CS 439, Spring 2012
Malloc Lab: Writing a Dynamic Storage Allocator
Due: March 9, 5:59PM

1 Introduction

In this lab you will be writing a dynamic storage allocator fo programs, i.e., your own version of the
mal | oc, f ree andr eal | oc routines. You are encouraged to explore the design spaatvely and
implement an allocator that is correct, efficient and fast.

2 Logistics

You may work in a group of up to two people. Any clarificatiomsdaevisions to the assignment will be
posted on the course Web page.

You have two weeks for this lab. This lab is considerably moan@plex than the earlier labs, and you have
a lot more design freedom (and a lot less explicit designanad.)Start early!

Note: This project will be graded on the UTCS public linux machinédthough you are welcome to do
testing and development on any platform you like, we can asiséiyou in setting up other environments,
and you must test and do final debugging on the UTCS publig limachines. The statement “It worked on
my machine” will not be considered in the grading process.

3 Hand Out Instructions

We provide a file malloclab-handout.tar that contains a tatador your program along with a number of
useful helper functions. Get it from the class web page., E.qg.

uni x> wget http://ww. cs. ut exas. edu/ users/ dahlin/ d asses/ 439/ | abs/ mal | ocl ab- handout . t ar

Start by copyingmal | ocl ab- handout . t ar to a protected directory in which you plan to do your
work. Then give the command:ar xvf mal | ocl ab- handout . t ar. This will cause a number of
files to be unpacked into the directory. The only file you wél imodifying and handing in iem c¢. The
mdr i ver . c program is a driver program that allows you to evaluate tlop@ance of your solution. Use

the commandrake to generate the driver code and run it with the commahddri ver -V. (The-V
flag displays helpful summary information.)

Looking at the filenm ¢ you'll notice a C structurd eaminto which you should insert the requested
identifying information about the one or two individualsneprising your programming tearo this right
away so you don't forget.

When you have completed the lab, you will hand in only one fil® (c), which contains your solution.

4 How to Work on the Lab

Your dynamic storage allocator will consist of the followifour functions, which are declared imm h
and defined inmm c.

i nt mm.init(void);

void *mm mal | oc(si ze_t size);

void mmfree(void *ptr);

void *rmmreal l oc(void *ptr, size_t size);

Themm c file we have given you implements the simplest but still fior@lly correct malloc package that
we could think of. Using this as a starting place, modify th&sctions (and possibly define other private
st at i ¢ functions), so that they obey the following semantics:

e Mmi ni t: Before callingnmnal | oc mmr eal | oc or nmf r ee, the application program (i.e.,
the trace-driven driver program that you will use to evauaiur implementation) callsmi ni t to
perform any necessary initializations, such as allocdtiegnitial heap area. The return value should
be -1 if there was a problem in performing the initializatiGmotherwise.

e mmmal | oc: Thennmumal | oc routine returns a pointer to an allocated block payload déast
si ze bytes. The entire allocated block should lie within the hesgpon and should not overlap with
any other allocated chunk.

We will comparing your implementation to the versionn@l | oc supplied in the standard C library
(I'i bc). Since the i bc malloc always returns payload pointers that are aligned Ihyt8s, your
malloc implementation should do likewise and always rebyte aligned pointers.

e Mmf ree: Thenmf r ee routine frees the block pointed to Ipt r . It returns nothing. This rou-
tine is only guaranteed to work when the passed poirger J was returned by an earlier call to
mmnal | oc or nmr eal | oc and has not yet been freed.

e mmr eal | oc: Themmr eal | oc routine returns a pointer to an allocated region of at leagte
bytes with the following constraints.

— if pt r is NULL, the call is equivalent tomrmal | oc(si ze) ;
— if si ze is equal to zero, the call is equivalentrtmf r ee(ptr) ;

— if pt r isnot NULL, it must have been returned by an earlier cathteral | oc ormmr eal | oc.
The call tommr eal | oc changes the size of the memory block pointed toplby (the old
blocK to si ze bytes and returns the address of the new block. Notice teatddress of the
new block might be the same as the old block, or it might bediffit, depending on your imple-
mentation, the amount of internal fragmentation in the déatk, and the size of theeal | oc
request.

The contents of the new block are the same as those of tha oldblock, up to the minimum of

the old and new sizes. Everything else is uninitialized. é&@mple, if the old block is 8 bytes
and the new block is 12 bytes, then the first 8 bytes of the neakldre identical to the first 8
bytes of the old block and the last 4 bytes are uninitialiZgichilarly, if the old block is 8 bytes

and the new block is 4 bytes, then the contents of the new laoekdentical to the first 4 bytes
of the old block.

These semantics match the the semantics of the corresgdnidbc mal | oc, r eal | oc, andf r ee rou-
tines. Typeran nal | oc to the shell for complete documentation.

5 Heap Consistency Checker

Dynamic memory allocators are notoriously tricky beastprmgram correctly and efficiently. They are
difficult to program correctly because they involve a lot atyped pointer manipulation. You will find it
very helpful to write a heap checker that scans the heap askslit for consistency.

Some examples of what a heap checker might check are:

e Is every block in the free list marked as free?

¢ Are there any contiguous free blocks that somehow escapddsoing?

Is every free block actually in the free list?

Do the pointers in the free list point to valid free blocks?

Do any allocated blocks overlap?

e Do the pointers in a heap block point to valid heap addresses?

Your heap checker will consist of the functiomt mmcheck(voi d) in mm c. It will check any invari-
ants or consistency conditions you consider prudent. lrmsta nonzero value if and only if your heap is
consistent. You are not limited to the listed suggestionsane you required to check all of them. You are
encouraged to print out error messages wimert heck fails.

This consistency checker is for your own debugging duringeligment. When you subnmitm ¢, make
sure to remove any calls tamcheck as they will slow down your throughput. Style points will bieen
for yourmmcheck function. Make sure to put in comments and document what y@alaecking.

6 Support Routines

The memlib.c package simulates the memory system for youardyc memory allocator. You can invoke
the following functions imemnl i b. c:

e void rmemsbrk(int incr): Expands the heap biyncr bytes, whera ncr is a positive
non-zero integer and returns a generic pointer to the fitst bf/the newly allocated heap area. The
semantics are identical to the Urebr k function, except thatremsbr k accepts only a positive
non-zero integer argument.

e voi d *memheap. o(voi d) : Returns a generic pointer to the first byte in the heap.
e voi d *rmemheap_hi (voi d) : Returns a generic pointer to the last byte in the heap.
e si zet nmemheapsi ze(voi d) : Returns the current size of the heap in bytes.

e sizet mempagesi ze(voi d): Returns the system'’s page size in bytes (4K on Linux systems

7 The Trace-driven Driver Program

The driver programmdr i ver . c inthenal | ocl ab- handout . t ar distribution tests yourm c pack-
age for correctness, space utilization, and throughput.dfiver program is controlled by a settedice files
that are included in theal | ocl ab- handout . t ar distribution. Each trace file contains a sequence of
allocate, reallocate, and free directions that instruetditiver to call yoummmal | oc, nmr eal | oc, and
mmf r ee routines in some sequence. The driver and the trace filebaame ones we will use when we
grade your handinm c file.

The driverndr i ver . ¢ accepts the following command line arguments:

e -t <tracedir>: Look for the default trace files in directotyr acedi r instead of the default
directory defined irtonf i g. h.

e -f <tracefil e>: Use one particularr acef i | e for testing instead of the default set of trace-
files.

e - h: Print a summary of the command line arguments.
e - | : Run and measurei bc malloc in addition to the student’s malloc package.
e - Vv: Verbose output. Print a performance breakdown for eadefita in a compact table.

e -V: More verbose output. Prints additional diagnostic infation as each trace file is processed.
Useful during debugging for determining which trace fileasising your malloc package to fail.

8 Programming Rules

¢ You should not change any of the interfacesnn c.

¢ You should not invoke any memory-management related fralls or system calls. This excludes
the use ofmal | oc, cal | oc,free,real |l oc, sbrk, brk or any variants of these calls in your
code.

e You are not allowed to define any globalsirat i ¢ compound data structures such as arrays, structs,
trees, or lists in youmm ¢ program. However, yoare allowed to declare global scalar variables such
as integers, floats, and pointersnim c.

This limitation is to make evaluation of everyones’ size rnamds more fair. You are welcome to
define a static global pointer to an array, struct, tree,sbr You just need to dynamically allocate the
array, struct, tree, or list from heap memory when your pgeka initialized.

e For consistency with thiei bc mal | oc package, which returns blocks aligned on 8-byte boundaries
your allocator must always return pointers that are aligize@-byte boundaries. The driver will
enforce this requirement for you.

9 Evaluation
Otherwise, your grade will be calculated as follows:

e Correctness (20 points).You will receive full points if your solution passes the amiess tests
performed by the driver program. You will receive partiaddit for each correct trace.

¢ Performance (35 points)f your code passes all of the correctness checks, then yoaligible to
receive up to 35 points for performance. If your code doespass the correctness checks, you will
not receive any “performance” points.

Two performance metrics will be used to evaluate your sotuti

— Space utilization The peak ratio between the aggregate amount of memory ystw lriver
(i.e., allocated viarm.mal | oc or rm.r eal | oc but not yet freed viarmf r ee) and the size
of the heap used by your allocator. The optimal ratio equa¥oli should find good policies to
minimize fragmentation in order to make this ratio as clasp@ssible to the optimal.

— Throughput The average number of operations completed per second.

The driver program summarizes the performance of yourattody computing @erformance index
P, which is a weighted sum of the space utilization and through

T
P =wU + (1 — w) min (1,—)
Thibe

whereU is your space utilizatior" is your throughput, and;,. is the estimated throughput bf bc
malloc on your system on the default trade$he performance index favors space utilization over
throughput, with a default ab» = 0.6.

Observing that both memory and CPU cycles are expensiversysisources, we adopt this formula to
encourage balanced optimization of both memory utilizetind throughput. Ideally, the performance
index will reachP = w + (1 —w) = 1 or 100%. Since each metric will contribute at mastand

1 — w to the performance index, respectively, you should not gextoemes to optimize either the
memory utilization or the throughput only. To receive a g@utre, you must achieve a balance
between utilization and throughput.

e Style (10 points).

— Your code should be decomposed into functions and use aslébdalyariables as possible.

— Your code should begin with a header comment that descrimesttucture of your free and
allocated blocks, the organization of the free list, and lyowr allocator manipulates the free
list. each function should be preceeded by a header comima&nti¢scribes what the function
does.

— Each subroutine should have a header comment that deswifilast does and how it does it.
— Your heap consistency checkemcheck should be thorough and well-documented.

You will be awarded 5 points for a good heap consistency areakd 5 points for good program
structure and comments.

10 Handin Instructions

e Make sure you have included your names and UT-EIDs in the mmogram.

e Use the turnin utility to submit your work
e.g.,

uni x> turnin -submt [TA] handin-439-malloclab mmc

e The makefile automates the handin process

uni x> make handi n

Good luck!

The value forT}. is a constant in the driver (9000 Kops/s) that your instniscestablished when they configured the program.

11 Hints

e Go from working system to working systdfryour system doesn’t work, | don't care how fast it runs.
So, in this lab, you cannot receive any “performance” poiiy®u don't get all of the “correctness”
points. So, the first thing to do is to get a simple, workingteys Then progressively enhance its
performance.

Don't forget to use a version control system (e.g., git, rmys) so that you can get back to a working
version when some of your last minute tweaking breaks thitngsnutes before the deadline!

e Do your implementation in stage¥/e recommend that you start by getting yowl | oc andf r ee
routines working correctly and efficiently on the first 9 #ac For starters, buildeal | oc on top
of your existingnal | oc andf r ee implementations. Oncerl | oc andf r ee are bug-free and
well tuned, then should you turn your attention to theal | oc implementation. (To get really good
performance, you will likely need to build a stand-alareal | oc.)

e Understand every line of the malloc implementation in thebi@ok. The textbook has a detailed
example of a simple allocator based on an implicit free ligse this is a point of departure. Don't
start working on your allocator until you understand evieinyg about the simple implicit list allocator.

e Use themdri ver -f option. During initial development, using tiny trace files will sitifp debug-
ging and testing. We have included two such trace fidd®f t 1, 2- bal . r ep) that you can use for
initial debugging.

e Use thendri ver -v and- V options. The- v option will give you a detailed summary for each
trace file. The V will also indicate when each trace file is read, which willghgbu isolate errors.

¢ Initially, compile withgcc - g and use a debugge” debugger will help you isolate and identify
out of bounds memory references. Don't wait for a bug to usedtbugger—stepping through your
code is a good way to make sure everything is working as esgect

e For performance testing, compile with compiler optimiaas enabled (e.ggcc - O).

e Encapsulate your pointer arithmetic in inline functionBointer arithmetic in memory managers is
confusing and error-prone because of all the casting thredgessary. You can reduce the complexity
significantly by writing macros for your pointer operatiot®ee the text for examples.

e Use a profiler.You may find thegpr of tool helpful for optimizing performance.

e Start early!lt is possible to write an efficient malloc package with a feages of code. However, we
can guarantee that it will be some of the most difficult anchigijzated code you have written so far
in your career. So start early, and good luck!

