N2: Intro to networked services

Review

Internet is a peripheral to my computer (P10, DMA, etc.)
Routing — distance vector
Naming — DNS, zones

|
|
|
B Sharing — congestion control

Outline

Finish congestion control
B danger !
B principles

Message APIs/abstractions
B send/receiv

B 1pc
Challenges
Performance: LogP
Intro: Distributed File Systems

Using messaging to build services

Send/Receive

How do you program a distributed application?
Need to synchronize multiple threads, but they are on multiple
machines (no test&set)

Atomic send/receive — doesn’t require shared memory for
synchronizing cooperating threads

Note that send and receive are atomic
never get portion of a message (all or nothing)

two receivers can’t get same message

Q: How do you know you got the whole message?
Q: How do you know no errors in message?

Mailbox — temporary holding area for messages (ports)

Looks like producer/consumer queue



-- Two “threads”: CPU and NIC; some amount of locking, signaling
needed (a few extra details — don’t want to try to grab spin lock when
interrupts are off; may not be OK to block 10 device; ...)

Receive(buffer, mbox)
—> Wait until mbox has message in it, then copy message into buffer,
and return

when packet arrives, OS puts message into mbox, wakes up one of the
writers

Send(buffer, mbox)

When can Send return?
* when receive gets message?
* when message 1s safely buffered on destination node?
* Right away, if message is buffered on source node?

Message styles

I-way — messages flow in one direcction (UNIX pipes, TCP)
2-way — request-response (remote procedure call)

l-way communication

Producer:
int msgl[1000];
while (1) {
prepare message; // add coke to mach.
Send (msgl, mbox) ;
}

Consumer
int msg2[1000];

while (1) {
receive (msg2, mbox) ;
process message; // drink coke



no need for producer/consumer to keep track of space in mailbox —
handled by send/receive

2-way communication

What about 2-way communication? Request/response — e.g. “read a
file” stored on a remote machine

Also called — client-server
Client = requestor
server = responder
Server provides “service” to client

request/response:

client:
char response[1000];

send (“read rutabaga”, mboxl);
receive (response, mbox2);

server:
char command[1000], answer[1000];

receive (command, mboxl);
decode command;

read file into answer;
send (answer, mbox2);

Remote procedure call
Call a procedure on a remote machine

client
remoteFileSys—->Read (“rutabaga”) ;



translated into call on server:
fileSys->Read (“rutabaga”) ;

Implementat on top of request-response message passing
“stub” provides glue

call send
Client > cliemt > Packet
(caller) * stub < Handler
return receive
network
trangpo
return send
Server — > server > Packet
(callee) «—— stub * Handler
call receive

client stub:
build message
send message
wait for response
unpack reply
return result

server stub:
Create N threads to wait for work to do
loop:
wait for command

decode and unpack request parameters
call procedure

build reply message with results
send reply

Comparison between RPC and procedure call
What’s equivalent
Parameters — request message



Result — reply message
Name of procedure — passed in request message
return address — mbox2

Implementation issues

Stub generator — implements stubs automatically
for this, only need procedure signature — types of arguments,
return value
generate code on client to pack message, send it off, on server
to unpack message, call procedure

How does client know which mbox to send to? Binding
static — fixed at compile time (e.g. C)
dynamic — fixed at runtime (e.g. Lisp, RPC)

In most RPC systems, dynamic binding via name service.
Name service provides dynamic translation of service = mbox

Why runtime binding?
Access control — check who is permitted to access service
fail-over — if server fails, use another

Problems with RPC

Problem solved?

RPC provides location transparency — except

Failures -- message loss, machine crash
Performance

Consistency/replication

Security

o All hard problems.

o Fundamental limits (e.g., you can't atomically update an object replicated
at multiple machines)

o Diffcult trade-offs among goals -- e.g., consistency v. availability CAP



Failures

- s in disteibuted | o "

: iinds of £ail

B ostmessage
Bostreply
Bculwire
.'T






