CS 439: Systems Mike Dahlin

Lecture M1: Virtual Memory Overview

3k 3 s sk sfe s s s st sk sie s sk sk s s sk st sk sie sk sk s s sk sk sk sk sk sk sk sk

Review -- 1 min

Process = address space + 1 or more threads

3k 3 s sk sfe s s s st sk sie sk sk sfe s s sk sk sk sie sk sk s sk sk st sk sk sk sk sk sk

Outline - 1 min

Basic story --
-- simple mechanism
-- lots of powerful abstractions/uses

Virtual memory abstraction
What is an address space?
How is it implemented?: Translation
Sharing: segmentation
Sharing + simple allocation: paging
sharing + simple + scalable: multi-level paging (, paged
segmentation, paged paging, ...)
OR inverted page table

Quantitative measures:

1 02/14/12

CS 439: Systems Mike Dahlin

Space overhead: internal v. external fragmentation, data structures
Time overhead: AMAT: average memory access time

Crosscutting theme: to make sure you understand these things, think about
what TLB, kernel data structures are needed to implement it

3k 3 s sk sfe s s s st ke sie sk sk sfe s s sk sk sk sie sk sk s sk sk sk sk sk sk sk sk sk

Preview - 1 min
skkskskskskskskskoksk

Outline/Preview

Historical perspective/motivation
Mechanism: translation

Use 1: protection + sharing + relocation
-- principles/basic approaches

-- case studies; cost models

Use 2: paging to disk

3k 3 s sk sfe s s s st sk sie sk sk sfe s s sk sk sk sie sk sk s s sk sk sk sk sk sk sk sk

Lecture - 35 min
skkskskskskskskskoksk

1. Overview/preview: Process abstraction

Prev lecture spoke informally about process. Next two chunks of class — memory and
concurrency — will define key abstractions in much more detail. As overview/context, define
process [INSERT Section 4 lecture 2 HERE]

2. Virtual memory abstraction

Reality V. abstraction
Physical memory Virtual memory
No protection address space protection —

_ each program isolated
Limited size expansion -- infinite memory
sharing of physical frames relocation—

everyone thinks they are loaded at addr “0”;
can put anything from 0..2732-1 or 2"64-1
Easy to share data between sharing —

2 02/14/12

CS 439: Systems Mike Dahlin

ability to share code, data programs

That all sounds great, but how do I do it?

Application

Pryscal
thr’

3 02/14/12

CS 439: Systems Mike Dahlin

Application]

Physical
Memory 20000

ApplicationZ

i

4 02/14/12

CS 439: Systems Mike Dahlin

Drelative-(v—abseolute)-address
2 el .)
(3Heoader changes-absolute address-at-load time

2.3 Multiprogrammed OS with protection
Goal of protection:
B keep user program from crashing OS
B keep user programs from crashing each other

How is protection implemented?

Hardware support:

1) address translation

2) dual mode operation: kernel v. user mode

3. Address translation

address space — literally, all the addresses a program can touch. All the state
a program can affect or be affected by

Idea: restrict what a program can do by restricting what it can touch.
Fundamental rule of CS: all problems can be solved with a level of
indirection

- Physical -
Virtuzl ackress Transkalion Adbess [Physical
Box memory
W
(unfransiabied)

Translation box = abstraction for now.
Reality -- some combination of HW and SW

Level of indirection gives you
* protection

5 02/14/12

CS 439: Systems Mike Dahlin

* No way for a program to even talk about another program’s addresses; no way to
touch OS code or data
* Translation box can implement protection bits — e.g., allow read but not write

* relocation (transparent sharing of memory)
P1’s address 0 can be different than P2’s address 0
Y our program can put anything it wants in its address space 0..2"64-1

* Share data between programs if you want
P1’s address OxFFO0O can point to same data as P2’s address
0xFF00 (or P2’s 0xAA00)

Notice

CPU (and thus your program) always see/work with VAs (and doesn't
care about PAs)

Memory sees PAs (and doesn't care about VAs)

Think of memory in two ways

View from CPU — what program sees; virtual memory

View from memory — physical memory

Translation 1s implemented in hardware; controlled in software.

5. Implementing protection, relocation
want: programs to coexist in memory
need: mapping from
<pid, virtual addr> = <physical address>
Many different mappings; use odd-seeming combination of techniques for
historical and practical reasons =>seems confusing

"practical reasons" -- mainly that translation is critical to performance,
so data structures get tightly optimized; data structures get split between HW
and SW; ...

Remember that all of these algorithms are just arranging some simple
techniques in different ways

Basics:

6 02/14/12

CS 439: Systems Mike Dahlin

segment maps variable-sized range of contiguous virtual addresses to a
range of contiguous physical addresses

page maps fixed size range of contiguous virtual addresses to a fixed sized
range of contiguous virtual addresses

need data structures to lookup page/segment mapping given a virtual address
<segment #> = segment info {base, size}
<page #> = page info {base}

Again, data structures seem confusing — base+bounds, segment
table, page table, paged segmentation, multi-level page table,
inverted page table -- but we’re just doing a lookup, and there aren’t
that many data structures that are used for lookup:

(pointer)

array

tree

hash table

{used in various combinations}

Memory data structure is opaque object:

Translation t

pointer (in PCB) 1-level page table
or
paged segmentation Ppage,
or control bits

vpage ~ ——®| multi-level page table
or
inverted page table

[opt: bound]

To speed things up, usually (always) add hardware lookup table
(e.g., TLB)

Vpage | offset
I () Phys addr

TLB

Trap?

7 02/14/12

CS 439: Systems Mike Dahlin

[[defer] QUESTION: How will above picture differ for segments?]

Dual mode operation
Can application modify its own translation tables (memory or HW)? No. If it
could, it could get access to all physical memory.
has to be restricted somehow
* kernel mode — can do anything (e.g. bypass translation, change translation
for a process, etc)
* User mode — each program restricted to touching its own address space
Implementation
SW loaded TLB

B cach process has process control block (PCB) in kernel

B PCB includes (pointer to or entire) software translation table

(table in kernel memory --> applications cannot alter it)
B TLB miss --> exception
B --> kernel handler reads appropriate entry from currently running

process's table and loads entry into TLB
[

X86: hw loaded tlb
B translation data structure is in kernel memory (PCB as above)
B HW register has pointer to this data structure
B TLB miss --> hardware can follow this pointer and load TCB
u No exception handler in normal case (HW state machine)
| Drop into OS exception handler if no/bad mapping/permission
B Context switch changes HW register to point to new process's
mapping
| Privileged instruction to load HW register

Various kinds of translation schemes

8 02/14/12

CS 439: Systems Mike Dahlin

-- start with simplest!
s s s st e st ke s ke s ke s e s st s st ke st ke sk ke sk ke sk sk sk stk ok Kok

Admin - 3 min

3k 3 s sk sfe s s s st sk sie sk sk sk s s sk sk sk sie sk sk s s s sk st skeoske sk sk sk sk

Lecture - 35 min
skkskskskskskskskoksk

ORGANIZATION:

Series of systems

-- historical order

-- each illustrates/introduces a key idea

Now: begin discussion of different translation schemes. Remember what
they have in common. Start simply.

6. Base and bounds --> Isolation

Each program loaded into contiguous regions of physical memory, but with
protection between programs. First built in Cray-1

e
"
Virtual addness "7
boinds
v\m

Physical address

9 02/14/12

CS 439: Systems Il

Mike Dahlin

Program has illusion it is running in its own dedicated machine with

memory starting at 0 and going up to <bounds>. Like linker-loader,

program gets contiguous region of memory. But unlike linker loader,
we have protection: program can only touch locations in physical
memory between base and bounds.

Virtual memary

[0]

\

Physsical memary

G230

Provides level of indirection: OS can move bits around behind program’s

back.

For instance, if program needs to grow beyond its bounds or if need to
coalesce fragments of memory. = stop program, copy bits, change
base and bound register, restart.

Implementation

Hardware

-- Add base and bounds registers to CPU (trivial TLB)

Software

-- Add base and bounds to process control block
-- Context switch -- change base and bounds registers (Privileged

instruction)

10

02/14/12

CS 439: Systems Mike Dahlin

Notice:

Only OS can change base and bounds (memory protection for PCB,
privileged instruction for register)

Clearly user can’t or else lose protection.

Hardware cost:
2 registers
adder, comparator

Plus, slows down hardware b/c need to take time to do add/compare
on every memory reference.

QUESTION: How does protection work?, Sharing?

Evaluation
Base and bounds pros:
+ protection
+ simple, fast
Cons:
1. sharing -- Hard to share between programs
For example, suppose 2 copies of “vi”
Want to share code
Want data and stack to be different.
Cant do this with base and bounds.

2. relocation -- Doesn’t allow heap, stack to grow dynamically — want
to put these

as far apart as possible in virtual memory so they can grow to
whatever size i1s needed.

3. Complex memory allocation

see text: First fit, best fit, buddy system. Particularly bad if want
address space

to grow dynamically (e.g the heap)

In worst case have to shuffle large chunks of memory to fit new
Program

11 02/14/12

CS 439: Systems Mike Dahlin

7. Segmentation --> Sparse Address Space
segment — variable sized region of contiguous memory
Idea is to generalize base and bounds by allowing a table of base and

bounds pairs.

or
| Virtual address |
[50¢ [ofiset
piysply fsize
] /
Phys addr

View of memory:

12 02/14/12

CS 439: Systems Mike Dahlin

Virtual mem

Phys mem
Pacoess 1 5 Pr——
Cadex 00 (k) .
Q1 (data) »
02 lm:' \
Daka
Shack

Prooess 1 7

or
Godex gg%oode} /
O fdate)l ~—

Q2 (shank) \

Stack

This should seem a bit strange: the virtual address space has gaps in it! Each
segment gets mapped to contiguous locations in physical memory , but may
be gaps between segments.

But a correct program will never address gaps: if it does, trap to kernel and
core dump. (Minor exception: stack, heap can grow. UNIX, sbrk() increases
size of heap segment. For stack, just take fault; system automatically
increases size of stack.)

Detail: need protection mode in segmentation table. For example, code

segment would be read-only (only execution and loads are allowed). Data
and stack segments would be read/write (stores allowed.)

13 02/14/12

CS 439: Systems Mike Dahlin

Implementation
Hardware:

Simple TLB:
Typically, segment table stored in CPU not in memory because it’s small.

Software
-- What gets added to PCB?
-- What must be saved/restored on context switch?

QUESTION: How does protection work?, Sharing?

Segmentation pros and cons:
+ Protection
+ relocation efficient for sparse addr spaces
+ sharing easy to share whole segment (example: code segment)
detail: need protection mode bit in segment table — don’t let program
modify code segment
- complex memory allocation
first fit, best fit, etc
what happens when a segment grows?

8. Paging --> Fixed allocation; TLB

makes memory allocation simple

memory aloc can use a bitmap
0011010001111000100101

Each bit represents 1 page of physical memory — 1 means allocated 0

means free

Much simpler allocation than base&bounds or segmentation

OS controls mapping: any page of virtual memory can go to any page
in physical memory.

(Also -- avoids bad corner cases from variable allocation ?)

14 02/14/12

CS 439: Systems Mike Dahlin

View of abstraction [[PICTURE]]

VA space divided into pages PA space divided into pages
[still with "segments"]
[PICTURE] [PICTURE]

-->need a table to map/translate each vpage to ppage [PICTURE]

Logical/conceptual view of implementation:

ovor
| Virtual adress | Page ki
vial e =
PagR o
Paiye fabke
>
R ——

Physpaged ofigel

Protection
Relocation
Sharing

Implementation (reality)

aad pPd A

DA: More complex TLB -- need to split translation between hardware
and memory

Problem: Page table could be large
e.g., 256MB process (256 MB VA) with 1KB pages: 256K
entries (~1MB)

15 02/14/12

CS 439: Systems Mike Dahlin

- Cannot fit entire page table in TLB (in CPU hardware)

16 02/14/12

CS 439: Systems Il

Mike Dahlin

Solution: TLB acts as cache (real implementation)

VPAGE

\Y,

Virtual Address

----- Physical Address
Offsbt A
A
Vpage age
<] VP | ppag PPAGE
—<> = —P —P
<4 —P
P =P
<
<4 —p
= —P
4 H
...
\ 4
Match
PageTblPtr[pid] Memory
PPag
€ e
ppage

1) each address space/process has its own page table stored in
kernel/physical memory
2) Process control block has pageTablePtr
pageTablePtr is physical address, not virtual address
3) Associative TAG match in TLB hardware
QUESTION: How does this work?
B Hit - translation proceeds
B Miss 2 memory lookup
o Either hardware or software controlled

QUESTION: How would each work?

Software TLB miss handling
1) TLB generates trap

17

02/14/12

CS 439: Systems Mike Dahlin

2) Drop into OS exception handler and kernel-mode
3) OS does translation (page tables, segmented paging, inverted page table, ...)
4) OS loads new entry into TLB and returns from trap

Context switch: Flush TLB
(Or add PID tag to TLB + a CPU register and change PID register on context switch)

Other option: Have HW read page tables/segment tables directly

-- HW includes register pageTablePointer (physical address, not virtual)
-- On TLB miss, HW state machine follows pointer and does lookup in
data structure

-- On context switch, change this register (and flush TLB)

o Result of memory lookup: (a) ERROR or (b) translation value
QUESTION: How would you tell the difference?

TLB Design (architecture class review):
Associativity: Fully associative
Replacement: random, LRU, ... (SW controlled)

What happens on context switch?

Flush TLB

- new TLB feature — valid bit

QUESTION: what does valid bit mean in TLB? What does valid bit
mean in in-memory page table?

1.1 Space Overhead

2 sources of overhead:

1) data structure overhead (e.g., the page table)

2) fragmentation
external — free gaps between allocated chunks
internal — free gaps because don’t need all of allocated chunk
segments need to reshuffle segments to avoid external fragmentation
paging suffers from internal fragmentation

18 02/14/12

CS 439: Systems Mike Dahlin

How large should a page be?
Key simplification of pages v. segments — fixed size

QUESTION: what if page size is small. For example, vax had a page
size of 512 bytes

QUESTION: what if page size is very large? Why not have an infinite
page size

Example: What is overhead for paging?

overhead = data structure overhead + fragmentation overhead (internal + external)
= # entries * size of entry + #’segments” * % page size

= VA space size / page size * size of entry + #segments * 2 page size

suppose we have 1TMB maximum VA, 1KB page, and 3 segments

(program, stack, heap)
=2720/2"0 *size of entry + 3 * 279

What is size of entry? Count # of physical pages

E.g. suppose we have a machine with a max 64KB physical memory
64KB = 2*16 bytes = 26 pages - need 6 bits per entry to identify
physical page

=2M0 * 26 + 3"2"9 = 26 + 3*2"9

Details: size of entry
a. enough bits for ppage (log2(PA size / page size))
b. should also include control bits (valid, read-only, ...)
c. usually word or byte aligned

Suppose we have 1GB physical address space and 1KB pages and 3

control bits, how large is each entry of page table?
2730/ 2M0 = 2220 - need 20 bits for ppage
+ 3 control bits = 23 bits
- either 24 bits (byte aligned entries) or 32 bits (word aligned entries)

19 02/14/12

CS 439: Systems Mike Dahlin

B-—control bits:valid,read-only
)

Evaluation:
Paging
+ simple memory allocation
+ easy to share
- big page tables if sparse address space

Is there a solution that allows simple memory allocation, easy to share
memory, and efficient for sparse addr spaces?
How about combining segments and paging?

9. Multi-level translation --> A modern approach
Problem -- page table could be huge

QUESTION: what if address space is sparse? For example traditional 32-bit
UNIX —
code starts at 0, stack starts at 231 - 1

How big is single-level page table for 32-bit VA, 32-bit PA, IKB page, 6
control bits

-- 2732 byte virtual address space, 1KB pages --> 2722 entries --> 224
bytes (assuming 4bytes/entry) --> 16MB per table (i.e., 16MB per process)
(And it is worse than these raw numbers suggest -- contiguous memory in
kernel!)

How big is single-level page table for 64-bit VA space?

-- 2764 byte VA space ...

Problem -- address spaces are mostly sparse. Array is a stupid data structure
for sparse dictionary!

20 02/14/12

CS 439: Systems Mike Dahlin

Use a tree of tables (but call it "multi-level page table" or "paged page table"
or "segmented paging" or "paged segmentation" to sound impressive; we'll
focus on multi-level page tables; others vary in details, but same basic idea
tree)

\ o

21 02/14/12

CS 439: Systems Mike Dahlin

Vpage | offset
I Phys addr

)

TLB

Trap?

M I . biect

1-level page table
or
paged segmentation Ppage,

control bits

or
vpage — ¥ multi-level page table
or

inverted page table

22 02/14/12

CS 439: Systems Mike Dahlin

23 02/14/12

CS 439: Systems Mike Dahlin

index(8) | index2(6) index3(6 offset(12)
Context \
levell
context
table
(up to 4K
registers)
Level2
Level3
/| Data
page

24 02/14/12

CS 439: Systems Mike Dahlin

NEXT TIME -- details

(1) Quantifying overheads
(2) Case studies -- x86
(3) Other approaches

3k 3 s sk sfe s s s st sk sie sk sk sfe sk s sk st sk sie sk sk s s s sk sk sk sk sk sk sk sk

Summary - 1 min
sk sk sk s sk sk skeoske sl sk sk sk sk sk s sk sk skeoskeoske st sk sk sk sk skoso s seskeoskoskok

Goals of virtual memory:
protection
relocation
sharing
illusion of infinite memory
minimal overhead

O space

o time

25 02/14/12

