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Abstract

This paper describes a system, WOLFIE (WOrd Learn-
ing From Interpreted Examples), that acquires a se-
mantic lexicon from a corpus of sentences paired with
representations of their meaning. The lexicon learned
consists of words paired with meaning representations.
WOLFIE is part of an integrated system that learns
to parse novel sentences into semantic representations,
such as logical database queries. Experimental results
are presented demonstrating WOLFIE’s ability to learn
useful lexicons for a database interface in four differ-
ent natural languages. The lexicons learned by WOLFIE
are compared to those acquired by a competing system
developed by Siskind (1996).

Introduction

My research is in artificial intelligence, and uses insights
from several of its subfields, including machine learning,
natural language processing, and inductive logic pro-
gramming. My dissertation research has demonstrated
the application of symbolic machine learning techniques
to the area of natural language processing (NLP).

NLP systems are a crucial component in many intel-
ligent systems. However, the most successful systems
to date for parsing natural language into semantic rep-
resentations have relied on human engineering efforts.
Building NLP systems is a long, arduous process, often
requiring the expertise of a trained linguist, and typi-
cally resulting in a system that is brittle and narrowly
applicable. Therefore, many researchers have begun to
explore empirical, or corpus-based, methods for natural
language processing. This paradigm combines the use
of corpora, statistics, and machine learning methods to
automatically build NLP systems.

My dissertation research extends the work in this field
by addressing the automated acquisition of semantic
lexicons. For this work, I helped develop an integrated
natural language learning system. Given a corpus of
annotated sentences, the system acquires a lexicon and
parser to process the sentences. The system’s goal is
to learn to process novel sentences from the same do-
main as the training corpus. My focus has been on
the development of the lexical acquisition component. I

have performed experiments comparing this component
to the only other previous system of its kind (Siskind
1996), with my system yielding superior results.

Semantic Lexicon Acquisition

Although a few others (Siskind 1996; Hastings & Lyti-
nen 1994; Brent 1991) have presented systems for se-
mantic lexical acquisition, this work is unique in com-
bining several features. First, interaction with a system,
CHILL (Zelle 1995), that learns to parse sentences into
their semantic representations, is demonstrated. Sec-
ond, it uses a fairly simple batch, greedy algorithm that
is quite fast and accurate. Third, it is easily extendible
to new representation formalisms. Finally, it is able to
bootstrap from an existing lexicon.

In our definition of the semantic lexicon acquisition
task, we are given a set of sentences, each consisting
of an ordered list of words and annotated with a single
semantic representation, and we assume that each rep-
resentation can be fractured into all of its components
(Siskind 1992). Given a valid set of components, they
can be constructed into a valid sentence meaning using
a relation we will call compose.

The goal is to find a semantic lexicon that will as-
sist parsing. Such a lexicon consists of (phrase, mean-
ing) pairs, where the phrases and their meanings are
extracted from the input sentences and their represen-
tations, respectively, such that each sentence’s repre-
sentation can be composed from a set of components
each chosen from the potential meanings of a (unique)
phrase appearing in the sentence. If such a lexicon is
found, we say that the lexicon covers the corpus. Ide-
ally, we would like to minimize the size and ambiguity
of the learned lexicon, since this should ease the parser
acquisition task.

Note that we allow phrases to have multiple mean-
ings (homonymy) and for multiple phrases to have the
same meaning (synonymy). Also, some phrases in the
sentences may have a null meaning. We make only a
few fairly straightforward assumptions about the in-
put. First is compositionality, i.e. the meaning of a
sentence is composed from the meanings of phrases in
that sentence. Second, we assume each component of



Derive possible phrase/meaning pairs by sampling the
input sentence/representation pairs that have phrases
in common, and deriving the common substructure in
their representations.

Until the input is covered, or there are no remaining
possible pairs do:

1) Add the best phrase/meaning pair to the lexicon.
2) Constrain the remaining possible phrase/meaning
pairs to reflect the pair just learned.

Return the lexicon of learned phrase/meaning pairs.

Figure 1: WoOLFIE Algorithm Overview

the representation is due to the meaning of a word
or phrase in the sentence, not to an external source
such as noise. Third, we assume the meaning for each
word in a sentence appears only once in the sentence’s
representation. The second and third assumptions are
preliminary, and we are exploring methods for relaxing
them. If any of these assumptions are violated, we do
not guarantee coverage of the training corpus; however,
the system can still be run and learn a potentially useful
lexicon.

Overview of the WOLFIE Algorithm

In order to limit search, a greedy algorithm is used
to learn phrase meanings. At each step, the best
phrase/meaning pair is chosen, according to a heuristic
described below, and added to the lexicon. The ini-
tial list of potential meanings for a phrase is formed
by finding the common substructure between sampled
pairs of representations of sentences in which the phrase
appears. In the current implementation, phrases are
limited to at most two words.

The WOLFIE algorithm, outlined in Figure 1, has
been implemented to handle two kinds of semantic rep-
resentations. One is a case-role meaning representation
based on conceptual dependency (Schank 1975). For
example, the sentence “The man ate the cheese” is rep-
resented by: [ingest, agent:[person, sex:male,
age:adult], patient:[food, type:cheese]]. Ex-
periments in this domain were presented in Thompson
(1995). The second representation handled is a log-
ical query domain, where natural language questions
are mapped directly into Prolog queries that can be ex-
ecuted to produce an answer. For example, “What is
the capital of the state with the biggest population?”
is mapped into the query: answer(C, (capital(s,C),
largest(P, (state(S), population(S,P))))).

We now briefly describe the algorithm. We first select
a random sample of the sentences that each one and two
word phrase appears in, and derive an initial set of pos-
sible meanings for each phrase. This is done by deriving
common substructure between pairs of representations
of sentences that contain these phrases. After deriv-
ing these initial meanings, the greedy search begins.
The heuristic used to evaluate candidate pairs has five

weighted components:

1. Ratio of the number of times the phrase appears with

the meaning to the number of times the phrase ap-
pears, or P(meaning|phrase).

2. Ratio of the number of times the phrase appears with

the meaning to the number of times the meaning ap-
pears, or P(phrase|meaning).

3. Frequency of the phrase, or P(phrase).

4. Percent of orthographic overlap between the phrase

and its meaning.

5. The generality of the meaning.

At each step, the candidate word/meaning pairs are
ranked according to this heuristic, and the best pair
is added to the lexicon. Step two of the loop con-
strains the possible meanings of the remaining un-
learned phrases to take into account the meaning just
learned. Such constraints exist because of the assump-
tion that each portion of the representation is due to at
most one phrase in the sentence. Therefore, once part of
a sentence’s representation is covered by the meaning
of one of its phrases, no other phrase in the sentence
can be paired with that meaning. The greedy search
continues until the lexicon covers the training corpus.

Experimental Results

This section describes our experimental results on a
database query application. The corpus contains 250
questions about U.S. geography paired with logical rep-
resentations. To evaluate the learned lexicons, we mea-
sured their utility as background knowledge for CHILL.
This is performed by choosing a random set of 25 test
examples and then creating lexicons and parsers using
increasingly larger subsets of the remaining examples.
The test examples are parsed using the learned parser,
the resulting queries submitted to the database, the
answers compared to those generated by the correct
representation, and the percentage of correct answers
recorded. We repeated the above steps for ten different
random splits of the data. We compared our system to
that developed by Siskind (1996). Siskind’s system is
an incremental learner, while ours is batch. To make
a closer comparison between the two, we ran his in a
“simulated” batch mode, by repeatedly presenting the
corpus 500 times. Finally, since Siskind has no mea-
sure of orthographic overlap, and it could arguably give
our system an unfair advantage on this data, we ran
WOLFIE with a weight of zero for this component.
Figure 2 shows learning curves for CHILL when using
the lexicons learned by WoLFIE (CHILL+WOLFIE)
and by Siskind’s system (CHILL+Siskind). The upper-
most curve (CHILL+-corrlex) is CHILL’s performance
when given a hand-built lexicon. Finally, the horizontal
line shows the performance of a benchmark, Geobase.
Geobase is a hand-build natural language interface to a
simple geography database containing about 800 facts,
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Figure 2: Accuracy on English Geography Corpus
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Figure 3: Accuracy on All Four Languages

and is supplied with Turbo Prolog 2.0 (Borland Inter-
national 1988).

The results show that a lexicon learned by WOLFIE
led to parsers that were almost as accurate as those
generated using a hand-built lexicon. The best accu-
racy is achieved by the hand-built lexicon, followed by
WOLFIE, followed by Siskind’s system. All the systems
do as well or better than Geobase by 225 training ex-
amples.

We also had the geography query sentences trans-
lated into Spanish, Japanese and Turkish, and ran sim-
ilar tests to determine how well WOLFIE could learn
lexicons for these languages, and how well CHILL could
learn to parse them. Figure 3 shows the results. The
performance differences among the four languages are
quite small, demonstrating that our methods are not
language dependent.

Conclusions

Acquiring a semantic lexicon from a corpus of sen-
tences labeled with representations of their meaning is
an important problem that has not been widely studied.
WOLFIE demonstrates that a fairly simple greedy sym-
bolic learning algorithm performs fairly well on this task
and obtains performance superior to a previous lexicon
acquisition system on a corpus of geography queries.
Our results also demonstrate that our methods extend
to a variety of natural languages besides English.

Most experiments in corpus-based natural language
have presented results on some subtask of natural lan-
guage, and there are few results on whether the learned
subsystems can be successfully integrated to build a
complete NLP system. The experiments presented in
this paper demonstrated how two learning systems,
WoLFIE and CHILL were successfully integrated to
learn a complete NLP system for parsing database
queries into executable logical form given only a sin-
gle corpus of annotated queries.
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