
CS 439: Systems II Mike Dahlin

 1 01/19/12

Lecture #2 OS Structure, Process abstraction
Anatomy of an OS
Anatomy of a process

Review -- 1 min

OS: 3 basic functions
• Coordination (security, communication, resource mgmt)
• Abstraction
• Standard Services

• Physical Reality à More convenient interface
• -- easier for programmer
• -- interoperability among programs

I argued that "dual mode operation" would let us do these
things

OS as complex system
• keeping things simple is key to getting them to work

We’ll see these themes over and over again throughout this class.

History – change driven by technology
 At first HW expensive, humans cheap à OS optimized for HW
 (concurrency, overlap IO, batch system…)

Then, humans expensive, HW cheap à OS optimized for
human (windows system, PC, interactive system,..)
Future: HW “free”, networks everywhere
 à distributed services, communication, entertainment,…

Evaluation criteria/goals
-- reliability (challenging!)
-- performance (many metrics)
-- portability (many dimensions)

CS 439: Systems II Mike Dahlin

 2 01/19/12

Outline - 1 min

(1) OS Structure: What is an OS? How do you run it?

• Key idea: Supervisor mode v. user mode
• {By end of day – understand 3 ways to invoke OS}

 (2) Interface between OS and process (system calls, signals)
(3) Abstraction: Process

• {By end of day – understand anatomy of a process}
• {By end of day – understand differences among process, program,

address space, thread}
• linking and loading

If time:
(4) OS structure: monolithic, microkernel, virtual machine
o How to transfer control between process and OS; how to transfer control between processes
(5) Putting it together: Boot

Preview - 1 min

Today: OS structure, process abstraction
Then: Concurrency abstraction for several weeks:
implementation of this abstractions – how threads are implemented
Then – 2 weeks – how to program with threads
 Then: Memory: relocation and protection

Lecture - 33 min

1. OS Structure:
What is an OS? How do you run it?

• Key idea: Supervisor mode v. user mode
• Case studies: internal OS structure

Note on class organization: often we will describe a “key idea” and then
use examples/case studies to (a) better understand the key idea (see how

CS 439: Systems II Mike Dahlin

 3 01/19/12

the idea is applied, test understanding of the idea), (b) important
knowledge in its own right

CS 439: Systems II Mike Dahlin

 4 01/19/12

2. Dual mode operation

OS must control actions of applications
• (1) Communication, (2) protection, (3) resource mgmt
à dual mode operation
"user mode" -- restricted (applications)
"supervisor mode" -- do anything you want (OS kernel)

How do the security, communication, resource management facilities
get reflected in dual-mode operation? (draw in picture above)

• Security: application can access its memory but not OS or other
apps

• But OS can access any application’s memory
• Communication: application can call OS (how does that work?)

– then OS can read one application’s memory and write
another’s à communication

Application

Standard library

Portable OS layer

Machine-dependent OS layer

User mode

Kernel mode

Typical Operating System Structure

CS 439: Systems II Mike Dahlin

 5 01/19/12

• Resource management: OS can access hardware registers to, for
instance, grow an application’s memory allocation…
-- also, hw devices "memory mapped" --> only OS can access
them --> process asks OS to access HW

QUESTION: examples of things that kernel can do that applications
should not be able to do/when do you want OS code to run?

• Security examples…
• Communication examples…
• Resource mgmt examples…

To really understand this, need to know how to switch between user and
supervisor mode

2.1 Switching from user to supervisor mode
1) interrupt: HW device needing service
2) exceptions: user program acts silly (e.g. divide by 0, bus error, etc)
3) trap: user program requires OS service (system call)

How would you implement this?
What needs to happen?
n run OS code in kernel mode à change mode, PC

[add boxes to previous figure]
n resume application (transparently for interrupt; mostly

transparently for system call/trap) à save/restore state

A bit strange – context switch. Computer was doing one thing. Now
completely different…

Actually, not that different from what you already know…
Standard pipeline:

CS 439: Systems II Mike Dahlin

 6 01/19/12

(1) Save state and run handler in supervisor mode

QUESTION: How would you implement dual mode (hint: hardware)?
 à e.g., “supervisor” bit
When bit on, HW can do “anything”; when bit off, restrict what HW
can do.

(a) event: HW detects need to go to OS (for one of these reasons)
QUESTION: How would hardware detect that an exception has occurred
(e.g., user did divide-by-zero)? Interrupt? Trap?

à (b) run handler in kernel: jump to well know OS address

(handler) and switch on supervisor bit
à What state on processor changes? [[PC, stack, mode]]

QUESTION: How would hardware “jump to well known OS address and
switch on supervisor bit”?

CS 439: Systems II Mike Dahlin

 7 01/19/12

• (c) save state: HW/OS save user process’s state
What state? Registers (PC, stack pointer, other registers).
Save it where?

QUESTION: How might HW help save state? How might HW get handler to
execute?

(2) Supervisor handles request
• Dispatch: OS looks at program or machine state and decides what

has been requested/needs to be done
QUESTION: How would this work? What arguments should handle_trap(),
handle_interrupt(), handle_exception() receive? How would these
arguments be supplied?

• OS jumps to appropriate handler routine and does its job

(3) Resume suspended process
• HW/OS restore user process’s state and execute a RTI exception to

jump back to user
QUESTION: What should RTI do? How differ from regular “return”?

CS 439: Systems II Mike Dahlin

 8 01/19/12

QUESTION: So, what does it mean to “run an operating system”?
ANSWER: Start running, initialize a bunch of data structures, then just sit
there until some event happens. In some old OS, there was not even a
“kernel thread” – everything was reactive; new stack created on each event;
now, there may be threads in OS, but they all are waiting for some event to
trigger work…

x86 case study
Boot/OS initialization:

initially in supervisor mode
use supervisor-only instructions to specify
-- register that points to array of handlers
 (handler i handles interrupt/exception of type i)
-- register that points to exception stack

[[big picture: hardware [PC, stack pointer, registers, mode, exception
stack pointer, interrupt vector pointer], kernel [interrupt vector,
handler code, stack], user code [code, stack]]

CS 439: Systems II Mike Dahlin

 9 01/19/12

Process is running:

TBD: add exception stack ptr register and interrupt vector register to
this figure

Exception stack ptr

Exception vector ptr

Exception
vector

CS 439: Systems II Mike Dahlin

 10 01/19/12

On exception i
-- HW:

(1) set supervisor bit,
(2) save a few key registers on exception stack (e.g., stack pointer
(esp, ss), eflags [includes supervisor/user bit, processor status],
PC (eip, cs)), error code (sometimes)
(3) set stack to exception stack,
(4) jump to handler[i] <-- specified by (eip, cs) in interrupt vector
 2 bits of cs are "mode" bit for x86,
TBD: add "error" to exception stack

Exception stack ptr

Exception vector ptr

Exception
vector

CS 439: Systems II Mike Dahlin

 11 01/19/12

-- typical SW for handler[i]:
 (1) (if no error code, push error code)

(2) save remaining registers to stack [pusha instruction],
(3) run code to handle i,
(4) restore registers from stack [popa instruction]
(5) reti

CS 439: Systems II Mike Dahlin

 12 01/19/12

[[After step 2:]]

-- HW (reti instruction)

restore eflags , PC (eip, cs) (includes mode bits), stack pointer
(esp, ss) from stack to processor registers

--> Back to running user code as if nothing happened!

CS 439: Systems II Mike Dahlin

 13 01/19/12

2.2 System calls, signals -- view from a process
QUESTION: Using this mechanism, how does a process do a system call?

system call -- request by user-level process to call a function in the kernel
e.g., gettimeofday(), read(), fork(), exit()

e.g., bytes = read(fd, buffer, length);

-- can't just jump into arbitrary kernel code. Can't just switch mode. ...
--> use trap instruction to switch mode and enter kernel at pre-defined safe
entry point

-- DISCUSS calling conventions (passing arguments in; getting results back)
-- DISCUSS kernel protection issues (copyin, copyout, check arguments)

Abstraction: procedure call
Implementation:
(1) application makes library stub procedure call read(fd, buffer,

length)
(2) library stub converts to system call

o syscall.h defines system call numbers e.g., SYS_read = 3
à syscall(SYS_read, arg1, arg2, arg3)
each OS will have calling convention (e.g., “put system call
number in R1, args 1-2 in registers 2-3, and any remaining
arguments on the stack”)
lw R1, callNum
lw R2, arg1
lw R3, arg2
push arg3
trap

(3) trap jumps to OS handler, which grabs arguments, handles call,
and returns

CS 439: Systems II Mike Dahlin

 14 01/19/12

Question: Suppose OS is written in C or C++, then handler needs a
stack.

o Where should stack be (is it OK to use application stack?) What
has to happen on trap?

o What should handler stack look like on call? (handler call is
first stack frame, empty below that)

o What happens to stack if reti happens when we are several
layers deep in procedure calls?

o What if kernel is handling an interrupt and another interrupt
arrives? (reset stack pointer? Block interrupt? Keep building on
kernel stack?)

CS 439: Systems II Mike Dahlin

 15 01/19/12

QUESTION: Using this mechanism, how does a process communicate with
another process?

signal -- request by kernel to call a function in the user-level process
e.g., SIGALRM, SIGHUP, SIGUSR1, ...)

e.g., I hit "X" on window --> OS signal process --> process cleans up, saves
state, quits
(v. "force quit", SIGNAL -9, etc.)

QUESTION: Many OS’s allow user-level exception handlers (explain idea).
How would we implement user-level exception handler?(called "signal
handler" in unix)

process is running "normal code"
[something happens; os does WHAT?]
process's signal handler executes
process resumes running "normal code"

Notice -- signal:process::interrupt:kernel

[[picture -- timer interrupt]]
[[HW -- PC, SP, interrupt vector, exception stack pointer; kernel handler
code, stack; user-level normal code, normal stack, handler code, handler
stack]]

[[details:]]

setup: process tells kernel: signal stack, handler address
invoke: kernel saves process's interrupted state to signal stack and
then starts executing process's signal handler with signal stack

QUESTION: how would you use reti to do this?

finish: process handler code restores state from context saved to
signal stack

CS 439: Systems II Mike Dahlin

 16 01/19/12

QUESTION: In posix, OS can save process state on current stack or
"exception stack" within process, but OS exception handler always
switches stacks and uses a dedicated signal stack rather than current
stack. Why?

3. Process abstraction
Main Point: What are processes?
How are process, programs, threads, and address spaces related?

Up until now, we’ve drawn lots of pictures with “user level process”
as a black box. Let’s talk about what is inside. 2 key ideas – state and
concurrency – will be major focus of next 2 main blocks of this class

3.1 Motivation: Concurrency Abstraction
Hardware – single CPU, I/O interrupts
API – users think they have machine to themselves

OS has to coordinate all of the activity on a machine – multiple users,
I/O interrupts, etc

Picture: A bunch of jobs running and doing I/O – os executes a few
instructions here, then a couple of those, and now the data showed up
from disk, so give it to the job, …

Challenge: How can it keep all these things straight?
Solution: Decompose hard problem into simpler ones. Instead of
dealing with everything going on at once, separate them and deal with
them one at a time
You've seen something like this before:
Analogy -- procedure calls "local variables" à registers, stack
• within procedure insert(), "r1" might mean "pointer to object to be

inserted"; sp - 32 might mean "pointer to current queue"

CS 439: Systems II Mike Dahlin

 17 01/19/12

• within procedure printf(), "r1" might mean "pointer to format
string"; sp-32 might mean "the third variable to be inserted into the
string"

• But insert() can call printf() {and vice versa} without being
confused

QUESTION: How does it work?

What are key ideas?

1) storage space for "inactive" variables
2) standard procedures to move "inactive" variables from

storage space to registers and vice versa

Switching between threads/processes is similar (but a little more
involved because there is more state to swap back and forth)

3.2 Processes

Last few meetings, I've drawn picture of a bunch of boxes over an OS
over hardware.

These boxes are meant to represent "processes"

I've talked about properties of the processes -- "keep in box"
(isolation), "let out of box (in controlled ways)" (communication),
"multiplex boxes on hw" (resource mgmt)

I've talked about how you can go from running process to running OS
and back (dual mode operation, trap/interrupt/exception, etc.)

Have not formally defined the box/process. Do that now.

Process: Operating system abstraction to represent what is needed to
run a single program
(This is the traditional UNIX definition)

more formally (traditional)

CS 439: Systems II Mike Dahlin

 18 01/19/12

Process: a sequential stream of execution in its own address space

3.2.1 Two parts to a process
1) sequential execution: no concurrency inside a process –

everything happens sequentially [we will generalize this later]
2) address space: all process state; everything that interacts with a

process

In practice, this means that "inside each box" [DRAW] -- registers
(including PC, stack pointer), code, stack, globals, heap, ...

--> I can reason about each process independently
-- each process has *everything* I need to reason about the running
program

-- almost everything -- "controlled communication" e.g., system
calls etc.

--> Ignore other processes
-- I told you how to transparaently switch between process and OS
--> Ignore OS

QUESTION: I’m running emacs on my linux box. What state is part
of that process?
ANSWER: registers, main memory, open files (in Unix), …

Point is – no other state on machine can affect that process; if that
process wants to access some other state, it needs to get help from the
OS

CS 439: Systems II Mike Dahlin

 19 01/19/12

3.2.2 Process =? Program
program series of commands (e.g. C statements, assembly
commands, shell commands)

Anatomy of a process

1) More to a process than just a program
program is part of process state

I run ls, you run ls – same program, different processes

2) Less to a process than a program

 A program can invoke more than one process to get the job
done

Header

Code

main(){
A();
…
}

A(){
…X=X+1;
}

Initialized data
X=42

…

Mapped Segments

DLL’s

Stack
 {main’s state}
 {A’s state}

Heap

Initialized Data

Code

main(){
A();
…
}

A(){
…
}

Program
(e.g., executable file on disk)

Process
(e.g., state in memory, registers, kernel)

Registers, PC

Open files, priority, user-ID,
copy of registers, …

Process
control block

CS 439: Systems II Mike Dahlin

 20 01/19/12

e.g. cc starts up cpp, cc1, cc2, as (each are programs
themselves)

3.3 Starting a process

 (1) allocate a process control block in kernel
 pcb -- data structure for holding per-process state
(2) allocate memory for process (code, heap, stack, globals)
(3) boot loader:

read header
copy code to code area (later, we'll see how to avoid this copy)
initialize globals

(4) copy arguments to program onto program's stack
(5) initialize registers in pcb (what values?)
What should initial register values be?
-- stack pointer?
-- program counter?
-- other registers?

(6) start process by "returning" to it (as if it made a "start me" system
call) e.g., initialize kernel exception stack as if initial register values
saved on it; then reti

3.4 OS implementation of process abstraction

2 things
(1) sequential stream of execution
(2) address space

Address space first (quickly now; come back to it in detail in 3
weeks). Then "sequential stream of execution" in detail -- we'll spend
the next 3 weeks understanding it, generalizing it to multi-threaded
processes.

CS 439: Systems II Mike Dahlin

 21 01/19/12

Given process definition, machine can have a bunch of processes in
memory at once. [PICTURE]

When P1’s registers are loaded on CPU, registers contain P1’s data,
pointers, stack pointer, PC, etc. à P1 is running

Recall defn of process: sequential execution + address space
--> 2 challenges/mechanisms for above picture
(1) protect P1 from P2 when P2 is running -- virtual addressing --
address translation box [add to picture] [TLB]

(2) switch from running P1 to running P2

-- context switch -- mechanism to change HW registers
-- process control block -- place to save P1s state when P1 is not
running (in memory data structure v. registers when running)

arm waving -- but we know how to do this.
Think about how we handled interrupt and transparently returned to
interrupted process.
What if we restore some *other* process's registers instead?
voila!

Next few weeks, we'll talk about concurrency. What will we need to
implement concurrency abstraction/context switch abstraction?

P1

P2

OS
HW registers

CS 439: Systems II Mike Dahlin

 22 01/19/12

Analogy with procedure calls, which give you modularity so that you
can think about local state and control w/o worrying too much about
other procedures. Procedure calls had
(1) storage space for "inactive" variables -- stack
(2) standard procedures to move "inactive" variables from storage

space to registers and vice versa -- call/return

OS has analogous things to let it switch between processes:
(1) storage space for "inactive" variables – process control block
(2) standard procedures to move "inactive" variables from storage

space to registers and vice versa – context switch
(why can’t we just store “old” register values on stack?)

Forward pointer to details

o Lectures 7-13 will discuss concurrency abstraction and
explain details of process control block and context switch

o Lectures 3-6 will discuss virtual memory (above picture of
memory a bit simplified)

Finish here (probably)
Homework: How would virtual machine do context switch/system
call/reti?

3.5 Unix fork + exec
• Fork() creates a child process that is a (nearly) exact copy of

parent
o Identical copy of all parent’s in-memory variables
o Identical copy of all parent’s kernel state (open files, etc)
o Identical copy of all parents registers (except one)

§ Same state à same PC, same program, etc.

CS 439: Systems II Mike Dahlin

 23 01/19/12

§ Child “wakes up” thinking it just called fork()!
§ Parent returns from calling fork()
§ For parent fork() returns child PID
§ For child, fork() returns 0

• Exec() load a new program over current address space
o Overwrite current memory, registers with specified

program
o Begin execution at _start()

Typical code of a program
__start(args){
 ret = main(args);
 exit(ret);
}

Common usage:

Pid = fork();
If(pid == 0){
 // I am child…
 // clean up – close files if needed
 exec(“/bin/ls”, arg0, arg1, …);
}
else{
 I am parent…wait for child or do something else…
}

3.5.1 Uniprogramming v Multiprogramming (definitions)
Uniprogramming – one process at a time (e.g. MS/Dos)

Easier for OS builder – get rid of problem of concurrency by defining
it away. For PCs, idea was: one user does only one thing at a time
Harder for user – can’t work while waiting for printer

Multiprogramming – more than one process at a time (e..g Unix,
NT)
(often called multitasking, but multitasking sometimes has other
meanings – see below – so we won’t use that word in this course)

CS 439: Systems II Mike Dahlin

 24 01/19/12

4. Internal OS Structure
OS mediates between HW and applications
 Provide “Nicer” abstraction of physical HW

Structure of OS affects abstractions, implementation

Examine 3 common structures to (a) understand switching between
kernel/user, (b) understand how “abstraction” function of an OS can
be built and (c) discuss design choices in OS structure.

CS 439: Systems II Mike Dahlin

 25 01/19/12

4.1 Monolithic structure (e.g., Unix)

Device
Drivers

Extensions &
Add’l device drivers

Interrupt
handler
s

File
Systems

Memory
Manager

Process
Manager

Security
Module

API

Ap
p

App

Network
Support

Service
Module

Boot &
init

App

Hardware Abstraction Layer (most modern OS’s)

 HW

CS 439: Systems II Mike Dahlin

 26 01/19/12

4.2 Microkernel (e.g., Mach, QNX, …)
Main OS functions implemented by out-of-kernel servers

Note: only small amount runs in “supervisor mode”

QUESTION: how can file system get access to disk drives?
How can file system security be maintained?
à out-of-kernel servers are still “privileged” even though they don’t
run in supervisor mode

QUESTION: What are advantages of microkernel? Of monolithic?

Windows NT is “modified microkernel” – microkernel modularity as
design methodology, but implement modules in kernel process for
performance.

Device
Driver
s

Extensions &
Add’l device drivers

Interrupt
handler
s

File
Systems

Memor
y Manager

Process
Manager

Security
Module

App

Network
Support

Boot &
init

App

Basic Message Passing Support

e.g.: QNX,
Mach

OS main functions
implemented by
out-of-kernel
servers

 HW

CS 439: Systems II Mike Dahlin

 27 01/19/12

4.3 Virtual machine (e.g., OS360)

Virtual machine presents exactly the HW interface, but virtualizes the
HW for protection
Independent OS’s run on these virtual machines (e.g., Linux, NT,
Solaris all in one box)

QUESTION: which part is “supervisor mode”?

QUESTION: what happens if os1 tries to execute a privileged
instruction?

QUESTION: what happens if app1 in os1 calls trap?

Announcements

HW1 due wednesday

VM Layer

OS-1

App App Ap
p

OS-2

App App Ap
p

OS-3

App App Ap
p

e.g. OS/370

 HW

CS 439: Systems II Mike Dahlin

 28 01/19/12

Project 1 due friday

TA office hours -- see web page

piazza

HW1

5. Putting it all together: OS in action
OS is just a program. What happens when you turn power on?

1) CPU loads boot program from ROM (e.g. BIOS in PCs)

You’re on a desert island and need to build a computer…

• ROM is easy (solder some wires…)
• Need to arrange so that first instruction the CPU executes is

BIOS entry point in ROM
(Alternatively, on boot, state machine copies ROM to pre-
specified location in RAM…exercise for the reader…)

o Entry point is just another hard-wired (literally) constant
o Initialization circuit to set PC…

Physical address layout for JOS boot:

PC

nextPC

BIOSENTRY

+5
~init

CS 439: Systems II Mike Dahlin

 29 01/19/12

2) Boot program (BIOS)

• Examine/check machine configuration (# CPUs, how much
memory, # and type of HW devices, etc)

• Build configuration structure describing the HW
• Load the bootloader

• From “well-known” location (e.g., first 512 bytes of hard
disk)

• To “well-known” memory location (0x7c00 for x86 …
32KB – 1KB)

• Jump to bootloader code (well-known entry point…0x7c00
for x86)

3) Bootloader (JOS: see boot/boot.S, boot/main.c)
o Initialize stuff

o SP = Initial stack at well-known location (JOS: 0x7c00 –
code starts here and goes up. Stack starts here and grows
down.)

CS 439: Systems II Mike Dahlin

 30 01/19/12

o X86 cruft: boot in “real mode” – only 1MB of memory
visible, no virtual memory à make more than 1MB
visible and set up initial segmentation table

o JOS Note: first part of bootloader is assembly (boot.S)
but once we’ve got 32-bit mode set and a stack, we can
start running C code, so we jump to the function
bootmain in boot/main.c

o Read OS from disk, jump to well-known entry point
o JOS bootloader

§ Read sector 2 of disk (elf header) to 0x10000
(65KB) (scratch space)

§ Parse elf header (see inc/elf.h) to determine size of
rest of OS on disk and where to load the rest of the
OS in memory

§ Load OS to specified location from sectors 2…size
on disk to elf-specified locations in memory (code
segment goes to 0x00100000 à 1MB)

§ Jump to elf-specified entry point (0x0010000c –
corresponds to _start in kernel/entry.S)

4) OS initialization
• Initialize registers (stack, frame pointers)

• now we can run C!
• Initialize virtual memory system

• See below
• Initialize kernel data structures
• Initialize state of HW devices
• Creates a number of processes to start operation (e.g. daemons,

tty in Unix/windowing system in NT)
• How does this work?

5) Start initial processes
Boot creates first proc (“sysproc” in unix)

Q: How would an OS create a new process?

The first process creates other processes

The creator is called the parent
The new process is called a child
The relationships among processes can be expressed as a tree

In Unix, the second process is called init

CS 439: Systems II Mike Dahlin

 31 01/19/12

It creates the ttys (terminals)
It creates daemons (rlogin, smtp (mail), DNS, finger, …)
It controls system configuration
It should never die

When you log in (to a daemon/tty), it creates a shell
your shell process can create new sub-processes (login->shell-
>emacs…)

(6) Once OS is initialized
• Run user programs if available; else run low-priority user-level

idle-process
• In the idle process

• infinite loop (Unix)
• system mgmt & profiling
• halt processor and enter low-power mode (notebooks)
• compute some function (DEC’s VAX VMS computed Pi)

• OS wakes up on:
• Interrupts from HW devices
• Traps from user programs
• Exceptions from user programs

5.1.1 [372H] JOS Linking and loading
Program source has symbols “main()”, “A()”, “X”
Hardware knows addresses (absolute or relative)
What address should program store for main, A, or X?
Depends on where program eventually loaded

Point is – compiler, linker need to translate symbols (procedure
names, constant names, loop boundaries) to addresses
 See call to memset() in lab1/kernel/init.c:i386_init() v.
lab1/obj/kernel/kernel.asm;

f010015d: e8 8c 13 00 00 call f01014ee <memset>

 try objdump lab1/obj/kernel/kernel | grep memset

à Code all depends on certain stuff landing at certain addresses
Linker encodes these dependencies in the code

CS 439: Systems II Mike Dahlin

 32 01/19/12

Loader is supposed to honor these dependencies by loading at the
specified address

Linking and loading
Link address – address where program expects to be loaded (compile-
time)
Load address – address where actually is loaded (run-time)

Simple case: compile one source file

n linker can assign base address for “start” (e.g.,
0x01000)

n all symbols assigned an address (e.g., lw A; A stored
at start+0x100 à lw 0x01100)

n Put link addres in header as expected load address

Variation: Position-independent code

More general case: Link multiple .o files

n Create each .o file by compiling one source file
n Instead of hard-coding link/load address at compile

time, symbol table (in header or pointed to in
header) has list of offsets of symbols (e.g., “A” =
start+178), list where symbols referenced (e.g., “A
used at start+47”)

n Linker assembles .o files into one executable
starting at some link address; update each file
accordingly

n Put link address in header as expected load address

[More general case – instead of specifying link address in header,
specify symbol table in header; loader also updates addresses in
binary]

[Another key variation: Dynamic linking – link shared library into
running binary.]

Issue in JOS – want kernel to run at high virtual address 0xf0100000
(4GB – 256MB + 1MB) so that applications can run at low virtual
addresses (first 256MB) and have disjoint addresses from kernel

CS 439: Systems II Mike Dahlin

 33 01/19/12

We’ll discuss virtual addressing more starting next week.

I bring this to your attention now b/c – do you see the issue?
 Where did bootloader load kernel? (load address)
 Where does kernel code expect to be loaded (link address)

Why is this OK? Short answer

n bootloader jumps to load address of kernel after
loading kernel

n first thing the kernel does is run some gnarly
assembly code (entry.S) that is aware of both the
link and load address and of the discrepancy.
This code sets up virtual addressing so that the VA
0xF0100000 (the link address) maps to PA
0x00100000 (the load address) and then jumps to
“regular” C code that runs using link addresses (and

CS 439: Systems II Mike Dahlin

 34 01/19/12

the VA->PA translation means that link addresses
refer to the expected data)

n You will walk through this more carefully in the lab,
but I wanted to give a high-level picture now…

 Note: JOS kernel sets up virtual memory in two steps

Lab1:
Initially kernel loaded at VA = PA = 1MB
But kernel “wants” to run at VA 0xf0100000 (4GB – 256MB)
à entry.S sets segmentation table to shift all addresses by
0xf0000000

Seg. Register
Base: - 0xf0000000
Bounds: 0xffffffff

VA

Picture:

+

>

PA

error

CS 439: Systems II Mike Dahlin

 35 01/19/12

LAB 2
Kernel starts up paging
Creates page table so that kernel VAs still maps to same PAs

Summary - 1 min

OS Structure: What is an OS? How do you run it?

• Key idea: Supervisor mode v. user mode
• Case studies: internal OS structure
• {By end of day – understand 3 ways to invoke OS}

Transferring between user and kernel mode

OS Structure

CS 439: Systems II Mike Dahlin

 36 01/19/12

 monolithic
 microkernel

 virtual machine

Putting it all together: Boot

Abstraction: Process
• {By end of day – understand anatomy of a process }
• {By end of day – understand differences among process, program,

address space, thread}

Processes have two parts – threads and address spaces

Book talks about processes – when this concerns concurrency, really
talking about thread portion of a process; when this concerns
protection, really talking about address space portion of a process.

