Regular Languages and Finite State Machines 12

Using the Pumping Lemma for Regular Languages

If L isregular, then
Thereexistsan N = 1, (Just call it N) such that

for al stringsw, where jw| = N,
(Since truefor al w, it must be true for any particular one, so you pick w)
(Hint: describe w in terms of N)

there exist X, y, z, such that w = xyz

and [xy|< N,
andy # ¢,
and for al g=0, xy%zisinL.
(Since must hold for al y, we show that it can’t hold for any y that
meets
therequirements: [xy|< N,andy #¢&. Todothis:
Write out w:

List all the possibilitiesfor y:
[1]
[2]
[3]
[4]
For each possibility for y, xy%z must bein L, for all g. So:
For_each possibility for vy, find some value of g such that xy%zisnot in L. Generally q
will be either O or 2.

[1]

[2]

[3]

[4]

Q.E.D.

Supplementary Materials Regular Languages and Finite State Machines 13

Context-Free Languages and Pushdown Automata

1 Context-Free Grammars

Suppose we want to generate a set of strings (a language) L over an alphabet . How shall we specify our language? One
very useful way is to write a grammar for L. A grammar is composed of a set of rules. Each rule may make use of the
elements of X (which welll call the terminal alphabet or terminal vocabulary), as well as an additional alphabet, the non-
terminal alphabet or vocabulary. To distinguish between the terminal alphabet 3 and the non-terminal a phabet, we will use
lower-case letters: a, b, c, etc. for the terminal alphabet and upper-case letters: A, B, C, S, etc. for the non-terminal al phabet.
(But thisis just a convention. Any character can be in either alphabet. The only requirement is that the two alphabets be
digoint.)

A grammar generates strings in a language using rules, which are instructions, or better, licenses, to replace some non-
terminal symbol by some string. Typical ruleslook like this:
S5 ASa, B - aB, A - SaSSbB.

In context-free grammars, rules have a single non-terminal symbol (upper-case letter) on the left, and any string of terminal
and/or non-terminal symbols on the right. So even things like A - A and B - ¢ are perfectly good context-free grammar
rules. What's not allowed is something with more than one symbol to the left of the arrow: AB - a, or a single terminal
symbol: a — Ba, or no symbols at al on theleft: € - Aab. Theideaisthat each rule allows the replacement of the symbol
on its left by the string on its right. We call these grammars context free because every rule has just a single nonterminal on
itsleft. We can't add any contextual restrictions (such as aAa). So each replacement is done independently of all the others.

To generate strings we start with a designated start symbol often S (for "sentence"), and apply the rules as many times as we
please whenever any one is applicable. To get this process going, there will clearly have to be at least one rule in the
grammar with the start symbol on the left-hand side. (If there isn't, then the grammar won't generate any strings and will
therefore generate [1, the empty language.) Suppose, however, that the start symbol is S and the grammar contains both the
rulesS -~ AB and S - aBaa. We may apply either one, producing AB as the "working string" in the first case and aBaa in
the second.

Next we need to look for rules that allow further rewriting of our working string. In the first case (where the working string is
AB), we want rules with either A or B on the left (any non-terminal symbol of the working string may be rewritten by rule at
any time); in the latter case, we will need a rule rewriting B. If, for example, thereisarule B - aBb, then our first working
string could be rewritten as AaBb (the A stays, of course, awaiting its chance to be replaced), and the second would become
aaBbhaa.

How long does this process continue? It will necessarily stop when the working string has no symbols that can be replaced.

Thiswould happen if either:

(1) the working string consists entirely of terminal symbols (including, as a special case, when the working string is €, the
empty string), or

(2) there are non-terminal symbols in the working string but none appears on the left-hand side of any rule in the grammar
(e.g., if the working string were AaBb, but no rule had A or B on the left).

In the first case, but not the second, we say that the working string is generated by the grammar. Thus, a grammar generates,
in the technical sense, only strings over the terminal aphabet, i.e., stringsin 2*. In the second case, we have a blocked or
non-terminated derivation but no generated string.

It is also possible that in a particular case neither (1) nor (2) is achieved. Suppose, for example, the grammar contained only
therules S -~ Baand B - bB, with S the start symbol. Then using the symbol = to connect the steps in the rewriting
process, all derivations proceed in the following way:

S= Ba= bBa= bbBa= bbbBa=> bbbbBa= ...

The working string is always rewriteable (in only one way, as it happens), and so this grammar would not produce any

Supplementary Materials Context-Free Languages and Pushdown Automata 1

terminated derivations, let alone any terminated derivations consisting entirely of terminal symbols (i.e., generated strings).
Thus this grammar generates the language 0.

Now let us look at our definition of a context-free grammar in a somewhat more formal way. A context-free grammar (CFG)
G consists of four things:

(1) V, afinite set (the total alphabet or vocabulary), which contains two subsets, > (the terminal symbols, i.e., the ones that
will occur in strings of the language) and V - Z (the nonterminal symbols, which are just working symbols within the
grammar).

(2) z, afinite set (the terminal a phabet or terminal vocabulary).

(3) R, afinite subset of (V - £) x V*, the set of rules. Although each rule is an ordered pair (nonterminal, string), we'll
generally use the notion nonterminal — string to describe our rules.

(4) S, the start symbol or initial symbol, which can be any member of V - Z.
For example, suppose G = (V, 2, R, S), where
V={S A, B,ab},={ab},andR={S ~ AB,A - aAa, A — a, B -~ Bb,B - b}
Then G generates the string aaabb by the following derivation:
(1) S= AB = aAaB = aAaBb = aaaBb = aaabb

Formally, given a grammar G, the two-place relation on strings called "derives in one step” and denoted by = (or by = if
we want to remind ourselves that the relation isrelative to G) is defined as follows:

(u, v) 0= iff Ostringsw, X, y 0 V* and symbol A O (V - %) such that u = xAy, v =xwy, and (A - w) OR.

In words, two strings stand in the "derives in one step" relation for a given grammar just in case the second can be produced
from the first by rewriting a single non-terminal symbol in away allowed by the rules of the grammar.

(u, v) O = iscommonly written in infix notation, thus: u = v.

This bears an obvious relation to the "yields in one step™ relation defined on configurations of a finite automaton. Recall that
there we defined the "yields in zero or more steps” relation by taking the reflexive transitive closure of the “yields in one step”
relation. We'll do that again here, giving us "yields in zero or more steps’ denoted by =* (or =¢*, to be explicit), which
holds of two strings iff the second can be derived from the first by finitely many successive applications of rules of the
grammar. In the example grammar above:

* S= AB, and therefore also S =* AB.

* S=*aAaB, but not S= aAaB (since aAaB cannot be derived from Sin one step).

« A = afAaand A :=* aAa (This is true even though A itself is not derivable from S. If this is not clear, read the
definitions of = and =* again carefully.)

e S —=* S (taking zero rule applications), but not S = S (although the second would be true if the grammar happened to
containtherule S - S, a perfectly legitimate although rather useless rule). Note carefully the difference between -, the
connective used in grammar rules, versus = and =*, indicators that one string can be derived from another by means of
therules.

Formally, given agrammar G, we define a derivation to be any sequence of strings

Wo=> Wi = ... =W,

Supplementary Materials Context-Free Languages and Pushdown Automata 2

In other words, a derivation is a finite sequence of strings such that each string, except the first, is derivable in one step from
the immediately preceding string by the rules of the grammar. We can also refer to it as a derivation of w,, fromw,. Such a
derivation is said to be of length n, or to be a derivation of n steps. (1) above is a 5-step derivation of aaabb from S according
to the given grammar G.

Similarly, A = aAais a one-step derivation of aAa from A by the grammar G. (Note that derivations do not have to begin
with S, nor indeed do they have to begin with a working string derivable from S. Thus, AA = aAaA = aAaaisaso awell-
formed derivation according to G, and so we are entitled to write AA =* aAaa).

The strings generated by a grammar G are then just those that are (i) derivable from the start symbol, and (ii) composed
entirely of terminal symbols. That is, G=(V, Z, R, S) generatesw iff w O ¥* and S=* w. Thus, derivation (I) above shows
that the string aaabb is generated by G. The string aAa, however, is not generated by G, even though it is derivable from S,
because it contains a non-terminal symbol. It may be a little harder to see that the string bba is not generated by G. One
would have to convince oneself that there exists no derivation beginning with S and ending in bba according to the rules of G.
(Question: Is this always determinable in general, given any arbitrary context-free grammar G and string w? In other words,
can one always tell whether or not agiven w is"grammatical" according to G? Well find out the answer to this later.)

The language generated by a grammar G is exactly the set of al strings generated--no more and no less. The same remarks
apply here asin the case of regular languages. a grammar generates alanguage iff every string in the language is generated by
the grammar and no strings outside the language are generated.

And now our final definition (for this section). A language L is context freeif and only if there exists a context-free grammar
that generatesit.

Our example grammar happens to generate the language a(aa)*bb*. To prove this formally would require a somewhat
involved argument about the nature of derivations allowed by the rules of G, and such a proof would not necessarily be easily
extended to other grammars. In other words, if you want to prove that a given grammar generates a particular language, you
will in general have to make an argument which is rather specific to the rules of the grammar and show that it generates all the
strings of the particular language and only those. To prove that a grammar generates a particular string, on the other hand, it
suffices to exhibit a derivation from the start symbol terminating in that string. (Question: if such a derivation exists, are we
guaranteed that we will be able to find it?) To prove that a grammar does not generate a particular string, we must show that
there exists no derivation that begins with the start symbol and terminates in that string. The analogous question arises here:
when can we be sure that our search for such a derivation is fruitless and be called off? (We will return to these questions
later.)

2 Designing Context-Free Grammars

To design a CFG for alanguage, a helpful heuristic is to imagine generating the strings from the outside in to the middle. The
nonterminal that is currently "at work" should be thought of as being at the middle of the string when you are building a string
where two parts are interdependent. Eventually the "balancing” regions are done being generated, and the nonterminal that's
been doing the work will give way to a different nontermina (if there's more stuff to be done between the regions just
produced) or to some terminal string (often €) otherwise. If parts of a string have nothing to do with each other, do not try to
produce them both with one rule. Try to identify the regions of the string that must be generated in paralel due to a
correlation between them: they must be generated by the same nonterminal(s). Regions that have no relation between each
other can be generated by different nonterminals (and usually should be.)

Here is a series of examples building in complexity. For each one you should generate a few sample strings and build parse
trees to get an intuition about what is going on. One notational convention that we'll use to simplify writing language
descriptions: If a description makes use of a variable (e.g., d"), there's an implied statement that the description holds for all
integer values = 0.

Example 1: The canonical example of a context-free language is L = a'b", which is generated by the grammar
G=({S ab},{ab}, R SwhereR={S - aSh, S - ¢}.

Supplementary Materials Context-Free Languages and Pushdown Automata 3

Each time an a is generated, a corresponding b is generated. They are created in parallel. The first a, b pair created is the
outermost one. The nonterminal S is always between the two regions of as and b's. Clearly any string a'o" O L is produced
by this grammar, since

S aSh=--=a'sh"=a"b",

n steps

ThereforeL O L(G).

We must also check that no other strings not in a'o" are produced by the grammar, i.e., we must confirm that L(G) O L.
Usually this is easy to see intuitively, though you can prove it by induction, typically on the length of a derivation. For
illustration, well prove L(G) O L for this example, though in general you won't need to do thisin this class.

Claim: O x, x O L(G) = x O L. Proof by induction on the length of the derivation of G producing x.
Base case: Derivation haslength 1. Then the derivation mustbeS= €, ande O L.
Induction step: Assume all derivations of length k produce a string in L, and show the claim holds for derivations of length k
+ 1. A derivation of length k + 1 looks like:

S=aSh=---=axb

k steps

for some terminal string x such that S =* x. By the induction hypothesis, we know that x O L (since x is produced by a
derivation of length k), and so x = a'0" for some n (by definition of L). Therefore, the string axb produced by the length k + 1
derivation is axb = ad'b"b = a™*'b™* O L. Therefore by induction, we have proved L(G) O L.

Example 2: L = {xy: x| =|yland x O {a, b}* and y O {c, d}*}. (E.g., €, ac, ad, bc, bd, abaccc 0 L.) Here again we will
want to match as and b's against c'sand d'sin parallel. We could use two strategies. In thefirst,

G= ({Sa,b,c,d},{ab,cd},R,S) whereR={S - aSc,S - aSd, S - bSc, S - b, S - ¢€}.
This explicitly enumerates all possible pairings of a, b symbols with ¢, d symbols. Clearly if the number of symbols allowed
in the first and second halves of the stringsiis n, the number of rules with this method is n? + 1, which would be inefficient for
larger alphabets. Another approachis:

G= ({SL,Rabcd,{abcd,RSwheeR={S - LSR,S~ &L -~ aL -~ bR-cR-d.
(Notethat L and R are nonterminals here.) Now the number of rulesis 2n+2.

Example 3: L = {ww”® : w O {a, b}*}. Any string in L will have matching pairs of symbols. So it is clear that the CFG G =
{S a b},{a b}, R, S}, where R={S - aSa, S - bSh, S — €} generates L, because it produces matching symbals in
parallel. How can we prove L(G) = L? To do half of thisand prove that L [0 L(G) (i.e, every element of L is generated by
G), we note that any string x [0 L must either be € (which is generated by G (since S= ¢)), or it must be of the form awa or
bwb for somew O L. This suggests an induction proof on strings:

Claim: Ox,x O L = x O L(G). Proof by induction on the length of x.

Basecase: e UL ande OL(G).

Induction step: We must show that if the claim holds for all strings of length k, it holds for all strings of length > k+2 (We
use k+2 here rather than the more usual k+1 becausg, in this case, all stringsin L have even length. Thusif astring in L has
length k, there are no strings in L of length k +1.). If |x| = k+2 and x O L, then x = awa or x = bwb for somew O L. |w| =Kk,
S0, by the induction hypothesis, w O L(G). Therefore S=* w. So either S = aSa=* awa, and x O L(G), or S = bSb =*
bwb, and x O L(G).

Conversely, to prove that L(G) O L, i.e., that G doesn't generate any bad strings, we would use an induction on the length of a
derivation.

Claim: Ox, x O L(G) = x O L. Proof by induction on length of derivation of x.

Basecase: lengthl. S=eande O L.

Induction step: Assume the claim istrue for derivations of length k, and show the claim holds for derivations of length k+1. A
derivation of length k + 1 looks like:

Supplementary Materials Context-Free Languages and Pushdown Automata 4

S—aSa—---—>awa
k steps
or like
S=bSh=---= bwb
k steps
for some termina string w such that S =* w. By the induction hypothesis, we know that w [0 L (since w is produced by a
derivation of length k), and so x = awais also in L, by the definition of L. (Similarly for the second class of derivations that
begin withtherule S - bSb.)

As our example languages get more complex, it becomes harder and harder to write detailed proofs of the correctness of our
grammars and we will typically not try to do so.

Example 4: L = {a'b*"}. You should recognize that b*" = (bb)", and so thisisjust like the first example except that instead of
matching aand b, we will match aand bb. So we want
G=({S ab},{a b}, R, S} whereR={S - aShb, S - €}.

If you wanted, you could use an auxiliary nonterminal, e.g.,
G=({SB,ab},{ab},R S} whereR={S - aSB, S - €, B — bb}, but that is just cluttering things up.

Example 5: L = {a'0"c™. Here, the c" portion of any string in L is completely independent of the a'b" portion, so we should
generate the two portions separately and concatenate them together. A solutionis

G=({S N,C,ab,c},{abc}, R, S whereR={S - NC,N - aNb,N - ¢, C - cC, C - ¢}.
This independence buys us freedom: producing the c's to the right is compl etely independent of making the matching a'o", and
so could be done in any manner, e.g., alternate ruleslike

C-CCC-cC-ce

would also work fine. Thinking modularly and breaking the problem into more manageable subproblems is very helpful for
designing CFG's.

Example 6: L = {a'b™c"}. Here, the b™ is independent of the matching a'...c". But it cannot be generated "off to the side." It
must be done in the middle, when we are done producing a and c pairs. Once we start producing the b's, there should be no
more g, ¢ pairs made, so a second nonterminal is needed. Thuswe have

G=({SB,ab,c},{abc, R S whereR={S - ¢,S -~ aSc,S -~ B,B - bB,B - ¢&}.
Weneedtherule S — €. Wedon't need it to end the recursion on S. Wedo that with S - B. AndwehaveB - €. Butifn
=0,thenweneed S - € so wedon't generate any a...c pairs.

Example 7: L = a*b*. The numbers of as and b's are independent, so there is no reason to use any ruleslike S — aSb which
create an artificial correspondence. We can independently produce a's and b's, using

G=({SA,B,ab},{ab}, R, S} whereR={S —~ AB,A . aA,A -~ & B - bB,B - g}
But notice that this language is not just context free. Itisalso regular. So we expect to be able to write aregular grammar
(recall the additional restrictions that apply to rulesin aregular grammar) for it. Such agrammar will produce a's, and then
produce b's. Thus we could write

G=({S,B,ab},{ab},R S} whereR={S ~ ¢,S -~ aS,S - bB,B - bB,B - &}.

Example 8: L ={a"™b™ m< n}. There are several ways to approach this one. One thing we could do isto generate a'sand b's
in paralel, and also freely put in extrab's. Thisintuition yields

G=({S ab},{ab},R S} whereR={S - aSh,S -~ b, S - ¢€}.
Intuitively, this CFG lets us put in any excess b's at any time in the derivation of a string in L. Notice that to keep the S
between the two regions of as and b's, we must use the rule S — Sb; replacing that rule with S—. bS would be incorrect,
producing bad strings (allowing extra b's to be intermixed with the as).

Another way to approach this problem is to redlize that {a"b" : m < n}= {a"0™* : k = 0} = {a"b"b™ k = 0}. Therefore, we
can produce as and b'sin parallel, then when we're done, produce some more b's. So asolutionis

Supplementary Materials Context-Free Languages and Pushdown Automata 5

G=({SB,ab},{ab},R S} whereR={S - ¢,S - aSh,S - B,B - bB,B - ¢}.
Intuitively, this CFG produces the matching a, b pairs, then any extra b's are generated in the middle. Note that this strategy
requires two nonterminals since there are two phases in the derivation using this strategy.

Since {a"0" : m < n}= {d"*b™ k = 0} = {a"b™b: k = O}, there is a third strategy: generate the extra b's to the right of the
balanced a"b™ string. Again the generation of the extra b's is now separated from the generation of the matching portion, so
two distinct nonterminals will be needed. In addition, since the two parts are concatenated rather than imbedded, we'll need
another nonterminal to produce that concatenation. So we've got

G=({SM,B,ab},{ab},R S} whereR={S ~ MB,M — aMb,M - €, B - bB,B - ¢}.

Example 9: L ={a™b™---a™b™:k >0} . E.g., ¢, abab, aabbaaabbbabab [L. Note that L = {a'o"}* which gives a clue

how to do this. We know how to produce matching strings a'b", and we know how to do concatenation of strings. So a
solution is
G=({SM,ab},{ab},R, S whereR={S - MS,S - ¢, M - aMb,M - ¢}.

Any string X =a™b™---a™b™ 0L can be generated by the canonical derivation

S
= k applications of rule S - MS*/
M*S
= [* one application of rule S - € */
Mk
=" n, applications of ruleM — aMb*/
anlenlM k-1
= /[* one application of ruleM - € */
a"lbnlM k-1

= [repeating on k-1 remaining M */
n n, n
a 1bn ..a Kp K

Of course the rules could be applied in many different orders.

3 Derivations and Parse Trees
Let'sagain look at the very simple grammar G = (V, 2, R, S), where

V={S A B,ab},Z={ab},andR={S - AB,A — aAa A -~ a,B — Bb,B - b}
Aswe saw in an earlier section, G can generate the string aaabb by the following derivation:
(1) S= AB = aAaB = aAaBb = aaaBb = aaabb
Now let's consider the fact that there are other derivations of the string aaabb using our example grammar:
(20 S=AB = ABb= Abb = aAabb = aaabb
(3) S= AB = ABb= aAaBb = aAabb = aaabb
(499 S= AB = ABb= aAaBb = aaaBb = aaabb

(5) S= AB = 8AaB = aaaB = aaaBb = aaabb

Supplementary Materials Context-Free Languages and Pushdown Automata 6

(6) S—= AB = aAaB = aAaBb = aAabb = aaabb

If you examine al these derivations carefully, you will see that in each case the same rules have been used to rewrite the same
symbols; they differ only in the order in which those rules were applied. For example, in (2) we chose to rewrite the B in
ABb as b (producing Abb) before rewriting the A as aAa, whereas in (3) the same.processes occur in the opposite order. Even
though these derivations are technically different (they consist of distinct sequences of strings connected by =) it seems that
in some sense they should all count as equivalent. This equivalence is expressed by the familiar representations known as
derivation trees or parse trees.

The basic idea is that the start symbol of the grammar becomes the root of the tree. When this symbol is rewritten by a
grammar rule S - X3X,...X,, We let the tree "grow" downward with branches to each of the new nodes xy, X, ..., Xn; thus:

When one of these x; symbols is rewritten, it in turn becomes the "mother" node with branches extending to each of its
"daughter" nodes in a similar fashion. Each of the derivations in (1) through (6) would then give rise to the following parse
tree:

S

A/\
NS
a b

A note about tree terminology: for us, a tree always has a single root node, and the left-to-right order of nodes is significant;
i.e /X\IS not the same tree as X.

Y Z Y
The lines connecting nodes are called branches, and their top-to-bottom orientation is also significant. A mother node is

connected by a single branch to each of the daughter nodes beneath it. Nodes with the same mother are called sisters, e.g.,
the topmost A and B in the tree above are sisters, having S as mother.

Nodes without daughters are caled leaves; e.g., each of the nodes labelled with a lower-case letter in the tree above. The
string formed by the left-to-right sequence of leavesis called the yield (aaabb in the tree above).

It sometimes happens that a grammar allows the derivations of some string by nonequivalent derivations, i.e., derivations that

do not reduce to the same parse tree. Suppose, for example, the grammar contained therulesS - A, S - B,A - bandB -
b Then the two following derivations of the string b correspond to the two distinct parse trees shown below.

Supplementary Materials Context-Free Languages and Pushdown Automata 7

S=>A=b S=>B=b

— m—W0m

S
|
A
J, :

A grammar with this property is said to be ambiguous. Such ambiguity is highly undesirable in grammars of programming
languages such as C, LISP, and the like, since the parse tree (the syntactic structure) assigned to a string determines its
trandation into machine language and therefore the sequence of commands to be executed. Designers of programming
languages, therefore, take great pains to assure that their grammars (the rules that specify the well-formed strings of the
language) are unambiguous. Natural languages, on the other hand, are typically rife with ambiguities (cf. "They are flying
planes,” "Viditing relatives can be annoying," "We saw her duck," etc.), a fact that makes computer applications such as
machine trandation, question-answering systems, and so on, maddeningly difficult.

Mor e Examples of Context-Free Grammarsand Parse Trees:

1) G=(V,2, R, S), where
V ={S,NP, VP, D, N, V, chased, the, dog, cat},
> = {chased, the, dog, cat } S

R= {S- NPVP p/\
NP - DN N £
VP - VNP o N
V—»Cha%d I

T \';

N - dog ‘

N - cat He d“’% thadsad
D - the}

2 G=(V,%,R,S),where S

V={S ab}, z={a b},
R:{S—> aSb

/S\b
S
L(G) = {db" :snz 0} ef/'sgb
|
€

B3 G6=MZ%ZRY, S S

where _— ~__ / \
b/

V ={S A, a b}, b A a
> ={a b}, /\
R={S- aS b S
S - bA |
A - aA €
A - bS
S-¢
L(G) ={w O {a b}* :
W contains an even
number of b's}

Supplementary Materials Context-Free Languages and Pushdown Automata 8

4 Designing Pushdown Automata

In a little bit, we will prove that for every grammar G, there is push down automaton that accepts L(G). That proof is
congtructive. In other words, it describes an algorithm that takes any context-free grammar and constructs the corresponding
PDA. Thus, in some sense, we don't need any other techniques for building PDASs (assuming that we aready know how to
build grammars). But the PDAs that result from this algorithm are often highly nondeterministic. Furthermore, smply using
the algorithm gives us no insight into the actual structure of the language we're dealing with. Thus, it is useful to consider
how to design PDA's directly; the strategies and insights are different from those we use to design a CFG for alanguage, and
any process that increases our understanding can't be all bad

In designing a PDA for a language L, one of the most useful strategies is to identify the different regions that occur in the
strings in L. As a rule of thumb, each of these regions will correspond to at least one distinct state in the PDA. In this
respect, PDAs are very similar to finite state machines. So, for example, just as afinite state machine that accepts a*b* needs
two states (one for reading a's and one for reading b's after we're done reading a's), so will a PDA that acceps {a'h") need two
states. Recognizing the distinct regionsis part of the art, although it is usually obvious.

Example 1: In really simple cases, there may not be more than one region. For example, consider {a'a’}. What we realize
here is that we've really got is just the set of al even length strings of as, i.e,, (aa)*. In this case, the "border" between the
first half of the a's and the second half is spurious.

Example 2: L ={a'b"}. A good thingto try first here isto make afinite state machine for a*b* to get the basic idea of the use
of regions. (This principle applies to designing PDA's in genera: use the design of a finite state machine to generate the
states that are needed just to recognize the basic string structure. This creates the skeleton of your PDA. Then you can add
the appropriate stack operations to do the necessary counting.) Clearly you'll need two states since you want to read a's, then
read b's. To accept L, we also need to count the as in state one in order to match them against the b'sin state two. This gives
thePDAM =({s, f}, {a b}, {1}, A, s {f}), where A =

{ (s & ¢€), (s 1), /* read dsand count them */
((s &, 9), (f, €), /* guess that were done with as and ready to start on b's */
((f, b,), (f, ©)}. * read b's and compare them to the @sin the stack */

(Notice that the stack alphabet need not be in any way similar to the input alphabet. We could equally well have pushed &,
but we don't need to.) This PDA nondeterministically decides when it is done reading as. Thus one valid computation is
(a, aabb, €) |- (s, abb,) |- (f, abb, 1),

which is then stuck and so M rejects aong this path. Since a different accepting computation of aabb exists, this is no
problem, but you might want to elimimate the nondeterminism if you are bothered by it. Note that the nondeterminism arises
from the € transition; we only want to take it if we are done reading as. The only way to know that there are no more asisto
read the next symbol and see that it'sa-b. (Thisisanalogous to unfolding aloop in a program.) One other wrinkle: € O L, so
now state s must be final in order to accept €. The resulting deterministic PDA isM = ({s, f}, {a b}, {1}, A, s, {s, f}), where
A=

{ (s &¢€), (1)), /* read s and count them */
((s, b, 1), (f, €)), /* only go to second phase if theresab */
((f, b,), (f, €))}. /* read b's and compare them to the asin the stack */

Notice that this DPDA can still get stuck and thus fail, e.g., on input b or aaba (i.e., strings that aren't in L). Determinism for
PDA's simply means that there is at most one applicable transition, not necessarily exactly one.

Example 3: L = {a"b™c"d"}. Here we have two independent concerns, matching the a's and b's, and then matching the ¢'s and
d's. Again, start by designing a finite state machine for the language L' that is just like L in structure but where we don't care
how many of each letter there are. In other words a*b*c*d*. It's obvious that this machine needs four states. So our PDA
must also have four states. The twist is that we must be careful that there is no unexpected interaction between the two
independent parts a"b™ and ¢"d". Consider the PDA M = ({1,2,3,4}, {ab,c,d}, {1}, A, 1,{4}), where A =

{ (4,a9),(L,1), [* read as and count them */

Supplementary Materials Context-Free Languages and Pushdown Automata 9

(1, ¢, €), (2,€), [* guess that we're ready to quit reading a's and start reading b's */

((2,b,), (2,¢)), /* read b's and compareto a's */

(2, ¢, €), (3,€)), [* guess that we're ready to quit reading b’'s and start reading c's */
((3,¢c,€), (3, 1) /* read ¢'s and count them */

((3, ¢, €), (4,€))}. /* guess that we're ready to quit reading ¢'s and start reading d's */
((4,d,1), (4, ¢)}. /* read d'sand comparethemtoc's */

It is clear that every string in L is accepted by this PDA. Unfortunately, some other strings are also, e.g., ad. Why is this?
Because it's possible to go from state 2 to 3 without clearing off all the | marks we pushed for the ds That means that the
leftover I's are available to match d's. So this PDA is accepting the language {d™0"c’d®: m=nand m+p=n+g}, a
superset of L. E.g., the string aabcdd is accepted.

One way to fix this problemis to ensure that the stack isreally cleared before we leave phase 2 and go to phase 3; this must be
done using a bottom of stack marker, say B. ThisgivesM = ({s, |, 2, 3,4},{a b, c,d}, {B, I}, A, s,{4}), where A =

{ (s &, ¢), (1, B)), [* push the bottom marker onto the stack */
(1, & €), (1, 1), [* read a@s and count them */
(1, ¢, €), (2,€), /* guess that we're ready to quit reading a's and start reading b's */
((2,b, 1), (2,¢)), /* read b's and compareto as */
((2, €, B), (3, 9), [* confirm stack is empty, then get readty to start reading c's*/
((3,¢c,€), (3, 1) /* read ¢'s and count them */
((3,¢,€), (4,€))}. /* guess that we're ready to quit reading ¢'s and start reading d's */
((4,d,1), (4, ¢)}. /* read d'sand compare themtoc's */

A different, probably cleaner, fix isto simply use two different symbols for the counting of the as and the c's. This gives us
M =({12, 34}, {abcd}, {AC} A 1L {4}), whereA =

{ (4, 8¢), (1, A), /* read s and count them */
(1, ¢, €), (2,€), [* guess that we're ready to quit reading a's and start reading b's */
((2, b, A), (2, €)), /* read b's and compareto a's */
(2, ¢, €), (3,€)), [* guess that we're ready to quit reading b's and start reading c's */
((3,¢c,¢),(3,0), /* read ¢'s and count them */
((3, ¢, €), (4,€), /* guess that we're ready to quit reading ¢'s and start reading d's */
((4,d,C), (4,¢)}. /* read d'sand comparethemtoc's */

Now if an input has more a's than b's, there will be leftover A's on the stack and no way for them to be removed later, so that
there is no way such a bad string would be accepted.

As an exercise, you want to try making a deterministic PDA for this one.

Example4: L ={ab" O {b"d"). Just aswith nondeterministic finite state automata, whenever the language we re concerned
with can be broken into cases, a reasonable thing to do is build separate PDAS for the each of the sublanguages. Then we
build the overall machine so that it, each time it sees a string, it nondeterministically guesses which case the string falls into.
(For example, compare the current problem to the simpler one of making a finite state machine for the regular language a*b*
O b*a*.) Taking thisapproach here, weget M = ({s, 1, 2, 3, 4), {a, b}, {1}, A, s, {2, 4}), where A =

{ (s & 9), (1, £)), /* guess that thisis an instance of a'b" */
(s &), (3, €)), * guess that thisis an instance of b"a" */
(1, a¢), (1, 1), [* @ scomefirst so read and count them */
((1, & €), (2,€), /* beginthe b region following the a's */
(2, b, D), (2,¢)), /* read b’'s and compare themto thea's */
((3,b,¢), (3, 1), /* b's comefirst so read and count them */
((3, ¢, €), (4,¢), /* begin the aregion following theb’'s */
((4,a1),(4,9)}. /* read a's and compare themto theb's */

Supplementary Materials Context-Free Languages and Pushdown Automata 10

Notice that although € [0 L, the start state sis not afinal state, but there is a path (in fact two) from sto afina state.

Now suppose that we want a deterministic machine. We can no longer use this strategy. The e-moves must be eliminated by
looking ahead. Once we do that, since € (1 L, the start state must be final. ThisgivesusM =({s, 1, 2, 3,4},{a b}, {l},A,s,
{s 2, 4}), where A =

{ (s 3 ¢), (1, g)), /* if the first character is g, then thisis an instance of a'b" */
((s, b,), (3,¢), [* if thefirst character is b, then thisis an instance of b"a" */
(1, a¢), (1, 1), [* @scomefirst so read and count them */

(1, b,), (2, €)), /* beginthe b region following thea's */
(2, b, D), (2,¢)), /* read b’'s and compare themto thea's */
((3,b,¢), (3, 1), [* b's comefirst so read and count them */
((3,a 1), (4,5¢), /* begin the aregion following theb’'s */
((4,a1),(4,9)}. /* read a'sand comparethemtotheb's */

Example5: L = {ww" : w 0 {a, b}*}. Here we have two phases, the first half and the second half of the string. Within each
half, the symbols may be mixed in any particular order. So we expect that a two state PDA should do the trick. See the
lecture notes for how it works.

Example 6: L = {ww" : w 0 a*b*}. Here the two halves of each element of L are themselves split into two phases, reading
as, and reading b's. So the straightforward approach would be to design a four-state machine to represent these four phases.
ThisgivesusM = ({1, 2, 3,4),{a b}, {a b), A, 1, {4}), where A =

{ (4, a¢9),(1,a) [*push as*/
((1, & €), (2,€), /* guess that we're ready to quit reading a's and start reading b's */
((2, b, €), (2,h)), /* push b's*/
((2, &, €), (3,€), /* guess that we're ready to quit reading the first w and start reading w® */
((3, b, b), (3, €)), /* compare 2nd b'sto 1st b's*/
((3, &, €), (4,¢), /* guess that we're ready to quit reading b's and move to the last region of as*/
((4, &, a), (4,€)} /* compare 2nd a'sto 1st as*/

Y ou might want to compare this to the straightforward nondeterministic finite state machine that you might design to accept
arb*b*a*.

There are various simplifications that could be made to this machine. First of al, notice that L = {a"b"™b"a"™}. Next, observe
that b"b" = (bb)", so that, in effect, the only requirement on the b's is that there be an even number of them. And of course a
stack is not even needed to check that. So an alternate solution only needs three states, giving M = ({1, 2, 3}, {a, b}, {a},
{a, A 1,{3}), whereA =

{ (4, 4¢),(1,a) [*push as*/
((1, & €), (2,€), /* guess that we're ready to quit reading a's and start reading b's */
((2, bb, €), (2, €)), /* read bb's */
(2, &, €), (3,€), /* guess that we're ready to quit reading b's and move on the final group of as */
((3,a), (3,¢€))}. /* compare 2nd a'sto 1st as*/

This change has the fringe benefit of making the PDA more deterministic since there is no need to guess where the middle of
the b's occurs. However, it is still nondeterministic.

So let's consider another modification. This time, we go ahead and push the as and the b's that make up w. But now we
notice that we can match w® against w in a single phase: the required ordering b*a* in w® will automatically be enforced if
we simply match the input with the stack! So now we have the PDA M= ({1, 2, 3},{a, b}, {a b}, A, 1,{3}), where A =

{ (1,89, (1 a) /*push a's*/
((1, & €), (2,€), /* guess that we're ready to quit reading a's and start reading b's */
((2,b, €), (2, b)), /* push b's*/

Supplementary Materials Context-Free Languages and Pushdown Automata 11

(2, ¢, €), (3,€)), I* guess that we're ready to quit reading the first w and start reading w” */
(3,3 a), (3 ¢) /* compare w" to w*/
((3,b, b), (3, €))}. "

Notice that this machineis still nondeterministic. As an exercise, you might try to build a deterministic machine to accept this
language. You'll find that it's impossible; you've got to be able to tell when the end of the stringsis reached, sinceit's possible
that there aren't any b's in between the aregions. This suggests that there might be a deterministic PDA that accepts L$, and
in fact there is. Interestingly, even that is not possible for the less restrictive language L = {ww" : w [{a, b}*} (because
there's no way to tell without guessing where w ends and w” starts). Putting a strong restriction on string format often makes a
language more tractable. Also note that {ww" : w [a*b"} is accepted by a determinstic PDA; find such a-determinstic PDA
as an exercise.

Example 7: Consider L ={w [{a, b}* : #(a, w) = #(b, w)}. In other words every string in L has the same number of as as
b's (although the as and b's can occur in any order). Notice that this language imposes no particular structure on its strings,
since the symbols may be mixed in any order. Thus the rule of thumb that we've been using doesn't really apply here. We
don't need multiple states for multiple string regions. Instead, we'll find that, other than possible bookkeeping states, one
"working" state will be enough.

Sometimes there may be a tradeoff between the degree of nondeterminism in a pda and its simplicity. We can see that in this
example. One approach to designing a PDA to solve this problem is to keep a balance on the stack of the excess as or b's.
For example, if there is an a on the stack and we read b, then we cancel them. If, on the other hand, there is an a on the stack
and we read another a, we push the new a on the stack. Whenever the stack is empty, we know that we've seen matching
number of asand b'sso far. Let'stry to design a machine that does this as deterministically as possible. One approachisM =

({sa.f}.{ab},{ab,c}, A s {f}) whereA=

1 ((s,&,¢),(q,0) /* Before we do anything else, push a marker, ¢, on the stack so welll be able to
tell when the stack isempty. Then leave state s so we don't ever do thisagain.
2 ((g, & ©), (g ,a0)) [* If the stack is empty (we find the bottom c) and we read an a, push ¢ back
and then the a (to start counting a's).
3 ((g, & @), (g, aa)) [* If the stack already has a's and we read an a, push the new one.
4 ((g, & b), (g,) [* If the stack has b's and we read an a, then throw away the top b and the new a.
5 ((g, b, ©), (q, bc)) /* If the stack is empty (we find the bottom c) and we read a b, then
start counting b's.
6 ((g, b, b), (g, bb)) /* If the stack already has b's and we read b, push the new one.
7 ((g, b, @), (g,) [* If the stack has a's and we read a b, then throw away the top a and the new b.
8 ((g, &,), (f, €) [* If the stack is empty then, without reading any input, move to f, the final state.

Clearly we only want to take this transition when we're at the end of the input.

This PDA attempts to solve our problem deterministically, only pushing an aif there is not a b on the stack. In order to tell
that there is not a b, this PDA has to pop whatever is on the stack and examine it. In order to make sure that there is aways
something to pop and look at, we start the process by pushing the special marker ¢ onto the stack. (Recall that there is no way
to check directly for an empty stack. If we write just € for the value of the current top of stack, welll get a match no what the
stack looks like.) Notice, though, that despite our best efforts, we still have a nondeterministic PDA because, at any point in
reading an input string, if the number of as and b's read so far are equal, then the stack consists only of ¢, and so transition 8
((q, &, ©), (f, €)) may be taken, even if there is remaining input. But if there is still input, then either transition 1 or 5 also
applies. The solution to this problemisto add aterminator to L.

Another thing we could do is to consider a simpler PDA that doesn't even bother trying to be deterministic. Consider M
=({s},{a b},{a b}, A s {s}), where A=

1 ((s,a¢), (s @) /* If weread an a, push a.

2 ((s,a b), (s €) /* Cancel an input aand a stack b.
3 ((s, b, €), (s, b)) /* If weread b, push b.

4 ((s, b, a), (s €) /* Cancel and input b and a stack a.

Now, whenever we're reading a and b is on the stack, there are two applicable transitions: 1, which ignores the b and pushes
the a on the stack, and 2, which pops the b and throws away the a (in other words, it cancels the a and b against each other).

Supplementary Materials Context-Free Languages and Pushdown Automata 12

Transitions 3 and 4 do the same two things if we're reading b. It is clear that if we always perform the cancelling transition
when we can, we will accept every string in L. What you might worry about is whether, due to this larger degree of freedom,
we might not also be able to wrongly accept some string not in L. In fact this will not happen because you can prove that M
has the property that, if x isthe string read in so far, and y is the current stack contents,
#(a, x) - #(b, x) =#(a, y) - #(b, y).

This formula is an invariant of M. We can prove it by induction on the length of the string read so far: It is clearly true
initially, before M reads any input, since0- 0-0- 0. And, if it holds before taking a transition, it continues to hold afterward.
We can prove this as follows:

Let x' be the string read so far and let y' be the contents of the stack at some arbitrary point in the computation. Then let us
see what effect each of the four possible transitions has. Wefirst consider:
((s, & ¢€), (s, @): After taking this transition we havethat x' = xaandy' = ay. Thuswe have
#(a, x') - #(b, X)
= [* x'=xa*/
#(a, xa) - #(b, xa)
[* #(b, xa) = #(b, x)

#(a, xa) - #(b, X)

#(a, x) + 1 - #(b, x)
/* induction hypothesis */

#a y) +1-#Db,y)
#a, ay) - #(b, ay)

#a,y) - #(b, y)

=/* y':ay*/

So the invariant continues to be true for x' and y' after the transition is taken. Intuitively, the argument is simply that when this
transition is taken, it increments #(a, x) and #(a, y), preserving the invariant equation. The three other transitions also preserve
the invariant as can be seen similarly:

((s, & b), (s, €)) increments #(a, x) and decrements #(b, y), preserving equality.

((s, b, €), (s, b)) increments #(b, x) and #(b, y), preserving equality.

((s, b, &), (s, €)) increments #(b, x) and decrements #(a, y), preserving equality.

Therefore, the invariant holds initialy, and taking any transitions continues to preserve it, so it is always true, no matter what
string is read and no matter what transitions are taken. Why is this a good thing to know? Because suppose astring x 0 L is
read by M. Since x [0 L, we know that #(a, x) - #(b, x) # 0, and therefore, by the invariant equation, when the whole string x
has been read in, the stack contents y will satisfy #(a, y) - #(b, y) # 0 Thus the stack cannot be empty, and x cannot be
accepted, no matter what sequence of transitionsistaken. Thus no bad strings are accepted by M.

5 Context-Free Languages and PDA's

Theorem: The context-free languages are exactly the languages accepted by nondeterministic PDA's.

In other words, if you can describe a language with a context-free grammar, you can build a nondeterministic PDA for it, and
vice versa. Note here that the class of context-free languages is equivalent to the class of languages accepted by
nondeterministic PDAs. Thisis different from what we observed when we were considering regular languages. There we
showed that nondeterminism doesn’t buy us any power and that we could build a deterministic finite state machine for every
regular language. Now, as we consider context-free languages, we find that determinism does buy us power: there are
languages that are accepted by nondeterministic PDAs for which no deterministic PDA exists. And those languages are
context free (i.e., they can be described with context-free grammars). So this theorem differs from the similar theorem that we
proved for regular languages and claims equivalence for nondeterministic PDAs rather than deterministic ones.

Supplementary Materials Context-Free Languages and Pushdown Automata 13

We'll prove this theorem by construction in two steps: first we'll show that, given a context-free grammar G, we can construct
a PDA for L(G). Then we'll show (actually, we'll just sketch this second proof) that we can go the other way and construct,
from a PDA that accepts some language L, agrammar for L.

Lemma: Every context-free language is accepted by some nondeterministic PDA.

To prove this lemma, we give the following construction. Given some CFG G = (V, Z, R, S), we construct an eguivalent
PDA M inthefollowingway. M =(K, Z, T, A, s, F), where

K={p,q} (the PDA always has just 2 states)

s=p (pistheinitia state)

F={q} (qistheonly final state)

=3 (the input alphabet is the terminal alphabet of G)
r=v (the stack alphabet isthe total alphabet of G)

A contains (2) thetransition ((p, €, €), (9, S))

(2) atransition ((q, €, A), (g, a)) for eachrule A - ainG
(3) atransition ((q, &, 8), (q, €)) for eacha 0 X

Notice how closely the machine M mirrors the structure of the original grammar G. M works by using its stack to simulate a
derivation by G. Using the transition created in (1), M begins by pushing S onto its stack and moving to its second state, q,
where it will stay for the rest of its operation. Think of the contents of the stack as M’s expectation for what it must find in
order to have seen alegal stringin L(G). Soif it finds S, it will have found such a string. But if S could be rewritten as some
other sequence a, then if M found a it would also have found a string in L(G). All the transitions generated by (2) take care
of these options by allowing M to replace a stack symbol A by a string a whenever G containstherule A - a. Of course, at
some point we actually have to look at the input. That'swhat M doesin the transitions generated in (3). If the stack contains
an expectation of some terminal symbol and if the input string actually contains that symbol, M consumes the input symbol
and pops the expected symbol off the stack (effectively canceling out the expectation with the observed symbol). These steps
continue, and if M succeeds in emptying its stack and reading the entire input string, then the input is accepted.

Let'sconsider anexample. LetG=(V ={S,a, b, c},Z={a b,c},R={S - aSa, S - bSh, S - ¢}, S). Thisgrammar
generates {xcx®: x 0 {a, b}*}. Carrying out the construction we just described for this example CFG gives the following
PDA:
M=({p d},{a b c} {S ahbc} A p {a}) where
A={ ((p.& ¢ (a,9)

((@. € 9), (q, aSa))

((@. €,), (q, bSh))

(@€ 9),(q,0)

((@. a a), (g, €))

((a, b, b), (9, €))

((@. ¢). (g €)}

Here isaderivation of the string abacaba by G:
(1) S= aSa= abSha: = abaSaba = abacaba

And here is a computation by M accepting that same string:

) (p, abacaba, €) |- (g, abacaba, S) |- (g, abacaba, aSa) |- (q, bacaba, Sa) |- (g, bacaba, bSba) |- (g, acaba, Sba) |-
(0, acaba, aSaba) |- (g, caba, Saba) |- (g, caba, caba) |- (q, aba, aba) |- (g, ba, ba) |- (g, & a) |- (q, €, €)

Supplementary Materials Context-Free Languages and Pushdown Automata 14

If you look at the successive stack contents in computation (2) above, you will see that they are, in effect, tracing out a
derivation tree for the string abacaba:
S

a/s\a
b S
"
c

M is alternately extending the tree and checking to see if leaves of the tree match the input string. M is thus acting as a top-
down parser. A parser is something that determines whether a presented string is generated by a given grammar (i.e., whether
the string is grammatical or well-formed), and, if it is, calculates a syntactic structure (in this case, a parse tree) assigned to
that string by the grammar. Of course, the machine M that we have just described does not in fact produce a parse tree,
although it could be made to do so by adding some suitable output devices. M isthus not a parser but arecognizer. We'll
have more to say about parsers later, but we can note here that parsers play an important role in many kinds of computer
applications including compilers for programming languages (where we need to know the structure of each command), query
interpreters for database systems (where we need to know the structure of each user query), and so forth.

Note that M is properly non-deterministic. From the second configuration in (2), we could have gone to (q, abacaba, bSh) or
to (q, abacaba, c), for example, but if we'd done either of those things, M would have reached a dead end. M in effect has to
guess which one of a group of applicable rules of G, if any, isthe right one to derive the given string. Such guessing is highly
undesirable in the case of most practical applications, such as compilers, because their operation can be slowed down to the
point of uselessness. Therefore, programming languages and query languages (which are amost always context-free, or
nearly so) are designed so that they can be parsed deterministically and therefore compiled or interpreted in the shortest
possible time. A lot of attention has been given to this problem in Computer Science, as you will learn if you take a course in
compilers. On the other hand, natural languages, such as English, Japanese, etc., were not "designed" for this kind of parsing
efficiency. So, if we want to deal with them by computer, as for example, in machine trandation or information retrieval
systems, we have to abandon any hope of deterministic parsing and strive for maximum non-deterministic efficiency. A lot of
effort has been devoted to these problems as well, as you will learn if you take a course in computational linguistics.

To complete the proof of our lemma, we need to prove that L(M) = L(G). The proof is by induction and is reasonably
straightforward. We'll omit it here, and turn instead to the other half of the theorem:

Lemma: If M isanon-deterministic PDA, there is a context-free grammar G such that L(G) = L(M).

Again, the proof is by construction. Unfortunately, this time the construction is anything by natural. We'd never want
actually to do it. We just care that the construction exists because it allows us to prove this crucial result. The basic idea
behind the construction is to build a grammar that has the property that if we use it to create a leftmost derivation of some
string s then we will have simulated the behavior of M while reading s. The nonterminals of the grammar are things like <s,
Z, "> (recall that we can use any names we want for our nonterminals). The reason we use such strange looking nonterminals
isto makeit clear what each one correspondsto. For example, <s, Z, f'> will generate all stringsthat M could consume in the
process of moving from state swith Z on the stack to state f' having popped Z off the stack.

To construct G from M, we proceed in two steps: First we take our original machine M and construct a new “simple”
machine M’ (see below). We do this so that there will be fewer cases to consider when we actually do the construction of a
grammar from a machine. Then we build a grammar from M’.

A pdaM issimpleiff:

(1) Thereare no transitionsinto the start state, and
(2) Whenever ((g, & B), (p, y)) isatransitionin M and q is not the start state, then3 O T and |y| < 2.

Supplementary Materials Context-Free Languages and Pushdown Automata 15

In other words, M issimple if it always consults its topmost stack symbol (and no others) and replaces that symbol either with
0, 1, or 2 new symbols. We need to treat the start state separately since of course when M starts, its stack is empty and there
is nothing to consult. But we do need to guarantee that the start state can’t bypass the restriction of (2) if it also functions as
something other than the start statei.e,, it is part of aloop. Thus constraint (1).

Although not all machines are simple, there is an algorithm to construct an equivalent ssmple machine from any machine M.
Thus the fact that our grammar construction algorithm will work only on simple machines in no way limits the applicability of
the lemmathat says that for any machine there is an equivalent grammar.

Given any PDA M, we construct an equivalent smple PDA M’ asfollows:
() LetM’ =M.

(2) Add to M’ anew start state s and anew final statef’. Add atransition from s to M’s original start state that consumes no
input and pushes a special “stack bottom” symbol Z onto the stack. Add transitions from of all of M’s original fina statesto
f'. These transitions should consume no input but they should pop the bottom of stack symbol Z from the stack. For example,
if we start with a straightforward two-state PDA that accepts wew”, then this step produces:

alela alal
@s/slg cl// elZl
ble/b b/b/

(3) (a) Assurethat |B| < 1. In other words, make sure that no transition looks at more than one symbol on the stack. It is easy
to do this. If there are any transitionsin M’ that look at two or more symbols, break them down into multiple transitions that
examine one symbol apiece.

(b) Assure that |y] < 1. In other words, make sure that each transition pushes no more than one symbol onto the stack.
(The rule for ssimple allows us to push 2, but you'll see why we restrict to 1 at this point in aminute.)) Again, if M’ has any
transitions that push more than one symbol, break them apart into multiple steps.

(c) Assurethat |B] = 1. We already know that || isn’t greater than 1. But it could be zero. If there are any transitions that
don’'t examine the stack at al, then change them so that they pop off the top symbol, ignore it, and push it right back on.
When we do this, we will increase by one the length of the string that gets pushed onto the stack. Now you can see why we
did step (b) as we did. If, after completing (b) we never pushed more than one symbol, we can go ahead and do (c) and till
be assured that we never push more than two symbols (which iswhat we require for M’ to be ssimple).

We'll omit the proof that this procedure does in fact produce a new machine M’ that is simple and equivalent to M.

Once we have a simple machine M’ (K’, ', ", A', s, ') derived from our original machine M (K, Z, T, A, s, F), we are
ready to construct a grammar G for L(M’) (and thus, equivaently, for L(M). Welet G = (V, 2, R, S), where V contains a
start symbol S, al the elements of %, and a new nonterminal symbol <qg, A, p> for every gand pin K’ and every A =€ or any
symbol in the stack alphabet of M’ (which is the stack alphabet of M plus the special bottom of stack marker). Thetricky part
is the construction of R, therules of G. R contains all the following rules (although in fact most will be useless in the sense
that the nonterminal symbol on the left hand side will never be generated in any derivation that starts with S):

(1) The special rule S - <s, Z, f’>, where s is the start state of the original machine M, Z is the specia “bottom of stack”
symbol that M’ pushes when it moves from s’ to s, and f’ is the new final state of M’. This rule says that to be a string in
L(M) you must be a string that M’ can consume if it is started in state swith Z on the top of the stack and it makesit to state f’
having popped Z off the stack. All the rest of the ruleswill correspond to the various paths by which M’ might do that.

(2) Consider each transition ((q, & B), (r, C)) of M’ where ais either € or asingle input symbol and C is either a single symbol
or €. In other words, each transition of M’ that pushes zero or one symbol onto the stack. For each such transition and each
state p of M’, we add the rule

<q, B, p> - a<r, C, p>.
Read these rule as saying that one way in which M’ can go from g to p and pop B off the stack is by consuming an &, going to

Supplementary Materials Context-Free Languages and Pushdown Automata 16

state r, pushing a C on the stack (all of which are specified by the transition we're dealing with), then getting eventually to p
and popping off the stack the C that the transition specifies must be pushed. Think of these rulesthisway. Thetransition that
motivates them tells us how to make a single move from g to r while consuming the input symbol a and popping the stack
symbol B. So think about the strings that could drive M’ from g to some arbitrary state p (viathistransition) and pop B from
the stack in the process. They include all the strings that start with a and are followed by the strings that can drive M’ from r
on to p provided that they also cause the C that got pushed to be dealt with and popped. Note that of course we must also pop
anything else we push along the way, but we don’t have to say that explicitly since if we haven’t done that we can’t get to C to

pop it.

(3) Next consider each transition ((qg, a, B), (r, CD)) of M’, where C and D are stack symbols. In other words, consider every
transition that pushes two symbols onto the stack. (Recall that since M’ is simple, we only have to consider the cases of 0, 1,
or 2 symbols being pushed.) Now consider all pairs of statesv and w in K’ (where v and w are not necessarily distinct). For
all such transitions and pairs of states, construct the rule

<q, B, v> - a<r, C, w><w, D, v>
These rules are a bit more complicated than the ones that were generated in (2) just because they describe computations that
involve two intermediate states rather than one, but they work the same way.

(4) For every stateqin M’, we add the rule

<Q,& 0> - €
These rules let us get rid of spurious nonterminals so that we can actually produce strings composed solely of terminal
symbols. They correspond to the fact that M’ can (trivialy) get from a state back to itself while popping nothing simply by
doing nothing (i.e., reading the empty string).

See the lecture notes for an example of this processin action. Asyou'll notice, the grammars that this procedure generates are
very complicated, even for very simple machines. From larger machines, one would get truly enormous grammars (most of
whose rules turn out to be useless, as a matter of fact). So, if one is presented with a PDA, the best bet for finding an
equivalent CFG is to figure out the language accepted by the PDA and then proceed intuitively to construct a CFG that
generates that language.

We'll omit here the proof that this process does indeed produce a grammar G such that L(G) = L(M).

6 Parsing

Almost always, the reason we care about context-free languages is that we want to build programs that "interpret" or
"understand” them. For example, programming languages are context free. So are most data base query languages.
Command languages that need capabilities (such as matching delimiters) that can't exist in simpler, regular languages are also
context free.

The interpretation process for context free languages generaly involves three parts (although these logical parts may be

interleaved in various ways in the interpretation program):

1. Lexical analysis, in which individual characters are combined, generally using finite state machine techniques, to form the
building blocks of the language.

2. Parsing, in which atree structure is assigned to the string.

3. Semantic interpretation, in which "meaning", often in the form of executable code, is attached to the nodes of the tree and
thusto the entire string itself.

For example, consider the input string "orders := orders + 1;", which might be a lega string in any of a number of
programming languages. Lexical analysis first divides this string of characters into a sequence of six tokens, each of which
corresponds to a basic unit of meaning in the language. The tokens generally contain two parts, an indication of what kind of
thing they are and the actual value of the string that they matched. The six tokens are (with the kind of token shown, followed
by its value in parentheses):

<id> (orders) = <id> orders <op> (+) <id> (1) ;

Assume that we have a grammar for our language that includes the following rules:

Supplementary Materials Context-Free Languages and Pushdown Automata 17

<statement> - <assignment statement> ;

<statement> - <loop statement> ;

<assignment statement> - <id> := <expr>

<expr> - <expr> <op> <expr>

<expr> - <id>

Using this grammar and the string of tokens produced above, parsing assigns to the string atree structure like

<statement>

<assigrnment statement>

<id>or4 .=\<exp>

<expr> <op> + <expr>

<id> orders <id> 1

Finally, we need to assign a meaning to this string. If we attach appropriate code to each node of this tree, then we can
execute this statement by doing a postorder traversal of the tree. We start at the top node, <statement> and traverse its left
branch, which takes us to <assignment statement>. We go down its left branch, and, in this case, we find the address of the
variable orders. We come back up to <assignment statement>, and then go down its middle branch, which doesn't tell us
anything that we didn’t already know from the fact that we're in an assignment statement. But we still need to go down the
right branch to compute the value that is to be stored. To do that, we start at <expr>. To get its value, we must examine its
subtrees. So we traverse its left branch to get the current value for orders. We then traverse the middle branch to find out
what operation to perform, and then the right branch and get 1. We hand those three things back up to <expr>, which applies
the + operator and computes a new value, which we then pass back up to <assignment statement> and then to <statement>.

Lexical analysis is a straightforward process that is generally done using a finite state machine. Semantic interpretation can
be arbitrarily complex, depending on the language, as well as other factors, such as the degree of optimization that is desired.
Parsing, though, isin the middle. It's not completely straightforward, particularly if we are concerned with efficiency. But it
doesn't need to be completely tailored to the individual application. There are some general techniques that can be applied to
awide variety of context-free languages. It is those techniques that we will discuss briefly here.

6.1 Parsing as Search

Recall that a parse tree for a string in a context-free language describes the set of grammar rules that were applied in the
derivation of the string (and thus the syntactic structure of the string). So to parse a string we have to find that set of rules.
How shall we do it? There are two main approaches:

1. Top down, in which we start with the start symbol of the grammar and work forward, applying grammar rules and
keeping track of what we're doing, until we succeed in deriving the string we're interested in.

2. Bottom up, in which we start with the string we're interested in. In this approach, we apply grammar rules "backwards".
So we look for a rule whose right hand side matches a piece of our string. We "apply" it and build a small subtree that
will eventually be at the bottom of the parse tree. For example, given the assignment statement we looked at above, me
might start by building the tree whose root is <expr> and whose (only) leaf is <id> orders. That gives us a new "string"
to work with, which in this case would be orders := <expr> <op> <id>(1). Now we look for a grammar rule that matches
part of this "string" and apply it. We continue until we apply a rule whose left hand side is the start symbol. At that
point, we've got a complete tree.

Whichever of these approaches we choose, we'd like to be as efficient as possible. Unfortunately, in many cases, we're

Supplementary Materials Context-Free Languages and Pushdown Automata 18

forced to conduct a search, since at any given point it may not be possible to decide which rule to apply. There are two

reasons why this might happen:

e Our grammar may be ambiguous and there may actually be more than one legal parse tree for our string. We will
generaly try to design languages, and grammars for them, so that this doesn’t happen. |If a string has more than one parse
tree, it is likely to have more than one meaning, and we rarely want to use languages where users can't predict the
meaning of what they write.

» There may be only a single parse tree but it may not be possible to know, without trying various alternatives and seeing
which ones work, what that tree should be. Thisisthe problem we'll try to solve with the introduction of various specific
parsing techniques.

6.2 Top Down Parsing

To get a better feeling for why a straightforward parsing algorithm may require search, let's consider again the following
grammar for arithmetic expressions:

1) E-E+T
2 E-T
B T-T*F
@ T-F
® F-(B
6) F-id

Let’stry to do atop down parse, using this grammar, of the string id + id * id. We will begin with a tree whose only node is
E, the start symbol of the grammar. At each step, we will attempt to expand the leftmost leaf nonterminal in the tree.
Whenever we rewrite a nonterminal as a termina (for example, when we rewrite F as id), we'll climb back up the tree and
down another branch, each time expanding the leftmost leaf nhonterminal). We could do it some other way. For example, we
could always expand the rightmost nonterminal. But since we generally read the input string left to right, it makes sense to
process the parse tree | eft to right also.

No sooner do we get started on our example parse but we' re faced with a choice. Should we expand E by applying rule (1) or
rule (2)? If we choose rule (1), what we're doing is choosing the interpretation in which + is done after * (since + will be at
the top of the tree). If we choose rule (2), we're choosing the interpretation in which * is done after + (since * will be nearest
the top of the tree, which we'll detect at the next step when we have to find a way to rewrite T). We know (because we've
done this before and because we know that we carefully crafted this grammar to force * to have higher precedence than +) that
if we choose rule (2), we'll hit a dead end and have to back up, since there will be no way to deal with + inside T.

Let’sjust assume for the moment that our parser also knows the right thing to do. It then produces

E
E/+I\T

Since E is again the leftmost leaf nonterminal, we must again choose how to expand it. This time, the right thing to do is to
choose rule (2), which will rewrite Eas T. After that, the next thing to do is to decide how to rewrite T. Theright thing to do
isto choose rule (4) and rewrite T as F. Then the next thing to do is to apply rule (6) and rewrite F asid. At this point, we've
generated aterminal symbol. So we read an input symbol and compare it to the one we' ve generated. In this case, it matches,
so we can continue. If it didn't match, we'd know we'd hit a dead end and we'd have to back up and try another way of
expanding one of the nodes higher up in the tree. But since we found a match, we can continue. At this point, the tree looks
like

E
/J\T

———m

Supplementary Materials Context-Free Languages and Pushdown Automata 19

F

id

Since we matched a terminal symbol (id), the next thing to do is to back up until we find a branch that we haven't yet
explored. We back all the way up to the top E, then down its center branch to +. Since thisisaterminal symbol, we read the
next input symbol and check for a match. We've got one, so we continue by backing up again to E and taking the third
branch, down to T. Now we face another choice. Should we apply rule (3) or rule (4). Again, being smart, we'll choose to

apply rule (3), producing

E
E/+I\T
| /[\
T 7+ °F
|

F

|

Therest of the parseis now easy. We'll expand T to F and then match the second id. Then we'll match F to the last id.
But how can we make our parser know what we knew?

In this case, one simple heuristic we might try is to consider the rules in the order in which they appear in the grammar. That
will work for this example. But suppose the input had been id * id * id. Now we need to choose rule (2) initially. And we're
now in big trouble if we alwaystry rule (1) first. Why? Because we'll never realize we're on the wrong path and back up and
try rule (2). If we choose rule (1), then we will produce the partial parse tree

E
E/+I\T

But now we again have an E to deal with. If we choose rule (1) again, we have

e 1
T

E + T

And then we have another E, and so forth. The problem is that rule (1) contains left recursion. In other words, a symbal, in
this case E, is rewritten as a sequence whose first symbol isidentical to the symbol that is being rewritten.

We can solve this problem by rewriting our grammar to get rid of left recursion. There's an algorithm to do this that aways
works. We do the following for each nonterminal A that has any left recursive rules. We look at all the rules that have A on
their left hand side, and we divide them into two groups, the left recursive ones and the other ones. Then we replace each rule
with another related rule as shown in the following table;

Original rules New rules
Left recursiverules: A - Aa; A - oA’
A - AGZ A - GzA'
A - Aoz A S A
A - Aa, A S a A
A ¢

Supplementary Materials Context-Free Languages and Pushdown Automata 20

Non-left recursiverules: A - B A S BA
A B A S BA
A - B, A - BA’

The basic idea is that, using the original grammar, in any successful parse, A may be expanded some arbitrary number of
times using the left recursive rules, but if we're going to get rid of A (which we must do to derive atermina string), then we
must eventually apply one of the nonrecursive rules. So, using the original grammar, we might have something like

A
/\
A az
/
"
B1

Notice that, whatever 34, as, and a, are, 3, which came from one of the nonrecursive rules, comes first. Now look at the new
set of rulesin the right hand column above. They say that A must be rewritten as a string that starts with the right hand side of
one of the nonrecursive rules (i.e., some [3;). But, if any of the recursive rules had been applied first, then there would be
further substrings, after the [3;, derived from those recursive rules. We introduce the new nonterminal A’ to describe what
those things could look like, and we write rules, based on the original recursive rules, that tell us how to rewrite A'. Using
this new grammar, we' d get a parse tree for 3, o3 a, that would look like

A
//\
B1 A’
/\
O3 A’
N
a, A’
l

If we apply this transformation algorithm to our grammar for arithmetic expressions, we get
1 FE-+TFE

1) E-c¢

2 E-TE
B T -*FT’
@) T-e

@ T-FT
® F-(
6) F-id

Now let’s return to the problem of parsing id +id * id. Thistime, thereis only a single way to expand the start symboal, E, so
we produce, using rule (2),
E

/\

T E
Now we need to expand T, and again, there is only a single choice. If you continue with this example, you'll see that if you

have the ability to peek one character ahead in the input (we'll call this character the lookahead character), then it's possible
to know, at each step in the parsing process, which rule to apply.

Supplementary Materials Context-Free Languages and Pushdown Automata 21

You'll notice that this parse tree assigns a quite different structure to the original string. This could be a serious problem
when we get ready to assign meaning to the string. In particular, if we get rid of left recursion in our grammar for arithmetic
expressions, we'll get parse trees that associate right instead of left. For example, we'll interpret a+ b + c as

(a+ b) + c using the original grammar, but

a+ (b + ¢) using the new grammar.

For this and various other reasons, it often makes sense to change our approach and parse bottom up, rather than top down.

6.3 Bottom Up Parsing

Now let’s go back to our original grammar for arithmetic expressions:

1) E-E+T
2 E-T
B T-T*F
@ T-F
® F-(B
6) F-id

Let'stry againto parsethe string id + id * id, this time working bottom up. We'll scan the input string from left to right, just

aswe've always done with all the automata we' ve built. A bottom up parser can perform two basic operations:

1. Shift an input symbol onto the parser’s stack.

2. Reduce astring of symbols from the top of the stack to a nonterminal symbol, using one of the rules of the grammar.
Each time we do this, we also build the corresponding piece of the parse tree.

When we start, the stack is empty, so our only choice isto get the first input symbol and shift it onto the stack. Thefirst input
symbol isid, so it goes onto the stack. Next, we have a choice. We can either use rule (6) to reduceid to F, or we can get the
next input symbol and push it onto the stack. It's clear that we need to apply rule (6) now. Why? There are no other rules
that can consume an id directly. So we have to do this reduction before we can do anything else with id. But could we wait
and do it later? No, because reduction always applies to the symbols at the top of the stack. If we push anything on before we
reduce id, we'll never again get id at the top of the stack. So it will just sit there, unable to participate in any rules. So the
next thing we need to do is to reduce id to F, giving us a stack containing just F, and the parse tree (remember we're building
up from the bottom):
F

id

Before we continue, let's observe that the reasoning we just did is going to be the basis for the design of a “smart”
deterministic bottom up parser. Without that reasoning, a dumb, brute force parser would have to consider both paths at this
first choice point: the one we took, as well as the one that fails to reduce and instead pushes + onto the stack. That second
path will dead end eventually, so even a brute force parser will eventually get the right answer. But for efficiency, we'd like
to build a deterministic parser if we can. We'll return to the question of how we do that after we finish with this example so
we can see all the places we're going to have to make our parser “smart”.

At this point, the parser’s stack contains F and the remaining input is +id * id. Again we must choose between reducing the
top of the stack or pushing on the next input symbol. Again, by looking ahead and analyzing the grammar, we can see that
eventually we will need to apply rule (1). To do so, the first id will have to have been promoted to a T and thento an E. So
let’ s next reduce by rule (4) and then again by rule (2), giving the parse tree and stack:

Supplementary Materials Context-Free Languages and Pushdown Automata 22

T———m

o

E

At this point, there are no further reductions to consider, since there are no rules whose right hand sideisjust E. So we must
consume the next input symbol + and push it onto the stack. Now, again, there are no available reductions. So we read the
next symbol, and the stack then contains id + E (we'll write the stack so that we push onto the left). Again, we need to
promote id before we can do anything else, so we promoteit to F and thento T. Now we've got:

E

'|I' T T
'F L +
!d !d E

Notice that we've now got two parse tree fragments. Since we' re working up from the bottom, we don’'t know yet how they’l
get put together. The next thing we have to do is to choose between reducing the top three symbols on the stack (T + E) to E
using rule (1) or shifting on the next input symbol. By the way, don’t be confused about the order of the symbols here. We'll
always be matching the right hand sides of the rules reversed because the last symbol we read (and thus the right most one
we'll match) is at the top of the stack.

Okay, so what should we choose to do, reduce or shift? This is the first choice we've had to make where there isn’t one
correct answer for all input strings. When there was just one universally correct answer, we could compute it simply by
examining the grammar. Now we can't do that. 1n the example we're working with, we don’'t want to do the reduction, since
the next operator is*. We want the parse tree to correspond to the interpretation in which * is applied before +. That means
that + must be at the top of the tree. If we reduce now, it will be at the bottom. So we need to shift * on and do a reduction
that will build the multiplication piece of the parse tree before we do a reduction involving +. But if the input string had been
id + id + id, we'd want to reduce now in order to cause the first + to be done first, thus producing left associativity. So we
appear to have reached a point where we'll have to branch. Since our grammar won't let us create the interpretation in which
we do the + first, if we choose that path first, we'll eventually hit a dead end and have to back up. We'd like not to waste time
exploring dead end paths, however. We'll come back to how we can make a parser smart enough to do that later. For now,
let’ s just forge ahead and do the right thing.

Aswe said, what we want to do here is not to reduce but instead to shift * onto the stack. So the stack now contains* T + E.
At this point, there are no available reductions (since there are no rules whose right hand side contains * as the last symboal),
so we shift the next symbol, resulting in the stack id * T + E. Clearly we have to promote id to F (following the same
argument that we used above), so we' ve got

E
E *
'|I' T T
'F L : +
!d !d !d E

Supplementary Materials Context-Free Languages and Pushdown Automata 23

Next, we need to reduce (since there aren’t any more input symbols to shift), but now we have another decision to make:
should we reduce the top F to T, or should we reduce the top three symbols, using rule (3) to T? The right answer is to use
rule (3), producing:

E T
L T * T
'F L : +
!d !d id E

Finally, we need to apply rule (1), to produce the single symbol E on the top of the stack, and the parse tree:

\
)

F F

+ id * id E

In a bottom up parse, we're done when we consume all the input and produce a stack that contains a single symbol, the start
symbol. So we're done (although see the class notes for an extension of this technique in which we add to the input and end-
of-input symbol $ and consume it as well).

o

Now let’s return to the question of how we can build a parser that makes the right choices at each step of the parsing process.
Aswe did the example parse above, there were two kinds of decisions that we had to make:

» Whether to shift or reduce (we'll call these shift/reduce conflicts), and

* Which of several available reductions to perform (we'll call these reduce/reduce conflicts).

Let's focus first on shift/reduce conflicts. At least in this example, it was always possible to make the right decision on these

conflicts if we had two kinds of information:

e A good understanding of what is going on in the grammar. For example, we noted that there’s nothing to be done with a
raw id that hasn’'t been promoted to an F.

e A peek at the next input symbol (the one that we're considering shifting), which we call the lookahead symbol. For
example, when we were trying to decide whether to reduce T + E or shift on the next symbol, we looked ahead and saw
that the next symbol was *. Since we know that * has higher precedence than +, we knew not to reduce +, but rather to
wait and deal with * first.

So we as people can be smart and do the right thing. The important question is, “Can we build a parser that is smart and does
the right thing?” The answer isyes. For simple grammars, like the one we're using, it’s fairly straightforward to do so. For
more complex grammars, the algorithms that are needed to produce a correct deterministic parser are way beyond the scope of
this class. In fact, they're not something most people ever want to deal with. And that’s okay because there are powerful
tools for building parsers. The input to the tools is a grammar. The tool then applies a variety of algorithms to produce a
parser that does the right thing. One of the most widely used such tools is yacc, which we'll discuss further in class. See the
yacc documentation for some more information about how it works.

Although we don’t have time to look at all the techniques that systems like yacc use to build deterministic bottom up parsers,

we will look at one of the structures that they can build. A precedence table tells us whether to shift or reduce. It uses just
two sources of information, the current top of stack symbol and the lookahead symbol. We won't describe how this table is

Supplementary Materials Context-Free Languages and Pushdown Automata 24

congtructed, but let's look at an example of one and see how it works. For our expression grammar, we can build the
following precedence table (where $ is a specia symbol concatenated to the end of each input string that signals the end of the
input):

V\X () id | + [* $
(
) . e | o | o
id . e | o | o
e
E
T . . .
E . e | o | o

Here's how to read the table. Compare the left most column to the top of the stack and find the row that matches. Now
compare the symbols along the top of the chart to the lookahead symbol and find the column that matches. If there' sadot in
the correponding sgquare of the table, then reduce. Otherwise, shift. So let’s go back to our example input string id + id * id.
Remember that we had a shift/reduce conflict when the stack’s contents were T + E and the next input symbol was*. So we
look at the next to the last row of the table, the one that has T as the top of stack symbol. Then we look at the column headed
*. There' s no dot, so we don’t reduce. But notice that if the |ookahead symbol had been +, we'd have found a dot, telling us
to reduce, which is exactly what we'd want to do. Thus this table captures the precedence rel ationships between the operators
* and +, plusthe fact that we want to associate left when faced with operators of equal precedence.

Deterministic, bottom up parsers of the sort that yacc builds are driven by an even more powerful table called a parse table.
Think of the parse table as an extension of the precedence table that contains additional information that has been extracted
from an examination of the grammar.

7 Closure Properties of Context-Free Languages

Union: The CFL's are closed under union. Proof: If L; and L, are CFL's, then there are, by definition, CFG's G, = (V4, 24,
Ry, S)) and G, = (V,, 25, Ry, S,) generating L, and L,, respectively. (Assume that the non-terminal vocabularies of the two
grammars are digoint. We can always rename symbols to achieve this, so there are no accidental interactions between the
two rulesets) Now fomCFG G=(V; 0OV, 2 0%, RROR O0{S - S,S - S}, 9. GgeneratesL; O L, since every
derivation from the start symbol of G must begin either S= S, or S= S, and thereafter to derive a string generated by G; or
by G,, respectively. Thusall stringsin L(G;) O L(G,) are generated, and no others.

Concatenation: The CFL's are closed under concatenation. The proof is similar. Given G, and G, as above, form G = (V1 [
Vo, 21 03, RROR, O0{S- S5}, S). G generates L,L, since every derivation from S must begin S = S,;S, and proceed
thereafter to derive a string of L; concatenated to a string of L,. No other strings are produced by G.

Kleene star: The CFL's are closed under Kleene star. Proof: If L isa CFL, it is generated by some CFG G = (V, 2, R, S).
Using one new nonterminal symbol S, we canformanew CFGG' =(VOS,2, R O(S - ¢ S - SS}, S). G generates
L* since there is aderivation of € (S = ¢€), and there are other derivations of theformS = SS= SSS= ... = SS..SS=
S...SS, which produce finite concatenations of strings of L. G generates no other strings.

Intersection: The CFL's are not closed under intersection. To prove this, it suffices to show one example of two CFL's
whose intersection is not context free. Let L; = {db'c’: i, j = 0}. L is context-free since it is generated by a CFG with the
ruesS - AC, A - aAb, A - &, C - cC, C— &. Similaly, let L, = {db™c™: k, m > 0}. L, is context-free, since it is
generated by a CFG similar to the one for L. Now consider Ls=L; n L, ={a%h"c": n=0}. Lsisnot context free. Well
prove that in the next section using the context-free pumping lemma. Intuitively, L3 isn't context free because we can't count
as, b's, and c'sall with asingle stack.

Supplementary Materials Context-Free Languages and Pushdown Automata 25

I ntersection with regular languages: The CFL's are, however, closed under intersection with the regular languages. Given a
CFL, L and a regular language R, the intersection L n R isa CFL. Proof: Since L is context-free, there is some non-
deterministic PDA accepting it, and since R is regular, there is some deterministic finite state automaton that accepts it. The
two automata can how be merged into a single PDA by a straightforward technique described in class.

Complementation: The CFL's are not closed under complement. Proof: Since the CFL's are closed under union, if they
were also closed under complement, this would imply that they are closed under intersection. This is so because of the set-
theoretic equality (L1 0 L2) = (L1 n L2).

8 The Context-Free Pumping Lemma

There is a pumping lemma for context-free languages, just as there is one for regular languages. It's a bit more complicated,
but we can use it in much the same way to show that some language L is not in the class of context-free languages. In order to
see why the pumping lemma for context-free languages is true, we need to make some observations about parse trees:

1. A pathinaparsetreeisacontinuously descending sequence of connected nodes.
2. Thelength of apath in aparse tree is the number of connections (branches) in it.

/N

A A

3. The height of a parse tree is the length of the longest path in it. For example, the parse tree above is of height 2.
4. The width of a parse tree is the length of itsyield (the string consisting of its leaves). For example, the parse tree above is
of width 5.

We observe that in order for a parse tree to achieve a certain width it must attain a certain minimum height. How are height
and width connected? The relationship depends on the rules of the grammar generating the parse tree.

Suppose, for example, that a certain CFG contains the rule A - AAAA. Focusing just on derivations involving this rule, we
see that atree of height 1 would have awidth of 4. A tree of height 2 would have a maximum width of 16 (although there are
narrower trees of height 2 of course).

A A

AN y

A A A

A A A A A A A A A

With height 3, the maximum width is 64 (i.e., 4%), and in general atree of height n has maximum width of 4. Or putting it
another way, if atree iswider than 4" then it must be of height greater than n.

Where does the 4 come from? Obviously from the length of the right-hand side of the rule A . AAAA. If we had started
withtherule A -~ AAAAAA, we would find that atree of height n has maximum width 6".

What about other rulesin the grammar? If it contained both therulesA . AAAA and A -~ AAAAAA, for example, then the
maximum width would be determined by the longer right-hand side. And if there were no other rules whose right-hand sides
were longer than 6, then we could confidently say that any parse tree of height n could be no wider than 6".

Let p = the maximum length of the right-hand side of all the rulesin G. Then any parse tree generated by G of height m can

Supplementary Materials Context-Free Languages and Pushdown Automata 26

be no wider than p™. Equivalently, any parse tree that is generated by G and that is wider than p™ must have height greater
than m.

Now supposewe haveaCFG G=(V, 2, R, S). Letn=|(V - 2)|, the size of the non-terminal alphabet. If G generates a parse
tree of width greater than p", then, by the above reasoning, the tree must be of height greater than n, i.e., it contains a path of
length greater than n. Thus there are more than n + 1 nodes on this path (the number of nodes being one greater than the
length of the path), and all of them are non-terminal symbols except possibly the last. Since there are only n distinct non-
terminal symbolsin G, some such symbol must occur more than once along this path (by the Pigeonhole Principle). What this
saysisthat if a CFG generates along enough string, its parse tree is going to be sufficiently high that it is guaranteed to have a
path with some repeated non-terminal symbol alongit. Let us represent this situation by the following diagram:

Call the generated string w. The parse tree has S as its root, and let A be a non-terminal symbol (it could be S itself, of
course) that occurs at least twice on some path (indicated by the dotted lines).

Another observation about parse trees: If the leaves are al terminal symbols, then every non-terminal symbol in the treeisthe
root of a subtree having terminal symbols as its leaves. Thus, the lower instance of A in the tree above must be the root of a
tree with some substring of w asitsleaves. Call this substring x. The upper instance of A likewise roots a tree with a string of
terminal symbols as its leaves, and furthermore, from the geometry of the tree, we see that this string must include x as a
substring. Call the larger string, therefore, vxy. This string vxy is also a substring of the generated string w, which is to say
that for some strings u and z, w = uvxyz. Attaching these names to the appropriate substrings we have the following diagram:

w= u v X y z

Now, assuming that such a tree is generated by G (which will be true on the assumption that G generates some sufficiently
long string), we can conclude that G must generate some other parse trees as well and therefore their associated terminal
strings. For example, the following tree must also be generated:

>""T7!m

Supplementary Materials Context-Free Languages and Pushdown Automata 27

since whatever sequence of rules produced the lower subtree
A

X
could have been applied when the upper A was being rewritten.

Similarly, the sequence of rules that expanded the upper A originally to yield the string vAy could have been applied to the
lower A aswell, and if the resulting third A were now rewritten to produce x, we would have:

S

|

|
A

w= u v v X y y z

Clearly this process could be repeated any number of timesto give an infinite number of strings of the form
u Vi Vo Va...V, X Vi Y2 Ya.--Vn z, for dl valuesof n= 0.

We need one further observation before we are ready to state the Pumping Lemma. Consider again any string w that is
sufficiently long that its derivation contains at least one repeating nonterminal (A in our example above). Of course, there
may be any number of occurrences of A, but let's consider the bottom two. Consider the subtree whose roct is the second A
up from the bottom (shown in bold):

w= u v v X y y z

Notice that the leaves of this subtree correspond to the sequence vxy. How long can this sequence be? The answer relies on
the fact that this subtree contains exactly one repeated nonterminal (since we chose it that way). So the maximum height of
this subtree is p™*. (Recall that p is the length of the longest rule in the grammar and n is the number of nonterminasin the
grammar.) Why n+1? Because we have n+1 nonterminals available (all n of them plus the one repeated one). So we know
that [vxy| must be < M, where M is some constant that depends on the grammar and that isin fact p™*. We are now ready to
state the Pumping Lemmafor context-free languages.

Pumping Lemma for Context-Free Languages. Let G be a context-free grammar. Then there are some constants K and M

Supplementary Materials Context-Free Languages and Pushdown Automata 28

depending on G such that, for every string w [L(G) where w| > K, there are strings u, v, X, Y, z such that
(1) w = uvxyz,

(2) lvy|> 0,

(3) Ivxy|< M, and

(4) fordl n=0, w"xy"z 0 L(G).

Remarks. The constant K in the lemmais just p” referred to above - the length of the longest right-hand side of arule of G
raised to the power of the number of non-terminal symbols. In applying the lemmawe won't care what the value of K actually
is, only that some such constant exists. If G generates an infinite language, then clearly there will be strings in L(G) longer
than K, no matter what K is. If L(G) is finite, on the other hand, then the lemma still holds (trivially), because K will have a
value greater than the longest strings in L(G). So all stringsin L(G) longer than K are guaranteed to be "pumpable," but no
such strings exist, so the lemmavis trivially true because the antecedent of the conditional isfalse. Similarly for M, which is
actually bigger than K; it is p™*. But, again, all we care about is that if L(G) isinfinite then M exists. Without knowing what
it is, we can describe strings in terms of it and know that we must have pumpable strings.

This lemma, like the pumping lemma for regular languages, addresses the question of how strings grow longer and longer
without limit so as to produce infinite languages. In the case of regular languages, we saw that strings grow by repeating
some substring any number of times: xy"z O L for all n= 0. When does this happen? Any string in the language of sufficient
length is guaranteed to contain such a "pumpable’ substring. What length is sufficient? The number of states in the
minimum-state deterministic finite state machine that accepts the language. This sets the lower bound for guaranteed
pumpability.

For context-free languages, strings grow by repeating two substrings simultaneously: uv"xy"z O L for all n = 0. This, too,
happens when a string in the language is of sufficient length. What is sufficient? Long enough to guarantee that its parse tree
contains a repeated non-terminal along some path. Strings this long exceed the lower bound for guaranteed context-free
pumpability.

What about the condition that [vy| > 0, i.e., v and y cannot both be the empty string? This could happen if by the rules of G
we could get from some non-terminal A back to A again without producing any terminal symbols in the process, and that's
possible with rules like A - B, B - C, C - A, all perfectly good context-free rules. But given that we have a string w
whose length is greater than or equal to K, its derivation must have included some rules that make the string grow longer;
otherwise w couldn't have gotten as long as it did. Therefore, there must be some path in the derivation tree with a repeated
non-terminal that involves branching rules, and along this path, at least one of v or y is non-empty.

Recall that the corresponding condition for regular languages wasy # €. We justified this by pointing out that if a sufficiently
long string w was accepted by the finite state machine, then there had to be a loop in the machine and that loop must read
something besides the empty string; otherwise w couldn't be aslong asit is and still be accepted.

And, finally, what about condition (3), [vxy| £ M? How does this compare to the finite state pumping lemma? The
corresponding condition there was that [xy| < K. Since |y| < [xy|, this certainly tells us that the pumpable substring vy is
(relatively) short. |xy| < K aso tells usthat y occurs close to the beginning of the string w = xyz. The context-free version, on
the other hand, tells us that [vxy| < M, where v and y are the pumpable substrings. Since [v| < vxy| < M and Jy| < vxy| < M, we
know that the pumpable substrings v and y are short. Furthermore, from jvxy| < M, we know that v and y must occur close to
each other (or at least not arbitrarily far away from each other). Unlike in the regular pumping lemma, though, they do not
necessarily occur close to the beginning of the string w = uvxyz. This s the reason that context-free pumping lemma proofs
tend to have more cases: the v and y pumpable substrings can occur anywhere within the string w.

Note that this Pumping Lemma, like the one for regular languages, is an if-then statement not an iff statement. Therefore, it
cannot be used to show that alanguage is context-free, only that it is not.

Example 1: Show that L = {a'b"c": n=> 0} is not context-free.

If L were context-free (i.e., if there were a context-free grammar generating L), then the Pumping Lemmawould apply. Then

Supplementary Materials Context-Free Languages and Pushdown Automata 29

there would be a constant K such that every string in L of length greater than K would be "pumpable.” We show that thisis
not so by exhibiting astring w in L that is of length greater than K and that is not pumpable. Since we want to rely on clause
3 of the pumping lemma, and it relieson M > K, welll actually choose w in terms of M.

Let w = a'b"c™. (Note that this is a particular string, not a language or a variable expression for a string. M is some
number whose exact value we don't happen to know; it might be 23, for example. If so, w would be the unique string
a”b®c®) This string is of length greater than K (of length 3M, where M is greater than K, in fact), and it isa string in the
language {a'b"c" : n = 0}. Therefore, it satisfies the criteria for a pumpable string according to the Pumping Lemma--
provided, of course, that L is context-free.

What does it mean to say that a"b“c" is pumpable? It means that there is some way to factor this string into five parts -
u,v,X,y,z - meeting the following conditions:

1. vandy arenot both the empty string (although any of u, x, or z could be empty),

2. vxy|£M,

3. uxzOL,uvxyzOL,uvwxyyz 0L, uvwxyyyz O L, etc.;i.e, foral n=0, u"xy"z O L.

We now show that there is no way to factor a'b"c" into 5 parts meeting these conditions; thus, a'b"c" is not a pumpable
string, contrary to the stipulation of the Pumping Lemma, and thus L is not a context-free language.

How do we do this? We show that no matter how we try to divide a'b"c" in ways that meet the first two conditions, the third
condition always falls. In other words, every "legal" division of d'b"c" falls to be pumpable-that is, there is some value of n
for which uv"xy"z O L.

There are clearly a lot of ways to divide this string into 5 parts, but we can simplify the task by grouping the divisions into
cases just as we did with the regular language Pumping Lemma:

Case 1: Either v or y consists of more than different letter (e.g., aab). No such division is pumpable, since for any n = 2,
uv"xy"z will contain some letters not in the correct order to be in L. Now that we've eliminated this possibility, all the
remaining cases can assume that both v and y contain only a's, only b’s, or only ¢'s (although one could aso be €).

Case 2: Both v and y are located within a". No such division is pumpable, since we will pump in only &s. So, for n = 2,
uv"xy"z will contain more a's than b's or ¢'s and therefore won't bein L. (Note that n = 0 also works.)

Cases 3, 4: Both v and y are located within b™ or ¢*. No such division is pumpable, by the same logic asin Case 2.

Case 5: v is located within & and y is located within b™. No such division is pumpable, since for n > 2, uv"xy"z will contain
more as than c's or more b's than c's (or both) and therefore won't bein L. (n = 0 also works here.)

Cases 6, 7: v is located within " and y is located within ¢, or v is located within b™ and y is located within c*. No such
division is pumpable, by the samelogic asin Case 5.

Since every way of dividing a'b“c™ into 5 parts (such that the 2nd and 4th are not both empty) is covered by (at least one of
the above 7 cases, and in each case we find that the resulting division is hot pumpable, we conclude that there is no division of
a"bMc" that is pumpable. Since al this was predicated on the assumption that L was a context-free language, we conclude
that L, is not context-free after al.

Notice that we didn't need to use condition the fact that jvxy| must be less than M in this proof, although we could have used it
as an aternative way to handle case 6, since it prevents v and y from being separated by a region of size M, which is exactly
the size of the region of b's that occurs between the a's and the c's.

Example 2: Show that L ={w O {a, b ¢}* | #(a, w) = #(b, w) = #(c, w)} is not context free. (We use the notation #(a, w) to
mean the number of a'sin the string w.)

Let'sfirst try to use the pumping lemma. We could again choose w = a"'b"c". But now we can't immediately brush off case 1
aswe did in Example 1, since L allows for strings that have the s, b's, and c'sinterleaved. In fact, this time there are ways
to divide a'b™c" into 5 parts (v, y not both empty), such that the result is pumpable. For example, if v were ab and y werec,
then uv"xy"z would bein L for all n> 0, since it would till contain equal numbers of as, b's, and ¢'s.

Supplementary Materials Context-Free Languages and Pushdown Automata 30

So we need some additional help, which we'll find in the closure theorems for context-free languages. Our problem isthat the
definition of L is too loose, so it's too easy for the strings that result from pumping to meet the requirements for being in L.
We need to make L more restrictive. Intersection with another language would be one way we could do that. Of course, since
the context-free languages are not closed under intersection, we can't simply consider some new language L' =L n L2, where
L2 is some arbitrary context-free language. Even if we could use pumping to show that L' isn't context free, we'd know
nothing about L. But the context-free languages are closed under intersection with regular languages. So if we construct a
new language L' =L n L2, where L2 is some arbitrary regular language, and then show that L' is not context free, we know
that L isn't either (since, if it were, its intersection with a regular language would also have to be context freg). Generally in
problems of this sort, the thing to do is to use intersection with a regular language to constrain L so that al the stringsin it
must have identifiable regions of symbols. So what we want to do hereisto let L2 = a*b*c*. ThenL'=L n L2=ab"c". If
we hadn't just proved that a'b"c" isn't context free, we could easily do so. In either case, we know immediately that L isn't
context free.

Supplementary Materials Context-Free Languages and Pushdown Automata 31

Recursively Enumerable Languages,
Turing Machines, and Decidability

1 Problem Reduction: Basic Concepts and Analogies

The concept of problem reduction is simple at a high level. You simply take an algorithm that solves one problem and use it
as a subroutine to solve another problem. For example, suppose we have two TM's; C, which turns QwQ into Qwdwa and
S, whichturns...QwQ into ...wQAAQ (i.e,, it shiftsw one square to the left). Then we can buildaTM M' that computes f(w) =
ww by simply letting M' =CS_. We have reduced the problem of computing f to the problem of copying a string and then
shifting it.

Let's consider another example. Suppose we had a function sgr(m: integer): integer, which accepts an integer input m and
returns m?. Then we could write the following function to compute g(m) = m? + 2m + 1:

function g(m: integer): integer;
begin

return sgr(m + 1);
end;

We have reduced the problem of computing m* + 2m + 1 to the problem of computing m + 1 and squaring it.

We are going to be using reduction specifically for decision problems. In other words, we're interested in a particular class of
boolean functions whose job is to look at strings and tell us, for each string, whether or not it is in the language we are
concerned with. For example, suppose we had aTM M that decides the language a*b*. Then we could make anew TM M’ to
decide a*b*: M' would find the first blank to the right of its input and write asingle b there. It would then move its read head
back to the beginning of the string and invoke M on the tape. Why does this work? Because x 0 a*b* iff xb O a*b’.
Looking at this in the more familiar procedural programming style, we are saying that if we have a function:
fi(x: string): boolean, which tells us whether x 0 a*b*, then we could write the following function that will correctly tell us
whether x [0 a*b*.

function f2(x: string): boolean;

begin
return f1(x || 'b";
end;

If, for some reason, you believed that a*b* were an undecidable language, then this reduction would force you to believe that
ab" is also undecidable. Why? Because we have shown that we can decide a*b* provided only that f1 does in fact decide
ab”. If we know that we can't decide a*b*, there must be something standing in the way. Unless we're prepared to believe
that subroutine invocation is not computable or that concatenation of a single character to the end of a string is not
computable, we must assign blame to f1 and conclude that we didn't actually have a correct f1 program to begin with.

These examples should all make sense. The underlying concept is simple. Things will become complicated in a bit because
we will begin considering TM descriptions as the input stings about which we want to ask questions, rather than simple strings
of asand b's.

Sometimes, we'll use a dightly different but equivalent way of asking our question. Rather than asking whether alanguage is
decidable, we may ask whether a problem is solvable. When we say that a problem is unsolvable, what we mean is that the
corresponding language is undecidable. For example, consider the problem of determining, given a TM M and string w,
whether or not M acceptsw. We can ask whether this problem is solvable. But notice that this same problem can be phrased
alanguage recognition problem because it is equivalent to being able to decide the language:

H={"M""w":wOL(M)}.

Read this as: H is the language that consists of al strings that can be formed from two parts: the encoding of a Turing

Supplementary Materials Recursively Enumerable Languages, Turing Machines, and Decidability 1

Machine M, followed by the encoding of a string w (which we can think of as the input to M), with the additional constraint
that TM M halts on input w (which is equivalent to saying that w isin the language accepted by M).

“Solving a problem” is the higher level notion, which is commonly used in the programming/algorithm context. In our
theoretical framework, we use the term “deciding a language” because we are talking about Turing Machines, which operate
on strings, and we have a carefully constructed theory that lets us talk about Turing Machines as language recognizers.

In the following section, we'll go through several examples in which we use the technique of problem reduction to show that
some new problem is unsolvable (or, alternatively, that the corresponding language is undecidable). All of these proofs
depend ultimately on our proof, using diagonalization, of the undecidability of the halting problem (H above).

2 Some Reductions Presented in Gory Detail

Example 1: GivenaTM M, does M halt on input €? (i.e., given M, is€ [0 L(M)?) This problem is undecidable because we
can reduce the Halting Problem H to it. What this means is that an algorithm to answer this question could be used as a
subroutine in an algorithm (which is otherwise clearly effective) to solve the Halting problem. But we know the Halting
problem is unsolvable; therefore this question is unsolvable. So how do we prove this?

First well prove this using the TM/language framework. In other words, we're going to show that the following language LE
is not decidable:
LE={"M":e OL(M)}

We will show that if LE isdecidable, soisH = {"M" "w" : w O L(M)}.

Suppose LE is decidable; then some TM M\ g decides it. We can now show how to construct a new Turing Machine My,
which will invoke M g as a subroutine, and which will decide H. In the process of doing so, we'll use only clearly
computable functions (other than Mg, of course). So when we finish and realize that we have a contradiction (since we know
that My can’t exist), we know that the blame must rest on M| g and thus we know that M, g cannot exist.

My isthe Turing Machine that operates as follows on the inputs "M", "w":

1. Congtruct anew TM M*, which behaves as follows:
1.1. Copy "w" onto its tape.
1.2. Execute M on the resulting tape.

2. Invoke M g(M*).

If Mg returns True, then we know that M (the original input to My) halts on w. If Mg returns False, then we know that it
doesn’'t. Thus we have built a supposedly unbuildable M. How did we do it? We claimed when we asserted the existence of
Mg that we could answer what appears to be a more limited question, does M halt on the empty tape? But we can find out
whether M halts on any other specific input (w) by constructing a machine (M*) that starts by writing w on top of whatever
was originally on its tape (thus it ignores its actual input) and then proceeds to do whatever M would have done. Thus M*
behaves the same on all inputs. Thusif we knew what it does on any one input, we'd know what it does for al inputs. So we
ask M g what it does on the empty string. And that tells us what it does al the time, which must be, by the way we
congtructed it, whatever the original machine M does on w.

The only dlightly tricky thing here is the procedure for constructing M*. Are we sure that it isin fact computable? Maybe
we've reached the contradiction of claiming to have a machine to solve H not by erroneously claiming to have M g but rather
by erroneoudly claiming to have a procedure for constructing M*. But that’s not the case. Why not? It's easy to see how to
write a procedure that takes a string w and builds M*. For example, if "w" is"ab", then M* must be:
ERaRbL_M, where EisaTM that erasesits tape and then moves the read head back to the first square.

In other words, we erase the tape, move back to the left, then move right one square (leaving one blank ahead of the new tape
contents), write a, move right, write b, move left until we get back to the blank that’s just to the left of the input, and then
execute M.

Supplementary Materials Recursively Enumerable Languages, Turing Machines, and Decidability 2

The Turing Machine to construct M* is a bit too complicated to write here, but we can see how it works by describing it in a
more standard procedural way: It first writes ER. Then, for each character in w, it writes that character and R. Finaly it
writesL M.

To make this whole process even clearer, let’s look at this problem not from the point of view of the decidability of the
language H but rather by asking whether we can solve the Halting problem. To do this, let’'s describe in standard code how
we could solve the Halting problem if we had a subroutine M g(M: TM) that could tell us whether a particular Turing
Machine halts on the empty string. We'll assume a datatype TM. If you want to, you can think of objects of this type as
essentially strings that correspond to valid Turing Machines. It’slike thinking of atype Cprogram, which is all the strings that
arevalid C programs.

We can solve the Halting program with following function Halts:

Function Halts(M: TM, w: string): Boolean;
M* := Construct(M, w);
Return MLE(M*);
end;

Function Construct(M: TM, w: string): TM;
/* Construct builds a machine that first erasesitstape. Then it copiesw onto its tape and movesits
/* read head back to the left ready to begin reading w. Finally, it executes M.
Congtruct := Erase; [* Eraseisastring that correspondsto the TM that erasesits input tape.
For each character cinw do
Construct := Construct || "R" || ¢;

end;
Construct := Construct || L ,M;
Return(Construct);

Function MLE(M: TM): Boolean;
The function we claim tells us whether M halts on the empty string.

The most common mistake that people make when they're trying to use reduction to show that a problem isn't solvable (or
that a language isn't decidable) is to do the reduction backwards. In this case, that would mean we would put forward the
following argument: “Suppose we had a program Halts to solve the Halting problem (the genera problem of determining
whether a TM M halts on some arbitrary input w). Then we could use it as a subroutine to solve the specific problem of
determining whether a TM M halts on the empty string. We'd simply invoke Halts and passit M and €. If Haltsreturns True,
then we say yes. If Halts returns False, we say no. But since we know that Halts can't exist, no solution to our problem can
exist either.” The flaw in this argument is the last sentence. Clearly, since Halts can't exist, this particular approach to
solving our problem won't work. But this says nothing about whether there might be some other way to solve our problem.

To see this flaw even more clearly, let’s consider applying it in a clearly ridiculous way: “ Suppose we had a program Halts to
solve the Halting problem. Then we could use it as a subroutine to solve the problem of adding two numbersaand b. We'd
simply invoke Halts and pass it the trivial TM that simply halts immediately and the input €. If Halts returns True, then we
return at+b. If Halts returns False, we also return atb. But since we know that Halts can't exist, no solution to our problem
can exist either.” Just as before, we have certainly written a procedure for adding two numbers that won't work, since Halts
can't exist. But there are clearly other ways to solve our problem. We don’t need Halts. That'stotally obvious here. It'sless
so in the case of attempting to build M g. But the logic isthe same in both cases:. flawed.

Example 2: GivenaTM M, isL(M) # O0? (In other words, does M halt on anything at all?). Let’sdo this one first using the
solvahility of the problem perspective. Then we'll do it from the decidability of the language point of view.

This time, we claim that there exists:

Function MLA(M: TM): Boolean;
Returns T if M halts on any inputs at all and False otherwise.

Supplementary Materials Recursively Enumerable Languages, Turing Machines, and Decidability 3

We show that if this claim is true and MLA does in fact exist, then we can build a function MLE that solves the problem of
determining whether a TM accepts the empty string. We already know, from our proof in Example 1, that this problem isn’t
solvable. So if we can do it using MLA (and some set of clearly computable functions), we know that MLA cannot in fact
exist.

The reduction we need for this example is simple. We claim we have a machine MLA that tells us whether some machine M
accepts anything at all. If we care about some particular input to M (for example, we care about €), then we will build a new
machine M* that erases whatever was originally on itstape. Then it copies onto its tape the input we care about (i.e., €) and
runs M. Clearly this new machine M* is oblivious to its actual input. It either always accepts (if M accepts €) or always
rejects (if M rejects €). It accepts everything or nothing. So what happens if we pass M* to MLA? If M* aways accepts,
then its language is not the empty set and MLA will return True. This will happen precisely in case M hatson €. If M*
always regjects, then its language is the empty set and MLA will return False. This will happen precisely in case M doesn't
halt one. Thus, if MLA really does exist, we have away to find out whether any machine M haltson €:

Function MLE(M: TM): Boolean;
M* := Construct(M);
Return MLA(M*);
end;

Function Construct(M: TM): TM; /* Thistime, we build an M* that simply erases its input and then runs M
/*(thus running M on €).

Construct ;= Erase; [* Eraseisastring that correspondsto the TM that erases its input tape.
Construct := Construct || M;
Return(Construct);

But we know that MLE can't exist. Since everything in its code, with the exception of MLA, istrivially computable, the only
way it can't exist isif MLA doesn’t actually exist. Thus we've shown that the problem determining whether or not aTM M
halts on any inputs at al isn't solvable.

Notice that this argument only works because everything else that is done, both in MLE and in Construct is clearly
computable. We could write it all out in the Turing Machine notation, but we don’'t need to, since it's possible to prove that
anything that can be done in any standard programming language can also be done with a Turing Machine. So the fact that
we can write code for it is good enough.

Whenever we want to try to use this approach to decide whether or not some new problem is solvable, we can choose to
reduce to the new problem any problem that we aready know to be unsolvable. Initially, the only problem we knew wasn’t
solvable was the Halting problem, which we showed to be unsolvable using diagonalization. But once we have used
reduction to show that other problems aren’t solvable either, we can use any of them for our next problem. The choiceis up
to you. Whatever iseasiest is the thing to use.

When we choose to use the problem solvahility perspective, there is always a risk that we may make a mistake because we
haven't been completely rigorous in our definition of the mechanisms that we can use to solve problems. One big reason for
even defining the Turing Machine formalism is that it is both simple and rigoroudly defined. Thus, although the problem
solvahility perspective may seem more natural to us, the language decidability perspective gives us a better way to construct
rigorous proofs.

So let’s show that the language
LA={"M":L(M) £ 0O} isundecidable.

We will show that if LA were decidable, then LE={"M": € 00 L(M)} would also be decidable. But of course, we know that it
isn't.

Suppose LA is decidable; then some TM M, decides it. We can now show how to construct a new Turing Machine Mg,

Supplementary Materials Recursively Enumerable Languages, Turing Machines, and Decidability 4

which will invoke M| as a subroutine, and which will decide LE:

M.e(M): /* A decision procedure for LE = {"M": € O L(M)}
1. Congtruct anew TM M*, which behaves as follows:

1.1. Eraseitstape.

1.2. Execute M on the resulting empty tape.
2. Invoke M A(M*).

It's clear that M ¢ effectively decides LE (if M4 really exists). Why? M\ g returns True iff M4 returns True. That happens,
by its definition, if it is passed a TM that accepts at least one string. We passit M*. M* accepts at least one string (in fact, it
accepts al strings) precisely in case M accepts the empty string. If M does not accept the empty string, then M* accepts
nothing and Mg returns False.

Example 3: GivenaTM M, isL(M) = 2*? (In other words, does M accept everything?). We can show that this problem is
unsolvable by using almost exactly the same technique we just used. In example 2, we wanted to know whether a TM
accepted anything at all. Now we want to know whether it accepts everything. We will answer this question by showing that
the language

L ={"M": L(M) = Z*} isundecidable.

Recall the machine M* that we constructed for Example 2. It erases its tape and then runs M on the empty tape. Clearly M*
either accepts nothing or it accepts everything, since its behavior is independent of itsinput. M* is exactly what we need for
this proof too. Again we'll choose to reduce the language LE = {"M": € O L(M)} to our new problem L:

If LY isdecidable, then there saTM M| s that decidesit. In other words, there’saTM that tells us whether or not some other
machine M accepts everything. If M ;s exists, then we can define the following TM to decide LE:

Mie(M): /* A decision procedurefor LE = {"M": ¢ O L(M)}
1. Congtruct anew TM M*, which behaves as follows:

1.1. Eraseitstape.

1.2. Execute M on the resulting empty tape.
2. Invoke M s(M*).

Step 2 will return True if M* halts on al strings in 2* and False otherwise. So it will return True if and only M halts on €.
This would seem to be a correct decision procedure for LE. But we know that such a procedure cannot exist and the only
possible flaw in the procedure we' ve givenisM 5. So M| s doesn’'t exist either.

Example 4: GivenaTM M, isL(M) infinite? Again, we can use M*. Remember that M* either halts on nothing or it halts
on all elements of 2*. Assuming that = # [, that means that M* either halts on nothing or it halts on an infinite number of
strings. It halts on everything if its input machine M halts on €. Otherwise it halts on nothing. So we can show that the
language

LI ={"M": L(M) isinfinite}
is undecidable by reducing the language LE = {"M": ¢ O L(M)} toit.

If LI isdecidable, then thereisa Turing Machine M, that decidesit. Given M,, we decide LE asfollows:
M e(M): /* A decision procedure for LE = {"M": € O L(M)}
1. Construct anew TM M*, which behaves as follows:
1.1. Eraseitstape.
1.2. Execute M on the resulting empty tape.
2. Invoke M (M*).

Step 2 will return True if M* halts on an infinite number of strings and False otherwise. So it will return True if and only M
haltson .

Supplementary Materials Recursively Enumerable Languages, Turing Machines, and Decidability 5

This idea that a single construction may be the basis for several reduction proofs is important. It derives from the fact that
severa quite different looking problems may in fact be distinguishing between the same two cases.

Example 5: Giventwo TMs, M; and M», isL(M1) = L(M,)? In other words, is the language
LEQ ={"M;" "M.": L(M) =L(M,)} decidable?

Now, for the first time, we want to answer a question about the relationship of two Turing Machines to each other. How can
we solve this problem by reducing to it any of the problems we aready know to be undecidable? They all involve only a
single machine. Thetrick isto use a constant, a machine whose behavior we are certain of. So we define M#, which halts on
al inputs. M#istrivial. Itignoresitsinput and goesimmediately to a halt state.

If LEQ isdecidable, then thereisa TM M gq that decidesit. Using M gq and M#, we can decide the language
L> ={"M": L(M) = >*} (which we showed in example 3 isn’t decidable) as follows:

M s(M): /* A decision procedure for LZ
1. Invoke MLEQ(M , M#)

Clearly M accepts everything if it is equivalent to M#, which is exactly what M gq tells us.

This reduction is an example of an easy one. To solve the unsolvable problem, we simply pass the input directly into the
subroutine that we are assuming exists, along with some simple constant. We don't need to do any clever constructions. The
reason this was so simple is that our current problem LEQ, is really just a generalization of a more specific problem we've
already shown to be unsolvable. Clearly if we can't solve the special case (determining whether a machine is equivalent to
M#), we can't solve the more general problem (determining whether two arbitrary machines are equivalent).

Example 6: GivenaTM M, isL(M) regular? Alternatively, is
LR={"M": L(M) isregular} decidable?

To answer this one, we'll again need to use an interesting construction. To do this, we'll make use of the language
H={"M""w":wOL(M)}

Recall that H is just the set of strings that correspond to a (TM, input) pair, where the TM halts on the input. H is not

decidable (that's what we proved by diagonalization). But it is semidecidable. We can easily built a TM Hgy, that halts

whenever the TM M halts on input w and that fails to halt whenever M doesn’t halt on w. All Hei hasto do isto simulate the

execution of M onw. Note also that H isn’t regular (which we can show using the pumping theorem).

Suppose that, from M and Hegy,i, We construct a machine M$ that behaves as follows: given an input string w, it first runs Hegy,
onw. Clearly, if Hepy failsto halt on w, M$ will also fail to halt. But if Heyyi halts, then we move to the next step, which isto
run M on e. If we makeit here, then M$ will halt precisely in case M would halt on €. So our new machine M$ will either:

1. Accept H, whichitwill doif € O L(M), or

2. Accept O, which it will do if € O L(M).

Thus we see that M$ will accept either
1. A nonregular language, H, which it will do if € O L(M), or
2. Aregular language [0, which it will do if € O L(M).

So, if we could tell whether M$ accepts a regular language or not, we'd know whether or not M acceptse.

We're now ready to show that LR isn’t decidable. If it were, then there would be some TM M, that decided it. But M
cannot exist, because, if it did, we could reduce LE = {"M": ¢ O L(M)} to it asfollows:

Mie(M): /* A decision procedurefor LE = {"M": ¢ O L(M)}

1. Congtruct anew TM M$(w), which behaves as follows:
1.1. Execute Hgmi ON'W.

Supplementary Materials Recursively Enumerable Languages, Turing Machines, and Decidability 6

1.2. ExecuteM one.
2. Invoke M x(M$).
3. If theresult of step 2is True, return False; if the result of step 2 is False, return True.

Mg asjust defined, effectively decides LE. Why? If € O L(M), then L(M$) isH, which isn’t regular, so Mg will say False
and we will, correctly, say True. If € O L, then L(M$) is, whichisregular, so Mg will say True and we will, correctly, say
False.

By the way, we can use exactly this same argument to show that LC = {"M": L(M) is context free} and LD ={"M": L(M) is
recursive} are undecidable. All we have to do is to show that H is not context free (by pumping) and that it is not recursive
(which we did with diagonalization).

Example 7: GivenaTM M and state g, is there any configuration (p, uav), with p # g, that yields a configuration whose state
isg? Inother words, is there any state p that could possibly lead M to g? Unlike many (most) of the questions we ask about
Turing Machines, this one is not about future behavior. (e.g., “Will the Turing Machine do such and such when started from
here?’) So we're probably not even tempted to try simulation (which rarely works anyway).

But there is away to solve this problem. In essence, we don’'t need to consider the infinite number of possible configurations
of M. All we need to do is to examine the (finite) transition table of M to see whether there is any transition from some state
other than q (call it p) to q. If thereis such atransition (i..e., if Op, o, T such that &(p, o) = (g, 1)), then the answer is yes.
Otherwise, the answer is no.

3 Rice’s Theorem

Rice's Theorem makes a very general statement about an entire class of languages that are not recursive. Thus, for some
languages, it is an aternative to problem reduction as a technique for proving that alanguage is not recursive.

There are several different formsin which Rice's Theorem can be stated. We'll present two of them here:
(Form 1) Any nontrivial property of the recursively enumerable languages is not decidable.

(Form 2) Suppose that C is a proper, nonempty subset of the class of all recursively enumerable languages. Then the
following language is undecidable: LC ={<M>: L(M) isan element of C}.

These two statements look quite different but are in fact nearly equivalent. (Although Form 1 is stronger since it makes a
claim about the language, no matter how you choose to define the language. So it applies given a grammar, for example.
Form 2 only applies directly if the way you define the language is by a Turing Machine that semidecides it. But even this
difference doesn't really matter since we have algorithms for constructing a Turing Machine from a grammar and vice versa.
So it would just take one more step if we started with a grammar and wanted to use Form 2). But, if we want to prove that a
language of Turing machine descriptions is not recursive using Rice's Theorem, you must do the same things, whichever
description of it you prefer.

WE'll consider Form 1 first. To use it, we first, we have to guarantee that the property we are concerned with is a property
(predicate) whose domain is the set of recursively enumerable languages. Here are some properties P whose domains are the
RE languages:

1) Pistrue of any RE language that contains an even number of strings and false of any RE language that contains an odd
number of strings.

2) Pistrue of any RE language that contains all stings over its alphabet and false for al RE languages that are missing any
strings over their al phabet.

3) Pistrue of any RE language that is empty (i.e., contains no strings) and false of any RE language that contains any strings.
4) Pistrue of any RE language

Supplementary Materials Recursively Enumerable Languages, Turing Machines, and Decidability 7

5) Pistrue of any RE language that can be semidecided by a TM with an even number of states and false for any RE language
that cannot be semidecided by suchaTM.

6) Pistrue of any RE language that contains at least one string of infinite length and false of any RE language that contains no
infinite strings.

Here are some properties whose domains are not the RE languages:

1') Pistrue of Turing machines whose first move isto write "a" and false of other Turing machines.
2") Pistrue of two tape Turing machines and false of all other Turing machines.

3') Pistrue of the negative numbers and false of zero and the positive numbers.

4") Pistrue of even length strings and false of odd length strings.

We can attempt to use Rice's Theorem to tell us that properties in the first list are undecidable. It won't help us at all for
properties in the second list.

But now we need to do one more thing: We must show that P isanontrivial property. Any property Pis nontrivia if it is not
equivalent to True or False. In other words, it must be true of at least one language and false of at least one language.

Let'slook at properties 1-6 above:

1) Pistrueof {“a’, “b"} and false of {“&"}, soitisnontrivial.

2) Let’'sjust consider the caseinwhich Z is{a, b}. Pistrue of 2* and false of {“a’}.

3) Pistrue of /7 and Pisfase of every other RE language.

4) Pistrue of any RE language and false of nothing, so P istrivial.

5) P istrue of any RE language and false of nothing, so P is trivial. Why? Because, for any RE language L there exists a
semideciding TM M. If M has an even number of states, then P is clearly true. If M has an odd number of states, then create
anew machine M' identical to M except it has one more state. This state has no effect on M's behavior because there are no
transitionsin toit. But it guaranteesthat M' has an even number of states. Since M’ accepts L (because M does), P is true of
L. SoPistrue of all RE languages.

6) Pisfasefor al RE languages. Why? Because the definition of alanguage is a set of strings, each of finite length. So no
RE language contains a string of infinite length.

So we can use Rice's theorem to prove that the set of RE languages possessing any one of properties 1, 2, or 3 is not
recursive. But it does not tell us anything about the set of RE languages possessing property 3, 4, or 5.

In summary, to apply this version of Rice'stheorem, it is necessary to do three things:
0) Specify aproperty P.
1) Show that the domain of Pisthe set of recursively enumerable languages.
2) Show that P is nontrivial by showing:
a) That Pistrue of at |east one language, and
b) That Pisfalse of at least on language.

Now let’stry to use Form 2. We must find a C that is a proper, nonempty subset of the class of all recursively enumerable
language.

First we notice that this version is stated in terms of C, a subset of the RE languages, rather than P, a property (predicate) that
istrue of the RE languages. But thisisan insignificant difference. Given a universe U, then one way to define a subset S of
U isby a characteristic function that, for any candidate element X, returnstrueif x 0 S and false otherwise. So the P that
corresponds to Sis simply whatever property the characteristic function tests for. Alternatively, for any subset S there must
exist a characteristic function for S (although that function need not be computable — that’s a different issue.) So given a set
S, we can define the property P as “isa member of S.” or “possesses whatever property it takesto be determinedtoben S.”
So Form 2 is stated in terms of the set of languages that satisfy some property P instead of being stated in terms of P directly,
but as there is only one such set for any property P and there is only one such property P (viewed simply as atruth table,
ignoring how you say it in English) for any set, it doesn’'t matter which specification we use.

Supplementary Materials Recursively Enumerable Languages, Turing Machines, and Decidability 8

Next we notice that this version requires that C be a proper, nonempty subset of the class of RE languages. But thisis exactly
the same as requiring that P be nontrivial. Why? For P to be nontrivial, then there must exist at least one language of which it
istrue and one of which it isfalse. Since there must exist one language of which it istrue, the set of languages that satisfy it
isn't empty. Since there must exist one language of which it isfalse, the set of languages that satisfy it is not exactly the set of
RE languages and so we have a proper subset.

So, to use Form 2 of Rice's Theorem requires that we:
0) Specify some set C (by specifying a membership predicate P or some other way).
1) Show that C is a subset of the set of RE languages (which is equivalent to saying that the domain of its membership
predicate is the set of RE languages)
2) Show that C is a proper nonempty subset of the recursive languages by showing that
a) C# [J (i.e., itscharacteristic function P is not trivially false), and
b) C # RE (i.e,, its characteristic function P is not trivially true).

Supplementary Materials Recursively Enumerable Languages, Turing Machines, and Decidability 9

