
High-Level Synthesis using Dependence Flow Graphs as the Intermediate

Form

Ntsibane Ntlatlapa

Department of Computer Science and Engineering

Auburn University

Auburn, AL 36849-5347

ntlatns@eng.auburn.edu

January 20, 1998

Abstract- This paper describes an ongoing high level syn-

thesis project using dependence ow graphs as intermediate

form. This HLS system takes a behavioral description writ-

ten in a subset of VHDL and generates an RTL VHDL de-

scription that implements the design. We use dependence

ow graphs as an intermediate form. We only describe the

compilation part of the HLS system and dependence ow

graphs.

1 Introduction and Related

Work

The research described here is an e�ort to develop a
digital hardware synthesis system that automatically
translates a behavioral algorithm description to struc-
tural implementation. This research is a sub-project of
the project: Formally, Veri�ed, E�cient Tools for High-
Level Synthesis and Hardware-Software Codesign. The
main goals of the project are to: produce digital design
tools that are both e�cient and correct and to show
the feasibility of formally verifying design tools them-
selves, rather than requiring designers to apply veri�ca-
tion techniques to each design produced.

These tools will form a system that will translate
a behavioral description written in VHDL description
language to a register-transfer level circuit in structural
VHDL. Our target architectures are Xilinx and Altera
�eld programmable gate arrays (fpga).

This work is partially based on work done by
Hwang [6]. He developed a process-algebraic semantics
for VHDL. A survey of high-level synthesis reveals that
system designers are adopting VHDL as the language to
describe the behavior of digital systems. These include
the Honeywell's V-synth system [3] and IBM's HIS sys-
tem [4]. This survey also reveals that designers continue
to employ a control ow graph and a collection of data
ow graphs as an intermediate form for synthesis. We
adopted the dependence ow graph as our intermediate

form. The dependence ow graph is an executable rep-
resentation of data, control, timing and resource-usage
dependencies present in the speci�cations of the digi-
tal systems, both hardware and software [8]. The de-
pendence ow graph was originally developed for use in
optimizing compilers [2]. Chapman [5] extended the op-
erational semantics of software dependence ow graphs
to apply to dependence ow graphs modeling hardware.

2 High-Level Synthesis

The high-level synthesis system, Figure 1 design ow
starts with behavioral VHDL speci�cation. We then
build an abstract syntax tree, then build the dependence
ow graph from the syntax tree. The dependence infor-
mation maintained by dependence ow graphs is used
for partitioning, optimization, scheduling and data path
allocation to produce a register-transfer level circuit in
structural VHDL. This circuit can then be input to a
commercial tool set for low-level logic synthesis, place-
ment and routing, and translation to device-speci�c for-
mat.

Front end

Hardware Constraints Combined
Scheduler

and Datapath

Allocator

Behavioral VHDL specification

structural VHDL implementation

Behavioral Simulator

Optimizer

Dependence

Flow Graph
Interactive,

symbolic
debugger

.

Figure 1: High-Level Synthesis System

3 Behavioral VHDL

VHDL is a language for describing digital electronic sys-
tems. It has been adopted as a standard by the Insti-
tute of Electric and Electronic engineers (IEEE) in the
US [7, 1]. It allows description of the structure of the
design (i.e. how it is decomposed into sub-designs, and
how those sub-designs are interconnected). It also al-
lows the speci�cation of the function of designs using
familiar programming language forms.

The primary unit of behavioral description of
VHDL is the process. A process is sequential body of
code which can be activated in response to changes in
state. Statements in a process can execute concurrently.
A process is speci�ed in a process statement, with the
syntax in Figure 2.

process statement ::=
[process label :] Process [(sensitivity list)]

process declarative part
Begin

process statement part
End Process [process label];

Figure 2: Process Statement Syntax

A process may contain a number of signal assign-
ment statements for a given signal, which together form
a driver for the signal. In order to model signals with
multiple drivers, VHDL uses the notion of resolved
types for signals. A resolved type includes in its def-
inition a resolution function, which takes the values of
all the drivers contributing to a signal, and combines
them to determine the �nal signal value. A process exe-
cutes all of the sequential statements, and then repeats,
starting again with the �rst statement. The execution
of a process is semantically equivalent to an execution
of an in�nite loop in Figure 3.

in�nite loop : Loop
Begin
...
End Loop in�nite loop;

Figure 3: In�nite Loop

A process may suspend itself by executing a wait
statement. If the sensitivity list is included in the header
of a process statement, then the process is assumed to
have an implicit wait statement at the end of its state-
ment part. The following two segments of VHDL code
in Figures 4 and 5 are semantically equivalent.

Communication between processes is provided
through the shared signal values. All the processes have
a global view of the signals, once a signal is modi�ed,

all the processes waiting for that signal, execute the
conditions in the wait statements. They then either re-
suspend themselves if the condition is false or continues
with the next statement after the wait, if the condition
is true.

Process

Begin
...
Wait On s1;
End Process;

Figure 4: Process without sensitivity list

Process(s1)
Begin
...
End Process;

Figure 5: Process with sensitivity list

4 Intermediate Representation -

Dependence Flow graphs

We use the dependence ow graph (dfg) as our interme-
diate representation. The dfgs were developed for com-
piling imperative languages for data ow architectures.
Dependence ow graphs integrate data and control de-
pendence information into a single structure, making
e�cient algorithms for program analysis and optimiza-
tion possible. They are also executable.

A dependence ow graph consists of set of nodes
representing operations and a set of edges representing
the dependencies and precedence relations that exist be-
tween those operations. If a node, say noded needs a
node computed by nodes, then there must be a path
from nodes to noded. Similarly if there is a dependence
between two statements in the source program, then the
must be a path between the corresponding nodes in the
dependence ow graph. Control dependencies are rep-
resented by switches and merges that routes data and
resource dependencies to several destinations based on
the control condition's value.

We extend dependence ow graphs to model the
timing information present in a speci�cation written in
behavioral VHDL, and to model parallelism and com-
munication for a group of concurrently executing se-
quential processes. One of the most signi�cant addition
to the dfgs to handle communicating processes in VHDL
is the wait node. The semantics of the wait node are

equivalent to that of the wait statement in VHDL. The
inputs to the wait statements are the signal to wait on,
the condition and the time. The dfg in Figure 6 shows
the e�ects of a wait statement.

s2 s3wait

s1

s2 s3merge

 s1

switch
s1 s2 s3

wait
s1 s2 s3

end

start

signal
output

signal
output

const

const

’0’

’1’

signal
input

negate

signal
output

resource dependence

data dependence

.

oscillate: process

begin

 s1 <= ’0’;

 wait 25 ns;

 s1 <= ’1’;

 s2 <= not(s3);

 wait 25 ns;

end process oscillate;

Figure 6: Example of a dfg with wait statement

5 Translating to DFG - Front

End

The parser generates an abstract syntax tree from a be-
havioral VHDL description. Then, the dfg is generated
from the syntax tree. The algorithm has two phases:
in phase one the initial dfg is generated by walking the
abstract syntax tree. Arcs for each identi�er are routed
into and out of every control region, keeping track of the
name of the arc carrying the value of the each identi�er.

One of the most important aspects of this research
is the capability to formally verify our tools: we must
show that our translation is correct by showing that
the con�guration given by the VHDL speci�cation is
equivalent to the one resulting from the execution of
the dfgs according to their operational semantics.

To exploit all the parallelism within a single con-
trol region we perform a dfg-dfg transformation in the
second phase. The transformation removes the arcs of
identi�ers from the control regions that do not use them.
The transformation can be done in a single pass over the
dfg if we process nested control regions from the inner-
most to outer most.

6 Behavioral Simulator

This is subject to further investigation. The idea is to
model every node in the dfg with a VHDL entity and
architecture describing its behavior.

7 Current Status

The dependence ow graph package that we use is called
Pigdin, and it was originally written at Cornell Univer-
sity and then later modi�ed at Auburn University. We
have completed the extensions that are needed to model
VHDL to that package, and the compilation phase from
VHDL to DFG. The Datapath Allocator has also be-
ing completed by another researcher. We are currently
working on the Simulator and Optimizer.

References

[1] P. J. Ashenden. VHDL Cookbook. Dept. Computer
Science, University of Adelaide, South Australia, 1st
edition, July 1990.

[2] M. Beck, R. Johnson, and K. Pingali. From control
ow to data ow. Journal of Parallel and Distributed
Computing, 1991.

[3] J. Bhasker and H.-C. Lee. An optimizer for hard-
ware synthesis. IEEE Design and Test, pages 20{36,
Oct. 1990.

[4] R. Camposano, R. Bergamaschi, C. Haynes,
M. Payer, and S. Wu. The ibm high-level synthe-
sis system. In R. Camposano and W. Wolf, editors,
High-Level VLSI Synthesis. Kluwer Academic Pub-
lishers, 1991.

[5] R. Chapman. Veri�ed High Level Synthesis. PhD
thesis, Cornell University, Ithaca, New York, Jan.
1994.

[6] D. Hwang. Using Untimed CSP to Formally Ver-
ify Compilation of VHDL for High Level Synthesis.
PhD thesis, Auburn University, Auburn, Alabama,
Aug. 1995.

[7] IEEE. IEEE Standard VHDL Language Reference
Manual, 1987. IEEE std 1076, IEEE Press.

[8] K. Pingali, M. Beck, R. Johnson, M. Moudghill, and
P. Stodghill. Dependence ow graphs: An alge-
braic approach to program dependencies. In 18th
Annual ACM Symposium on Principles of Program-
ming Languages, pages 67{78, Jan. 1991.

