CS 439, Spring 2012

Lab Assignment 1: Fork/exec

Due: Monday, Jan 30, 5:59PM
Lab Assignment 2a and 2b: Signal handling, Unix Shell
Due: Monday, Feb. 6, 5:59PM

Introduction

The purpose of this assignment is to become more familidr thié¢ concepts of process control and sig-
nalling. You’ll do this by writing a simple Unix shell progmathat supports job control.

Logistics

You may work in a group of up to two people in solving the proiefor this assignment. The only “hand-
in” will be electronic. Any clarifications and revisions toet assignment will be posted on the course Web
page or Piazza.

Note: This project will be graded on the UTCS public linux machinédthough you are welcome to do
testing and development on any platform you like, we can asiséiyou in setting up other environments,
and you must test and do final debugging on the UTCS publig imachines. The statement “It worked on
my machine” will not be considered in the grading process.

Hand Out Instructions

We provide a file shlab-handout.tar that contains a temgdatgour program along with a number of useful
helper functions. Get it from the class web page. E.qg.,

unix> wget http://www.cs.utexas.edu/users/dahlin/Clas ses/439/labs/shlab-handout.tar

Put the fileshlab-handout.tar to the protected directory (tHab directory) in which you plan to do
your work. Then do the following:

e Type the commanthr xvf shlab-handout.tar to expand the tarfile.

e Type the commandiake to compile and link some test routines.

e Type your team member names, ut eids at the top of th@EHADME

Looking at thetsh.c (tiny shel) file, you will see that it contains a functional skeleton cfimple Unix
shell. To help you get started, we have already implememtedess interesting functions. Your assignment
is to complete the remaining empty functions listed belows &sanity check for you, we've listed the
approximate number of lines of code for each of these funstia our reference solution (which includes
lots of comments).

e eval : Main routine that parses and interprets the command liflifies]

e builtin _cmd: Recognizes and interprets the built-in commarmisit , fg , bg, andjobs . [25
lines]

e do_bgfg : Implements thddg andfg built-in commands. [50 lines]
e waitfg : Waits for a foreground job to complete. [20 lines]

e sigchld _handler : Catches SIGCHILD signals. [80 lines]

e sigint _handler : Catches SIGINTdtrl-c) signals. [15 lines]

e sigtstp _handler : Catches SIGTSTRArl-z) signals. [15 lines]

Each time you modify youtsh.c file, type make to recompile it. To run your shell, typsh to the
command line:

unix> ./tsh
tsh> [type commands to your shell here]

General Overview of Unix Shells

A shellis an interactive command-line interpreter that runs @ogr on behalf of the user. A shell repeat-
edly prints a prompt, waits for @@mmand linen stdin , and then carries out some action, as directed by
the contents of the command line.

The command line is a sequence of ASCII text words delimitgdvhitespace. The first word in the
command line is either the name of a built-in command or thierfzane of an executable file. The remaining
words are command-line arguments. If the first word is a{itommand, the shell immediately executes
the command in the current process. Otherwise, the wordsigraad to be the pathname of an executable
program. In this case, the shell forks a child process, tbhadd and runs the program in the context of the
child. The child processes created as a result of intengretisingle command line are known collectively
as gjob. In general, a job can consist of multiple child processemeoted by Unix pipes.

If the command line ends with an ampersaigd, then the job runs in th&ackground which means that
the shell does not wait for the job to terminate before priptihe prompt and awaiting the next command

line. Otherwise, the job runs in tHereground which means that the shell waits for the job to terminate
before awaiting the next command line. Thus, at any poininire t at most one job can be running in the
foreground. However, an arbitrary number of jobs can ruméntdackground.

For example, typing the command line
tsh> j obs

causes the shell to execute the builjobs command. Typing the command line
tsh> /bin/ls -1 -d

runs thels program in the foreground. By convention, the shell enstimas when the program begins
executing its main routine

int main(int argc, char *argv(])

theargc andargv arguments have the following values:

e argc == 3,
e argv[0] == “/bin/Is” ,
e argv[l]== “-I” ,

e argv[2]== “-d”

Alternatively, typing the command line

tsh> /bin/ls -1 -d &

runs thels program in the background.

Unix shells support the notion gdb control which allows users to move jobs back and forth between back-
ground and foreground, and to change the process statan(gJrstopped, or terminated) of the processes
in ajob. Typingctrl-c ~ causes a SIGINT signal to be delivered to each process imtbground job. The
default action for SIGINT is to terminate the process. Samyl typingctrl-z ~ causes a SIGTSTP signal
to be delivered to each process in the foreground job. Theuttediction for SIGTSTP is to place a process
in the stopped state, where it remains until it is awakenethéyeceipt of a SIGCONT signal. Unix shells
also provide various built-in commands that support joktrmdnFor example:

e jobs : List the running and stopped background jobs.
e bg <job> : Change a stopped background job to a running background job
e fg <job> : Change a stopped or running background job to a runninggifiditeground.

e kill <job> : Terminate a job.

Lab 1: Fork/exec

In this phase of the project, you will learn about fbek andexec system calls that you will use in the
rest of the project.

Part 1-1: Reading

Read every word of sections 3 and 4 of chapter 8 of Bryant amth{fdron.
Read every word of this handout before you write any code.

Part 1-2: Fibonacci

Updatefib.c so that if invoked on the command line with some integer agum, it recursively com-
putes thenth Fibonacci numbem(< 13).

e.g.,

unix> fib 3
2
unix> fib 10
55

The trick is that each recursive call must be made by a newepspso you will call fork() and then have
the new child process calloFib()

The parent must wait for the child to complete and you needjtodiout how to pass the result of the child’s
computation to its parent.

Part 1-3: Fork/Exec

The fork system call creates a child process that is neaglytical to the parent. The exec call replaces the
state of the currently running process with a new state tbrstaning a new program in the current process.

Your job is to create a prototype for the shell you will be tirgg later. This prototype waits for a line of
input. If the line is “quit”, it exits. Otherwise, it parselsd line and attempts to execute the program at the
path specified by the first word with the arguments specifiethbyemaining words. It waits for that job to
finish. Then it waits for the next line of input.

e The prompt should be the stringsh> ".

e The command line typed by the user should consistrdrae and zero or more arguments, all sepa-
rated by one or more spacesndmeis a built-in command, thepsh should handle it immediately
and wait for the next command line. Otherwigish should assume thatame is the path of an
executable file, which it loads and runs in the context of &ghiocess (In this context, the tefjob

refers to this child process). Your shell then waits for jbéatto finish. Then it waits for the next line
of input.

All commands and jobs are executed in the foreground. Inpihése you don’t have to worry about
background jobs. You also can assume that jobs executahmiexit; you don't need to worry about
signal handling.

e Your shell should implement one built-in commamglit . If the user typesjuit , your shell should
exit.

E.g.,
psh> /bin/ls -l -d

runs thels program in the foreground.

We have provided psh.c, which provides framework for yowlistand util.h/util.c which provides some
helper functions. Read these files.

Update the file psh.c by implementing the functi@val() , which themain() function calls to process

1 line of input, andcbuiltin ~ _cmd() , which youreval() function should call to parse and process the
built-in quit command. (Later, you will extend the built-in command fumetto handle other built-in
commands.)

Lab 2a: Signal handling, Shell

Part 2a-1: Reading

Read every word of section 5 of chapter 8 of Bryant and O’Haila Examine the code for tt&&ignal()
function inutil.c

Part 2a-2: Signal handling

Write a program irhandle.c that first uses thgetpid() system call to find its process ID, then prints
that ID, and finally loops continuously, printing “Still Fén” once every second. Set up a signal handler
so that if you hit" ¢ (ctrl-c), the program prints “Nice tfyn” to the screen and continues to loop.

Note: The printf() function is technically unsafe to use in a signal handler.afesway to print the
message is to call

ssize _t bytes;
const int STDOUT = 1;
bytes = write(STDOUT, “Nice try. \ n”, 10);
if(bytes !'= 10)
exit(-999);

Note: You should use theanosleep() library call rather than theleep() call so that you can main-
tain your 1-second interval between “Still here” messagematter how quickly the user hitsc.

You can terminate this program usikdl -9 . For example, if the process ID is 4321

unix> kill -9 4321

Part 2a-3: Signal sending

Update the program from Part 2-2 to catch 8I6USR1signal, print “exiting”, and exit with status equal
to 1.

Now write a programmykill.c that takes a process ID as an argument and that send3l@1¢SR1
signal to the specified process ID.

e.g.,
unix> handle
4321
Still here

Still here . _
Still here unix> mykill 4321
exiting unix>
unix>

Part 2a-4: Signal mechanics

If you compile a C program with the -S flag, the compiler progkithe assembly language corresponding
the the code it would generate for the program.

e.g.,

unix> gcc -S handle.c
unix> cat handle.S

Also, in the gdb debugger, you can see the assembly code timicéidn e.g.,

unix> gdb handle

(gdb) disassemble main

Dump of assembler code for function main:
0x0000000100000970 <main+0>: push %rbp
0x0000000100000971 <main+1>; mov %rsp,%rbp
0x0000000100000974 <main+4>: push %rl2
0x0000000100000976 <main+6>: push %rbx

In gdb, you can put a breakpoint for a function

(gdb) break main
Breakpoint 1 at 0x10000097b: file handle.c, line 30.

(gdb)

and you carstep to the next C/C++ instruction atepi to the next assembly instruction

(gdb) run

Starting program: /Users/dahlin/Classes/439/labs/shla b/src/handle
Breakpoint 1, main (argc=1, argv=0x7fff5fbff6e0) at handl e.c:30
30 int pid = getpid();

(gdb) step

31 printf("%d \ n", pid);

(gdb) stepi

0x0000000100000989 31 printf("%d \ n", pid);

(gdb) stepi

0x000000010000098b 31 printf("%d \ n", pid);

(gdb)

Finally, you can tell GDB to pass a particular signal to yorggram

(gdb) handle SIGUSR1 pass

Signal Stop Print Pass to program Description
SIGUSR1 Yes Yes Yes User defined signal 1
(gdb) handle SIGUSR1 nostop

Signal Stop Print Pass to program Description
SIGUSR1 No Yes Yes User defined signal 1
(gdb)

In the file README, answer the following questions

1. What is the last assembly language instruction execuytélodsignal handler function that you write?
2. After the instruction just identified executes, what s tiext assembly language instruction executed?

3. When the signal handler finishes running, it must restibaf he registers from the interrupted thread
to exactly their values before the signal occurred. Howisdlone?

Lab 2b: Shell

In this phase of the project, you will implement your simphel§ tsh .
Your tsh shell should have the following features:

e The prompt should be the stringgsh> ".

The command line typed by the user should consistrdme and zero or more arguments, all sepa-
rated by one or more spacesndmeis a built-in command, thetsh should handle it immediately
and wait for the next command line. Otherwissh should assume thaitame is the path of an
executable file, which it loads and runs in the context of atimirchild process (In this context, the
termjob refers to this initial child process).

tsh need not support pipes Y or I/O redirection € and>).

Typingctrl-c ~ (ctrl-z) should cause a SIGINT (SIGTSTP) signal to be sent to thesotifore-
ground job, as well as any descendents of that job (e.g., lsild/mrocesses that it forked). If there is
no foreground job, then the signal should have no effect.

If the command line ends with an ampersafadthentsh should run the job in the background.
Otherwise, it should run the job in the foreground.

Each job can be identified by either a process ID (PID) or a®BJID), which is a positive integer
assigned bysh . JIDs should be denoted on the command line by the prégix-or example, %5
denotes JID 5, and5” denotes PID 5. (We have provided you with all of the routiges need for
manipulating the job list.)

tsh should support the following built-in commands:

— Thequit command terminates the shell.
— Thejobs command lists all background jobs.

— Thebg <job> command restartsjob> by sending it a SIGCONT signal, and then runs it in
the background. Thejob> argument can be either a PID or a JID.

— Thefg <job> command restartsjob> by sending it a SIGCONT signal, and then runs it in
the foreground. The&job> argument can be either a PID or a JID.

e tsh should reap all of its zombie children. If any job terminakesause it receives a signal that
it didn’t catch, thentsh should recognize this event and print a message with the I and a
description of the offending signal.

Checking Your Work

We have provided some tools to help you check your work.

Reference solution.The Linux executabléshref is the reference solution for the shell. Run this program
to resolve any questions you have about how your shell shHmehdve.Your tsh shell should emit output
that is identical to the reference solutig¢except for PIDs, of course, which change from run to run).

Shell driver. Thesdriver.pl program executes a shell as a child process, sends it corsraaddgignals
as directed by #&race file and captures and displays the output from the shell.

Use the -h argument to find out the usagedriver.pl

unix> ./sdriver.pl -h

Usage: sdriver.pl [-hv] -t <trace> -s <shellprog> -a <args>

Options:
-h Print this message
-v Be more verbose
-t <trace> Trace file
-s <shell> Shell program to test
-a <args> Shell arguments
-g Generate output for autograder

We have also provided 16 trace filesace {01-16 }.txt)thatyou will use in conjunction with the shell
driver to test the correctness of your shell. The lower-nerab trace files do very simple tests, and the
higher-numbered tests do more complicated tests.

You can run the shell driver on your shell using tracetfiteee01.txt (for instance) by typing:

unix> ./sdriver.pl -t traceOl.txt -s ./tsh -a "-p
(the-a "-p" argument tells your shell not to emit a prompt), or
unix> mnake test01

Similarly, to compare your result with the reference shailj can run the trace driver on the reference shell
by typing:

unix> ./sdriver.pl -t traceOl.txt -s ./tshref -a "-p

or

unix> make rtestO01

For your referencetshref.out gives the output of the reference solution on all races. Thght be
more convenient for you than manually running the shellairon all trace files.

The neat thing about the trace files is that they generateathe sutput you would have gotten had you run
your shell interactively (except for an initial commentttidentifies the trace). For example:

bass> make testl5

Jsdriver.pl -t tracel5.txt -s ./tsh -a "-p
#

tracelb.txt - Putting it all together
#

tsh> ./bogus

.Jbogus: Command not found.

tsh> ./myspin 10

Job (9721) terminated by signal 2
tsh> ./myspin 3 &

[1] (9723) ./myspin 3 &

tsh> ./myspin 4 &

[2] (9725) ./myspin 4 &

tsh> jobs

[1] (9723) Running Jmyspin 3 &
[2] (9725) Running Jmyspin 4 &
tsh> fg %1

Job [1] (9723) stopped by signal 20
tsh> jobs

[1] (9723) Stopped Jmyspin 3 &
[2] (9725) Running Jmyspin 4 &
tsh> bg %3

%3: No such job

tsh> bg %1

[1] (9723) ./myspin 3 &

tsh> jobs

[1] (9723) Running Jmyspin 3 &
[2] (9725) Running Jmyspin 4 &
tsh> fg %1

tsh> quit

bass>

Your solution shell will be tested for correctness on a Limuxchine, using the same shell driver and trace
files that were included in your lab directory. Your shell gliboproducedentical output on these traces as
the reference shell, with only two exceptions:

e The PIDs can (and will) be different.

e The output of thebin/ps commands irtracell.txt , tracel12.txt , andtrace13.txt
will be different from run to run. However, the running sttef anymysplit processes in the
output of the/lbin/ps command should be identical.

Hints

General hints

e Thewaitpid ,kill ,fork ,execve ,setpgid ,andsigprocmask functions will come in very
handy. The WUNTRACED and WNOHANG options weaitpid will also be useful.

e Programs such awore, less , vi , andemacs do strange things with the terminal settings. Don’t
run these programs from your shell. Stick with simple tex$dd programs such dsin/ls
/bin/ps , and/bin/echo

Hints for part 2b

e Use the trace files to guide the development of your shell.rtigawith traceOl.txt , make
sure that your shell produces titentical output as the reference shell. Then move on to trace file
trace02.txt ,and so on.

10

e When you implement your signal handlers, be sure to S#&INT andSIGTSTP signals to the en-
tire foreground process group, usingid ”instead of ‘pid ” in the argument to th&ill ~ function.
Thesdriver.pl program tests for this error.

e One of the tricky parts of the assignment is deciding on tleeation of work between thevaitfg
andsigchld _handler functions. We recommend the following approach:

— In waitfg , use a busy loop around teteep function.
— Insigchld _handler , use exactly one call tvaitpid

While other solutions are possible, such as caliagtpid in bothwaitfg andsigchld _handler ,
these can be very confusing. It is simpler to do all reapinpénhandler.

Note that you probably can do something simpler for the pypt psh you build in part 1. Then, be
ready to change how this works when you get to part 3.

e In eval , the parent must ussigprocmask to block SIGCHLDsignals before it forks the child,
and then unblock these signals, again usigprocmask after it adds the child to the job list by
callingaddjob . Since children inherit thblocked vectors of their parents, the child must be sure
to then unblockSIGCHLDsignals before it execs the new program.

The parent needs to block t8¢GCHLDsignals in this way in order to avoid the race condition where
the child is reaped bgigchld _handler (and thus removed from the job lidteforethe parent
callsaddjob .

e When you run your shell from the standard Unix shell, youtlseeunning in the foreground process
group. If your shell then creates a child process, by dethalt child will also be a member of the
foreground process group. Since typictg-c ~ sends a SIGINT to every process in the foreground
group, typingctrl-c will send a SIGINT to your shell, as well as to every procesd ytour shell
created, which obviously isn’t correct.

Here is the workaround: After thiork , but before theexecve , the child process should call
setpgid(0, 0) , Which puts the child in a new process group whose group Idéstical to the
child’s PID. This ensures that there will be only one procgssir shell, in the foreground process
group. When you typetrl-c , the shell should catch the resulting SIGINT and then fodwiar
to the appropriate foreground job (or more precisely, tlee@ss group that contains the foreground
job).

Hand In Instructions

e Make sure you have included your names and UT-EIDs in the REAED
e Create a tar file handin.tar that contains all of your souttes,fthe README, and your Makefile.

e Use the turnin utility to submit your work
E.g., for lab 1:

11

unix> turnin -submit [TA] handin-439-shlab-1 handin.tar
for lab 2:

unix> turnin -submit [TA] handin-439-shlab-2 handin.tar
e The makefile automates the handin process
unix> make handin-1

etc.

Good luck!

12

