
Effort Estimation in Component-Based
Software Development: Identifying Parameters

Randy K. Smith
The University of Alabama

P.O. Box 870290
Tuscaloosa, Al 35487-0290

rsmith@cs.ua.edu

Introduction
Traditional software development is characterized

by the structured programming paradigm introduced in the
late 60’s and early 70’s. This paradigm relies on top-down
functional decomposition to derive software modules. The
structured programming paradigm provides a monolithic
view of the software development process. Traditional
software effort estimation models capture this monolithic
view of software development. In these models, software
effort is projected at the large-grained system level [1,4].

Contemporary development practices characterize
a software application as interacting, independent
components. These components may be Commercial-Off-
The-Shelf (COTS) components, internally developed
reusable components or newly developed software artifacts.
To accurately predict effort in Component Based Software
Development (CBSD), a fine-grained approach is needed to
identify and classify the relevant cost factors.

The limitations of traditional models are
problematic for effort estimation in CBSD. Effort
estimation in CBSD is concerned with deriving estimations
for small, concurrent development projects. The small
projects allow for quantitative and direct measurements of
the factors influencing cost. The measured factors need to
be continuous and easily transferable from project to
project. The limitations of traditional models demonstrate
the need for a new approach to effort estimation in CBSD.

Description of Research
The primary characteristic of CBSD that is not

captured by traditional cost estimation models is the effect
of scheduling at the component level. Components may be
developed early or late relative to a given project; also the
schedule for a given component may be compressed or
relatively spread out. In our work, we treat time as a
“snapshot” in order to examine the state of the system. A
snapshot consists of one “time-unit”; in our work, we
consider the impact of varying the time intervals associated
with one unit.

In CBSD, a programmer can be working on multiple
components at any given time. Conversely, at any given
time a component may have multiple developers. During a
single time unit, the project can have multiple components
under development by multiple programmers. The

following figure captures the project state at a single time
unit.

This approach to effort estimation is captured by a
three dimensional view of the development process. In this
three dimensional model, the x axis captures the component
under development, the y axis represents time and the z axis
portrays the programmers on the project. The following
diagram displays a three-dimensional view of the
development process.

The primary thrust of this research involves the
metrics and properties of CBSD that can be derived by
passing planes through the three dimensional model. These

ProgrammersComponents

Assignments

Time

Programmer

Component

planes are called “contextual planes.” By passing a plane
through the model that is perpendicular to an axis, we
capture the “context” of the development activity as it
relates to the other two dimensions. For example, by
passing a plane perpendicular to the time axis, we can
examine the number of components and the number of
developers active for a particular time unit (see the
following figure). By passing a plane perpendicular to the

component axis, we can examine the number of
programmers working on a particular component and the
number of time units required by the component (see the
figure below). This view of CBSD allows an effort
estimation model to examine metrics and effort factors at a
fine-grained level of detailed that is not captured by
traditional effort estimation models.

Using this concept of components, time units and
programmers, we can derive a suite of metrics that
characterizes the effect of scheduling on CBSD. We have
developed formal definitions of these metrics. However,
for the sake of brevity, the metrics are informally described
below.

• Intensity-The ratio of the quantity of actual time spent
on a component to the number of time units scheduled
for the component.

• Concurrency-The degree to which multiple
programmers are working simultaneously on a single
component.

• Fragmentation-The degree to which a single
programmer is working simultaneously on multiple
components.

• Component Project Experience-The number of
components that have been completed as part of the
project prior to work beginning on a particular
component.

• Programmer Project Experience-The number of
components that have been previously completed by
the programmers assigned to a particular component.

• Team Size-The number of programmers assigned to a
particular component.

These metrics provide a starting point to examine
effort estimation in CBSD. The metrics capture the
dynamic nature of component development that
distinguishes the paradigm from traditional software
development. In order to determine the application of the
metrics to effort estimation, three research questions must
be answered.

Question 1 Which of the proposed metrics best
predict component development effort?

The processes involved in CBSD differ from those
of traditional software development. The proposed metrics
represent a new area of research in measuring the processes
of CBSD. Their efficacy in estimating effort must be
determined.

Question 2 Which of these proposed metrics
significantly add to the predictive ability
of COCOMO?

COCOMO is a well-studied and accepted effort
estimation model. By augmenting the COCOMO model
with the proposed metrics, a new model can build upon the
experience inherent in the COCOMO technique.

Question 3 Can the proposed metrics be used as the
basis for a more parsimonious substitute
for COCOMO?

This research study addresses six quantitative
metrics for CBSD. An effort estimation model that
incorporates a few quantitative parameters would be
beneficial to the software industry. It would provide the
groundwork for further exploration into effort estimation in
CBSD.

Empirical Study
In an effort to answer these research questions, a

formal research study has been undertaken with data
provided by a regional software contractor that specializes

Programmers

Components under Development at a given time unit

Comp. 1 Comp. 2 Comp. 3

Programmers

Development activity for a single component

1 2 3 4 5 6
Time

in information management solutions for state
governments. The firm is currently under contract to
provide the state government with a client-server solution
to replace a COBOL-based ISAM database system. The
legacy system contains over 3000 screens and 1 million
lines of COBOL code. The new solution will incorporate
client-server databases and end-user systems deploying a
contemporary windowing operating systems. The new
system will support in excess of 400 users distributed
through a statewide network. The system will support
departmental accounting, a large-scale bidding system for
state infrastructure, inventory control and departmental
personnel systems.

The 16-member development team has duties
distributed among software development, computer
networking and database administration. The development
environment consists of a series of networked workstations
utilizing a windowing operating system. The application
development environment consists of COTS libraries,
application generators, database systems, and internally
developed domain specific reuse libraries.

There are two types of data examined in this study:
product data and process data. The product data for this
study were obtained from Hierarchical-Input-Process-
Output (HIPO) diagrams for each of over 400 components.
Using the preliminary HIPO diagrams, Unadjusted
Function Points (UFP) were computed for each HIPO using
the counting rules outlined by Dreger [2]. Function Points
are a technology independent measure of the functionality
of a system as seen by the user [2, 4].

The process data are obtained from the time
accounting system used for billing. The data includes a
daily activity log giving:

• The date the work was done.
• The task number on which the work was done.
• The identification number of the employee performing

the work.
• The number of hours worked in quarter hour

increments.

From this log, a mapping is made from task number to
HIPO number and from the employee identification
number to employee job title. The job title is used as a
relevant estimate of experience.

Data Analysis
In order to compare the predictive ability of the

component-based parameters against a known model,
organic-mode Intermediate COCOMO estimates were
calculated for the components of this project. An
additional measure of programmer experience was obtained
by surveying the team in regards to their experience in
general and their experience with the various factors
involved in this development environment. The experience
data is used by the Intermediate COCOMO model. The
Unadjusted Function Point was used to determine Lines of

Code estimates for input into the Intermediate COCOMO
model. After determining a Lines of Code estimate, each
HIPO was examined to determine the impact of the 15 cost
factors required by the Intermediate COCOMO Model.
Effort estimations were made for each component using the
Component Level Estimation Form (CLEF) given by
Boehm [1].

The data covers development efforts for 400+
components. The data will first be subjected to a
COCOMO analysis to establish a baseline for addressing
the research questions. Question 1 will be addressed by
subjecting the six CBSD metrics and the actual effort data
to a correlation analysis. Using this analysis, we can
determine metrics that affect effort. In a split-half analysis,
we will use approximately half of the component data and
the results of the correlation analysis to address question 2.
The COCOMO model will be augmented by the CBSD
metrics and a regression performed. If the regression
demonstrates that this augmented model is more predictive
than our COCOMO baseline, we will validate the resulting
model using the second half of the component data.
Finally, again using a split-half analysis, we will examine
the CBSD metrics augmented with size and reuse metrics
to answer question 3. This examination will use a
regression analysis compared to the baseline COCOMO
estimates. If improvement is found, we will validate the
new model using the second half of the component data.

Conclusion
This research identifies and quantifies parameters

that impact development effort in CBSD. The parameters
identified in this research specifically examine the
characteristics of CBSD. They capture data that is
available at the fine-grained level of detailed afforded by
CBSD. This fundamental research lays the foundation to
examine the processes utilized during CBSD. The research
has significant implications in the areas of effort modeling,
CBSD process understanding, and continued dialog of the
differences between CBSD and traditional development
practices

References
1. Boehm, B., Software Engineering Economics,

Prentice-Hall, Inc., 1981.

2. Dreger, J., Function Point Analysis, Prentice-Hall,
Inc., 1989.

3. Gries, D., “On Structured Programming” in Software
Design Strategies, Bergland, G., Gordon, R., eds.,
IEEE Computer Society, 1981.

4. Fenton, N., Pfleeger, S., Software Metrics: A Rigorous
and Practical Approach, Second Edition, PWS
Publishing Company, 1997.

