
CS 439: Systems II Mike Dahlin

 1 02/14/12

Lecture M1: Virtual Memory Overview

Review -- 1 min

Dual mode operation

n Implementation basics: supervisor mode, handler address,
save/restore state

n Three ways to invoke OS
n Higher level abstractions on these primitives

o System call
o Context switch, scheduling
o Interprocess communication
o Virtual machine monitor

Boot

Process = address space + 1 or more threads

Outline - 1 min

Basic story --
 -- simple mechanism
 -- lots of powerful abstractions/uses

Virtual memory abstraction
What is an address space?
How is it implemented?: Translation

Sharing: segmentation
Sharing + simple allocation: paging
sharing + simple + scalable: multi-level paging (, paged
segmentation, paged paging, …)

 OR inverted page table

Quantitative measures:

CS 439: Systems II Mike Dahlin

 2 02/14/12

Space overhead: internal v. external fragmentation, data structures
Time overhead: AMAT: average memory access time

Crosscutting theme: to make sure you understand these things, think about
what TLB, kernel data structures are needed to implement it

Preview - 1 min

Outline/Preview
Historical perspective/motivation
Mechanism: translation
Use 1: protection + sharing + relocation
-- principles/basic approaches
-- case studies; cost models

Use 2: paging to disk

Lecture - 35 min

1. Overview/preview: Process abstraction
Prev lecture spoke informally about process. Next two chunks of class – memory and
concurrency – will define key abstractions in much more detail. As overview/context, define
process [INSERT Section 4 lecture 2 HERE]

2. Virtual memory abstraction
Reality v. abstraction
Physical memory Virtual memory
No protection address space protection –

each program isolated
_________ ______________ ______________ ____ _!___" #_ _
_

Limited size expansion -- infinite memory
sharing of physical frames relocation—

everyone thinks they are loaded at addr “0”;
can put anything from 0..2^32-1 or 2^64-1

Easy to share data between sharing –

CS 439: Systems II Mike Dahlin

 3 02/14/12

ability to share code, data programs

That all sounds great, but how do I do it?

2. Historical perspective: Operating system
organizations
2.1 Uniprogramming w/o protection
Personal computer OS’s
Application always runs at the same place in physical memory
Each application runs one at a time
-> give illusion of dedicated machine by giving reality of dedicated machine

Example: load application into low memory, OS into high memory
Application can address any physical memory location

2.2 Multiprogramming w/o protection: Linker-loader
Can multiple programs share physical memory without hardware
translation?
Yes: when copy program into memory, change its addresses (loads,
stores, jumps) to use the addresses where program lands in memory.
This is called a linker-loader. Used to be very common.

CS 439: Systems II Mike Dahlin

 4 02/14/12

Unix ld does the linking portion of this (despite its name deriving from
loading): compiler generates each .o file with code that starts at address 0.

How do you create an executable from this? Scan through each .o, changing
addresses to point to where each module goes in larger program (requires
help from compiler to say where all the relocatable addresses are stored.)
With linker-loader—no protection: bugs in any program can cause
other programs to crash or even the OS.

e.g.,

.long foo 42
…
bar:
load r3, foo
…
jmp bar

3 ways to make foo and bar location-independent:

CS 439: Systems II Mike Dahlin

 5 02/14/12

(1) relative (v. absolute) address
(2) relocation register
(3) loader changes absolute address at load time

2.3 Multiprogrammed OS with protection
Goal of protection:

n keep user program from crashing OS
n keep user programs from crashing each other

How is protection implemented?
Hardware support:
1) address translation
2) dual mode operation: kernel v. user mode

3. Address translation
address space – literally, all the addresses a program can touch. All the state
a program can affect or be affected by
Idea: restrict what a program can do by restricting what it can touch.
Fundamental rule of CS: all problems can be solved with a level of
indirection

Translation box = abstraction for now.
Reality -- some combination of HW and SW

Level of indirection gives you

• protection

CS 439: Systems II Mike Dahlin

 6 02/14/12

• No way for a program to even talk about another program’s addresses; no way to
touch OS code or data

• Translation box can implement protection bits – e.g., allow read but not write
• relocation (transparent sharing of memory)
P1’s address 0 can be different than P2’s address 0
Your program can put anything it wants in its address space 0..2^64-1

• Share data between programs if you want
P1’s address 0xFF00 can point to same data as P2’s address
0xFF00 (or P2’s 0xAA00)

Notice
CPU (and thus your program) always see/work with VAs (and doesn't
care about PAs)
Memory sees PAs (and doesn't care about VAs)

Think of memory in two ways
View from CPU – what program sees; virtual memory
View from memory – physical memory
Translation is implemented in hardware; controlled in software.

B

5. Implementing protection, relocation
want: programs to coexist in memory
need: mapping from

<pid, virtual addr> à <physical address>
_________ ______________ ______________ ____ _!___" #_ _
E

Many different mappings; use odd-seeming combination of techniques for
historical and practical reasons àseems confusing

 "practical reasons" -- mainly that translation is critical to performance,
so data structures get tightly optimized; data structures get split between HW
and SW; ...

Remember that all of these algorithms are just arranging some simple
techniques in different ways

Basics:

CS 439: Systems II Mike Dahlin

 7 02/14/12

segment maps variable-sized range of contiguous virtual addresses to a
range of contiguous physical addresses

page maps fixed size range of contiguous virtual addresses to a fixed sized
range of contiguous virtual addresses

need data structures to lookup page/segment mapping given a virtual address

<segment #> à segment info {base, size}
<page #> à page info {base}

Again, data structures seem confusing – base+bounds, segment
table, page table, paged segmentation, multi-level page table,
inverted page table -- but we’re just doing a lookup, and there aren’t
that many data structures that are used for lookup:

(pointer)
array
tree
hash table
{used in various combinations}

Memory data structure is opaque object:

To speed things up, usually (always) add hardware lookup table
(e.g., TLB)

Translation table
pointer (in PCB) 1-level page table

or
paged segmentation
or
multi-level page table
or
inverted page table

vpage

Ppage,
control bits
[opt: bound]

Vpage | offset

TLB

Trap?

Phys addr

CS 439: Systems II Mike Dahlin

 8 02/14/12

[[defer] QUESTION: How will above picture differ for segments?]

Dual mode operation
Can application modify its own translation tables (memory or HW)? No. If it
could, it could get access to all physical memory.
C has to be restricted somehow
• kernel mode – can do anything (e.g. bypass translation, change translation
for a process, etc)
• User mode – each program restricted to touching its own address space
Implementation
SW loaded TLB

n each process has process control block (PCB) in kernel
n PCB includes (pointer to or entire) software translation table

(table in kernel memory --> applications cannot alter it)
n TLB miss --> exception
n --> kernel handler reads appropriate entry from currently running

process's table and loads entry into TLB
n

X86: hw loaded tlb

n translation data structure is in kernel memory (PCB as above)
n HW register has pointer to this data structure
n TLB miss --> hardware can follow this pointer and load TCB
n No exception handler in normal case (HW state machine)
n Drop into OS exception handler if no/bad mapping/permission
n Context switch changes HW register to point to new process's

mapping
n Privileged instruction to load HW register

Various kinds of translation schemes

CS 439: Systems II Mike Dahlin

 9 02/14/12

-- start with simplest!

Admin - 3 min

Lecture - 35 min

ORGANIZATION:
Series of systems
-- historical order
-- each illustrates/introduces a key idea

Now: begin discussion of different translation schemes. Remember what
they have in common. Start simply.
6. Base and bounds --> Isolation
Each program loaded into contiguous regions of physical memory, but with
protection between programs. First built in Cray-1

CS 439: Systems II Mike Dahlin

 10 02/14/12

Program has illusion it is running in its own dedicated machine with
memory starting at 0 and going up to <bounds>. Like linker-loader,
program gets contiguous region of memory. But unlike linker loader,
we have protection: program can only touch locations in physical
memory between base and bounds.

M

Provides level of indirection: OS can move bits around behind program’s
back.
For instance, if program needs to grow beyond its bounds or if need to
coalesce fragments of memory. à stop program, copy bits, change
base and bound register, restart.

Implementation

Hardware
-- Add base and bounds registers to CPU (trivial TLB)
Software
-- Add base and bounds to process control block
-- Context switch -- change base and bounds registers (Privileged
instruction)

CS 439: Systems II Mike Dahlin

 11 02/14/12

Notice:
Only OS can change base and bounds (memory protection for PCB,
privileged instruction for register)
Clearly user can’t or else lose protection.

Hardware cost:
2 registers
adder, comparator

Plus, slows down hardware b/c need to take time to do add/compare
on every memory reference.

QUESTION: How does protection work?, Sharing?

Evaluation
Base and bounds pros:

+ protection
+ simple, fast

Cons:
1. sharing -- Hard to share between programs
For example, suppose 2 copies of “vi”
Want to share code
Want data and stack to be different.
Cant do this with base and bounds.

2. relocation -- Doesn’t allow heap, stack to grow dynamically – want
to put these
as far apart as possible in virtual memory so they can grow to
whatever size is needed.

3. Complex memory allocation
see text: First fit, best fit, buddy system. Particularly bad if want
address space
to grow dynamically (e.g the heap)
In worst case have to shuffle large chunks of memory to fit new
Program

O

CS 439: Systems II Mike Dahlin

 12 02/14/12

7. Segmentation --> Sparse Address Space
segment – variable sized region of contiguous memory
Idea is to generalize base and bounds by allowing a table of base and
bounds pairs.

: _ _ __;__ # __, ,_____ _

View of memory:

CS 439: Systems II Mike Dahlin

 13 02/14/12

2 "__3____, ,__

This should seem a bit strange: the virtual address space has gaps in it! Each
segment gets mapped to contiguous locations in physical memory , but may
be gaps between segments.

But a correct program will never address gaps: if it does, trap to kernel and
core dump. (Minor exception: stack, heap can grow. UNIX, sbrk() increases
size of heap segment. For stack, just take fault; system automatically
increases size of stack.)

Detail: need protection mode in segmentation table. For example, code
segment would be read-only (only execution and loads are allowed). Data
and stack segments would be read/write (stores allowed.)

CS 439: Systems II Mike Dahlin

 14 02/14/12

Implementation
Hardware:
Simple TLB:
Typically, segment table stored in CPU not in memory because it’s small.

Software
 -- What gets added to PCB?
 -- What must be saved/restored on context switch?

QUESTION: How does protection work?, Sharing?

Segmentation pros and cons:
 + Protection

+ relocation efficient for sparse addr spaces
+ sharing easy to share whole segment (example: code segment)
detail: need protection mode bit in segment table – don’t let program
modify code segment
- complex memory allocation
first fit, best fit, etc
what happens when a segment grows?

8. Paging --> Fixed allocation; TLB
makes memory allocation simple
memory aloc can use a bitmap

0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0 1
Each bit represents 1 page of physical memory – 1 means allocated 0
means free

Much simpler allocation than base&bounds or segmentation

OS controls mapping: any page of virtual memory can go to any page
in physical memory.

(Also -- avoids bad corner cases from variable allocation ?)

CS 439: Systems II Mike Dahlin

 15 02/14/12

View of abstraction [[PICTURE]]
VA space divided into pages PA space divided into pages
[still with "segments"]
[PICTURE] [PICTURE]
--> need a table to map/translate each vpage to ppage [PICTURE]

Logical/conceptual view of implementation:

_________ ______________ ______________ ____ _!___" #_ _
$ _

Protection
Relocation
Sharing

Implementation (reality)
each address space has its own page table stored in physical memory
àneed pageTablePtr

pageTablePtr is physical address, not virtual address

DA: More complex TLB -- need to split translation between hardware
and memory

Problem: Page table could be large
 e.g., 256MB process (256 MB VA) with 1KB pages: 256K
entries (~1MB)

CS 439: Systems II Mike Dahlin

 16 02/14/12

à Cannot fit entire page table in TLB (in CPU hardware)

CS 439: Systems II Mike Dahlin

 17 02/14/12

Solution: TLB acts as cache (real implementation)

1) each address space/process has its own page table stored in
kernel/physical memory

2) Process control block has pageTablePtr
pageTablePtr is physical address, not virtual address

3) Associative TAG match in TLB hardware
QUESTION: How does this work?

n Hit à translation proceeds
n Miss à memory lookup

o Either hardware or software controlled
QUESTION: How would each work?

Software TLB miss handling
1) TLB generates trap

Virtual Address

Vpage | ppage

=

=

=

Match

PPAGE
VPAGE

+

Physical Address

TLB

PPag
e

PageTblPtr[pid]

Vpage

ppage

Offset

Memory

CS 439: Systems II Mike Dahlin

 18 02/14/12

2) Drop into OS exception handler and kernel-mode
3) OS does translation (page tables, segmented paging, inverted page table, …)
4) OS loads new entry into TLB and returns from trap

Context switch: Flush TLB
(Or add PID tag to TLB + a CPU register and change PID register on context switch)

Other option: Have HW read page tables/segment tables directly
-- HW includes register pageTablePointer (physical address, not virtual)
-- On TLB miss, HW state machine follows pointer and does lookup in
data structure
-- On context switch, change this register (and flush TLB)

o Result of memory lookup: (a) ERROR or (b) translation value
QUESTION: How would you tell the difference?

TLB Design (architecture class review):
Associativity: Fully associative
Replacement: random, LRU, … (SW controlled)

What happens on context switch?
Flush TLB
à new TLB feature – valid bit
QUESTION: what does valid bit mean in TLB? What does valid bit
mean in in-memory page table?

1.1 Space Overhead

2 sources of overhead:

1) data structure overhead (e.g., the page table)
2) fragmentation

external – free gaps between allocated chunks
internal – free gaps because don’t need all of allocated chunk
segments need to reshuffle segments to avoid external fragmentation
paging suffers from internal fragmentation

CS 439: Systems II Mike Dahlin

 19 02/14/12

How large should a page be?
Key simplification of pages v. segments – fixed size

QUESTION: what if page size is small. For example, vax had a page
size of 512 bytes

QUESTION: what if page size is very large? Why not have an infinite
page size

Example: What is overhead for paging?
overhead = data structure overhead + fragmentation overhead (internal + external)
= # entries * size of entry + #”segments” * ½ page size
= VA space size / page size * size of entry + #segments * ½ page size

suppose we have 1MB maximum VA, 1KB page, and 3 segments
(program, stack, heap)
= 2^20 / 2^10 * size of entry + 3 * 2^9

What is size of entry? Count # of physical pages
E.g. suppose we have a machine with a max 64KB physical memory
64KB = 2^16 bytes = 2^6 pages à need 6 bits per entry to identify
physical page

= 2^10 * 2^6 + 3*2^9 = 2^16 + 3*2^9

Details: size of entry

a. enough bits for ppage (log2(PA size / page size))
b. should also include control bits (valid, read-only, …)
c. usually word or byte aligned

Suppose we have 1GB physical address space and 1KB pages and 3
control bits, how large is each entry of page table?
 2^30 / 2^10 = 2^20 à need 20 bits for ppage

+ 3 control bits = 23 bits
à either 24 bits (byte aligned entries) or 32 bits (word aligned entries)

T

QUESTION: How does protection work?, Sharing?
(e.g., address = mmap(file, RO)

n how are mappings set up

CS 439: Systems II Mike Dahlin

 20 02/14/12

n control bits: valid, read only
)

Evaluation:
Paging

+ simple memory allocation
+ easy to share
- big page tables if sparse address space

Is there a solution that allows simple memory allocation, easy to share
memory, and efficient for sparse addr spaces?
How about combining segments and paging?

9. Multi-level translation --> A modern approach
Problem -- page table could be huge

QUESTION: what if address space is sparse? For example traditional 32-bit
UNIX –
code starts at 0, stack starts at 2^31 - 1

How big is single-level page table for 32-bit VA, 32-bit PA, 1KB page, 6
control bits

-- 2^32 byte virtual address space, 1KB pages --> 2^22 entries --> 2^24
bytes (assuming 4bytes/entry) --> 16MB per table (i.e., 16MB per process)

(And it is worse than these raw numbers suggest -- contiguous memory in
kernel!)

How big is single-level page table for 64-bit VA space?
-- 2^64 byte VA space ...

Problem -- address spaces are mostly sparse. Array is a stupid data structure
for sparse dictionary!

CS 439: Systems II Mike Dahlin

 21 02/14/12

Use a tree of tables (but call it "multi-level page table" or "paged page table"
or "segmented paging" or "paged segmentation" to sound impressive; we'll
focus on multi-level page tables; others vary in details, but same basic idea
tree)

Lowest level is page table so that physical memory can be allocated via
bitmap
Higher levels segmented or paged (what is the difference? Base v.
base + bounds)

Multi-level page table – top levels are page table
Paged segmentation – top level is segmentation, bottom level is paging

example: 2-level paged segmentation translation
Logical view:

Just like recursion, can have any number of levels in tree
Question: what must be saved/restored on context switch?
Question: How do we share memory?
(Can share entire segment or single page)

Question: Above shows logical picture. Add a TLB – does the TLB
care about segments?

CS 439: Systems II Mike Dahlin

 22 02/14/12

No – from TLB point of view,
address = <virtual page number, offset>

The virtual page number happens (in this case) to be organized as “seg,
vpage” for when we look in memory, but TLB doesn’t care

à flexible software translation

Hardware is always:

Memory data structure is opaque object:

Evaluation:
The problem with page table was that it was inefficient (space) for
sparse address spaces. How does paged segmentation do?

Multilevel translation pros & cons
+ protection, page-level sharing, relocation
and simple/cheap implementation
+ only need to allocate as many page table entries as we need
+ easy memory allocation
+ share at segment or page level

Vpage | offset

TLB

Trap?

Phys addr

1-level page table
or
paged segmentation
or
multi-level page table
or
inverted page table

vpage

Ppage,
control bits

CS 439: Systems II Mike Dahlin

 23 02/14/12

- pointer per page (typically 4KB - 16 KB pages today)
- two (or more) hops per memory reference (TLB had better work!)

CS 439: Systems II Mike Dahlin

 24 02/14/12

Multilevel page table
Example: SPARC (*slide*)

QUESTION: what is size of a page?
QUESTION: what is size of virtual address space?
Assume 36-bit physical address space (64 GB) and 4 protection bits
QUESTION: What is size of top-level page table?
 What is size of 2nd level page table?
 What is size of bottom level page table?
QUESTION: for a Unix process with 3 “segments” – data 64KB, stack
13KB, code 230KB, what is space overhead?
QUESTION: what is largest contiguous region needed for a level of the page
table?

Note:
• Only level 1 need be there entirely
• second and third levels of table only there if necessary
• three levels is “natural” b/c never need to allocate more than one

contiguous page in physical memory

QUESTION: what needs to change on context switch?

Context

context
table
(up to 4K
registers)

index(8) index2(6) index3(6) offset(12)

level1

Level2

Level3

Data
page

CS 439: Systems II Mike Dahlin

 25 02/14/12

Evaluation: multi-level page table

n good protection, sharing
n reasonable space overhead
n simple allocation
n DA: several memory reads needed per memory access

(hope TLB solves)

NEXT TIME -- details
(1) Quantifying overheads
(2) Case studies -- x86
(3) Other approaches

Summary - 1 min

Goals of virtual memory:
n protection
n relocation
n sharing
n illusion of infinite memory
n minimal overhead

o space
o time

