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Abstract

Computer science programs prepare students to construct systems. System construction requires
reasoning about the interactions, capabilities, and limitations of components. A good degree program
should teach students the tools that assist in these tasks. Logic is the most fundamental such tool, as
industry has begun to appreciate. Software developers analyze program behavior during design, de-
bugging, and testing. Hardware designers perform minimization and equivalence checking on circuits.
Operating system designers validate routing, scheduling, and synchronization protocols. Formal logic
underlies all of these activities. A solid preparation in applied logic should therefore increase students’
abilities to reason about complex systems.

Unfortunately, few undergraduate computer science curricula prepare students adequately in logic.
The typical student sees a few weeks of truth tables and propositional logic in a discrete mathematics
course. Such a cursory introduction does not illustrate how applying logic helps with practical work.
Upper-level applications courses neither discuss the role of logic nor reiterate the logical concepts cov-
ered in earlier courses. Accordingly, students perceive logic as irrelevant to their careers. Departments
must modify their curricula to rectify this situation.

We plan to develop a series of modules that seamlessly integrate logic and logical software tools
into existing, widely taught computer science courses. Integration over several semesters melds theory
and practice, gives students concrete examples of how logic serves as a valuable tool, and increases
students’ abilities to absorb the logical concepts by repeated reinforcement. Emphasizing software tools
makes the logical applications concrete and appeals to students with diverse learning styles. Modules,
complete with lecture notes, presentations, problem sets, and tools, would facilitate curricular treatment
of applied logic at all levels of college education, particularly in departments with scarce resources.

Modern computing is undergoing a subtle revolution. The Web has turned our computers into bank
tellers, shops, and various information devices. Computers support more critical functions, such as air
traffic controls, patient supervision, and tax collection. These applications demand a higher degree of
safety, security, and robustness from computer systems at all levels. Even popular press publications, such
as the Economist, the New York Times, and Byte Magazine, have joined the growing choir of voices calling
for increased system reliability in computing [6, 14, 19, 29].

Computer science as a discipline has already yielded several techniques for implementing safe, se-
cure, and robust systems. Significant progress has been made in the development of mathematically based
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programming languages, techniques and tools for specifying, designing, and verifying such systems. Pro-
gramming languages such as Java include well-known features for supporting safe and secure code develop-
ment [16]. Designers have applied specification and analysis techniques to a wide range of projects, includ-
ing avionics software systems, air-traffic control systems, nuclear reactor controllers, telephone switching
systems, and NATO security policies [7]. Hardware designers at companies such as Intel and IBM develop
state-of-the-art microprocessors using formal verification systems based on research in applied logic and
algorithms [26, 32]. Program analysis techniques such as static debugging [37] and extended static check-
ing [11] have been applied to corporate consumer products; requirements analyses have detected flaws in
commercial word processors [22]. The resulting improvements in system quality attest to the utility of these
techniques in real-world system construction [9, 10, 23].

Computer science education needs to catch up. Everyone involved in information technology, from
designers to programmers to managers to researchers, must understand the mathematical and logical foun-
dations of advanced system construction. Unfortunately, the typical computer science curriculum makes no
systematic attempt to expose students to the relationship between these foundations and practical computer
science.

Developing Safe, Secure, and Robust Systems Different applications require different degrees and
forms of safety, security, and robustness. A Web administrator, for example, would like guarantees that
CGI-scripts never cause core dumps. Electronic commerce software should guarantee that sensitive infor-
mation is always encrypted when it enters a public network. Air-traffic control systems should raise warn-
ings whenever aircraft are too close together. Identifying these requirements is a domain-specific skill. One
cannot reasonably define the requirements on a banking system, for example, without knowing the kinds of
transactions users need to perform and the level of sensitivity of the information used in each transaction.
The skills of stating requirements and analyzing systems, however, are largely domain-independent. They
involve expressing ideas in formal notations and establishing relationships between statements.

Logic provides the mathematical foundation for these activities [36]. Its role in reasoning about systems
is evident in several situations:

� Software developers must analyze the behavior of their programs. Assertions about behavior are
logical statements about the language semantics; program analyses derive information related to the
assertions through logical rules [5, 13].

� Hardware designers use gates with a direct correlation to Boolean logic; circuit minimization and
equivalence checking rely on the logical equivalence of designs [18].

� Network designers propose protocols for routing, scheduling, and synchronization. Database design-
ers develop protocols for concurrency control and data locking. Establishing protocol correctness
requires a specification language and corresponding verification framework [20].

In each case, logic serves as a tool for modeling systems and as a language for expressing their desired prop-
erties. It also provides the required analysis frameworks, either through automated decision procedures or
through semi-automatic proofs based on standard techniques such as induction and equational derivations.

Logic’s role in systematic design is not accidental. In addition to being the foundation of computer
science, over the last twenty-five years logic has played an increasing role in application areas. The rela-
tional database model, which is grounded in first-order logic, revolutionized database design and remains
the preeminent model today [8]. Programming language semantics rest on the

�
-calculus and constructive

logic [3]. The ideas of type-safety and garbage collection result from these studies and have finally entered
mainstream computing. Other significant applications abound, as evidenced by research results. To date,
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one-quarter of all ACM Turing Awards have been awarded for contributions related to logic in computer
science [1]. In recognition of this impact, logic is often called “the calculus of computer science”. Indeed,
John McCarthy, winner of the 1971 Turing Award, said in 1960 that “it is reasonable to hope that the rela-
tionship between computing and mathematical logic will be as fruitful in the next century as that between
analysis and physics in the last.”

Students and System Development Skills Developing robust systems requires three main skills: (a)
the ability to identify the robustness requirements for an application; (b) the ability to state robustness
requirements precisely; and (c) the ability to analyze a program relative to its robustness requirements.
Most undergraduates lack these fundamental skills. The investigators have observed that students have
difficulties formalizing statements in logical notations and in developing arguments in support of their
claims. Many, if not most, can describe properties of their own programs only at the implementation level,
not the specification level. Indeed, they often express resentment at being asked to defend the correctness
or other properties of their own programs. Even if they appreciate the connections between reasoning about
programs and good programming, they find that it is too difficult and too time-consuming to perform this
reasoning.

The first observation reflects a long-standing and well-known problem. Almstrum’s studies [2] show
that computer-science students generally have a harder time understanding logical concepts than non-
logical ones. The other three observations, however, are far more disturbing. Not only are students unable
to reason about their programs, they do not even understand why doing so is important; furthermore, they
have developed negative attitudes towards the whole process.

Still, the process is important for computer-based work. Dennis Frailey, a software engineering re-
searcher at Texas Instruments, stressed logical reasoning as one of the crucial skills which most of today’s
computer science graduates lack [15]. One recent Rice University computer science graduate cited this as
one of the two skills she most needed—and failed to learn in college—in her job as a software engineer.
Other colleagues, both at other universities and at other companies, have raised similar complaints. The
problem cannot be dismissed as a case of universities and industry disagreeing on the skills required of de-
gree holders. Understanding why a program solves a particular problem is a fundamental skill, one which
employers value in their employees. That students fail to learn or appreciate this fundamental skill suggests
a problem with existing curricula.

Where Curricula Fall Short Two main problems plague current curricula:

1. The peripheral role of logic in current curricula fosters the impression that logic is irrelevant to stu-
dents’ careers. Those courses that students consider directly relevant to their careers discuss neither
the potential applications of logic nor the logical concepts involved in reasoning about the material.

2. Instead, basic logical concepts are typically relegated to a few weeks of a discrete mathematics
course, covering truth tables, propositional logic, and basic proof techniques. Since applications
to realistic problems are beyond the students’ domain knowledge, these courses often ignore them.
Upper-division logic courses, offered at few universities and taken by fewer students, ignore applica-
tions and come too late in students’ careers.1

Simply stated, the problem is a separation of theory and practice; few students appreciate the utility of
theoretical material in isolation. Furthermore, two flaws in the traditional presentation of logic compound
the problem:

1Alternately, some schools have students take logic through the philosophy or math department; while such classes may spend
more time on some aspects of logic, they still do not emphasize computer science applications.
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3. Courses present only limited views of logic. Students see logic mainly in the context of Boolean al-
gebra or simple hardware components, which overlooks logic’s other roles in specification languages
and decision procedures. This reinforces the belief that logic is irrelevant to most software.

4. Courses present logic in a deductive, passive style that directly conflicts with most students’ learning
styles. Accordingly, few students internalize or appreciate the logic material.

Learning styles have a large impact on how students respond to course material [27]. Research on learning
styles attempts to correlate common personality traits with success under particular styles of instruction, as-
signments, and assessment. Two students with vastly different learning styles can respond quite differently
to the same material. Felder [12] describes learning styles along five axes: visual vs. verbal, inductive
vs. deductive, active vs. reflective, sequential vs. global, and sensory vs. intuitive.

Conventional logic curricula target intuitive, verbal, deductive, reflective, and sequential learners. Sur-
veys of engineering students suggest that this set of preferences accounts for roughly a third of male students
and a fifth of female students [28]. While these figures serve only as a guideline, they strongly suggest that
a wider variety of teaching methods are needed to encourage students to develop strong skills in applied
logic. Similar results have already been seen in other disciplines; Tobias’ review of successful undergradu-
ate science curriculum reform efforts highlights several cases in which accommodation to different learning
styles played an important role [34].

In conjunction, the four problems listed in this section result in few computer science undergradates
with even the foundation, much less well-developed skills, needed to develop safe, secure, and robust
systems. Addressing only a subset of the problems is insufficient. Improving students’ reactions to logical
techniques and their ability to use them in practical settings requires curricular enhancements that address
all four problem areas simultaneously.

The Proposed Solution: We aim to integrate applied logical reasoning and logical software tools into
existing, widely-taught computer science courses. This approach is well-suited to addressing the problems
with existing curricula for several reasons:

1. Seamless integration should greatly increase students’ motivation. It provides concrete examples of
how logic serves as a valuable tool in practical work. The success of covering context-free grammars
in compilers courses proves the utility of such mergers. Students who complain about the irrelevance
of other material in theory of computation courses accept lectures on context-free grammars in the
context of parser design.

2. Integration and the use of logical software tools help students who grasp concepts better in concrete,
as opposed to abstract, learning situations. As students work with software tools to analyze their pro-
grams, they understand what theorems mean in a specific domain and how proofs verify relationships
between claims.

3. Finally, integrating material into several courses reinforces logical concepts over the entire under-
graduate curriculum, thus increasing students’ ability to absorb the material.

We plan to develop ready-made teaching modules with guidelines on how to integrate them into stan-
dard courses (such as databases, artificial intelligence, software engineering, architecture, compilers, and
concurrent programming). The modules, each providing roughly three weeks of material, would allow
departments to integrate material on logical modeling and robust system development without introducing
new courses. In most cases, these would modules seek to apply the perspective of logical modeling and ro-
bust specifications to existing topics in standard curricula. Including such modules in a class would require
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displacing only minimal material in most cases. Providing a series of modules would increase the oppor-
tunities for departments to cover logical material across multiple courses in a uniform fashion; this goes
beyond efforts reported at other institutions that integrate formal material into isolated courses [17, 25, 35].
Each module should consist of a short text book, on-line (HTML or PowerPoint) lecture notes, presenta-
tions, programming exercises, problem sets, and guidelines for using appropriate software tools.

Justification for the Proposed Solution: Several people, including both researchers and educators, have
called for a wider integration of logical concepts into the CS curriculum [21, 30, 33]. A survey of com-
puter science faculty indicates a general belief that more rigorous techniques are needed in undergraduate
software development courses [31]. In addition, the investigators’ experience supports the integration of
logical software tools and the overall module approach. Rice University’s sophomore-level course in dis-
crete mathematics is now almost entirely tool-based, using combinations of Mathematica and a logical
tool called Hyperproof [4] to reinforce mathematical concepts. Student response to the approach has been
enthusiastic.

As a proof-of-concept, two of the authors, Professor Felleisen and Dr. Fisler, developed and taught a
pilot Software Engineering module in the Fall of 1998. Students learned how to state formal properties
about simple programs, and explored equational, inductive proofs for establishing those properties using a
theorem prover called ACL2 [24]. The pilot gauged how well logic could be integrated into an applications
course, both in terms of the material, and also from the students’ perspective. Students’ initial difficulties
with the material underscored their problems in thinking about correctness criteria for their programs. Over-
all though, students’ reaction to the material was extremely positive. Their evaluations cited the material as
interesting, useful, and thought-provoking.

Conclusion: Computer Science curricula need to provide students with a solid foundation in the rea-
soning skills required to design and develop computational artifacts. Logic, the so-called “calculus of
Computer Science”, underlies most approaches to constructing safe, secure, and robust systems. Curricula
should therefore develop students’ abilities to use logic as a tool in applied settings. We believe that pro-
viding concrete modules of teaching materials – including lecture notes, assignment suggestions, and tool
guidelines – would best facilitate departments’ efforts to include this material in their curricula. We call on
other researchers and educators to help develop and test these modules in their courses.
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