
N2: Intro to networked services

Review
n Internet is a peripheral to my computer (PIO, DMA, etc.)
n Routing – distance vector
n Naming – DNS, zones
n Sharing – congestion control

Outline
Finish congestion control
n danger !
n principles

Message APIs/abstractions
n send/receiv
n rpc

Challenges
Performance: LogP
Intro: Distributed File Systems

Using messaging to build services

Send/Receive
How do you program a distributed application?
Need to synchronize multiple threads, but they are on multiple
machines (no test&set)

Atomic send/receive – doesn’t require shared memory for
synchronizing cooperating threads

Note that send and receive are atomic

never get portion of a message (all or nothing)
two receivers can’t get same message

 Q: How do you know you got the whole message?
 Q: How do you know no errors in message?

Mailbox – temporary holding area for messages (ports)

Looks like producer/consumer queue

-- Two “threads”: CPU and NIC; some amount of locking, signaling
needed (a few extra details – don’t want to try to grab spin lock when
interrupts are off; may not be OK to block IO device; …)

Receive(buffer, mbox)
à Wait until mbox has message in it, then copy message into buffer,
and return

when packet arrives, OS puts message into mbox, wakes up one of the
writers

Send(buffer, mbox)
When can Send return?

• when receive gets message?
• when message is safely buffered on destination node?
• Right away, if message is buffered on source node?

Message styles
1-way – messages flow in one direcction (UNIX pipes, TCP)
2-way – request-response (remote procedure call)

1-way communication

Producer:
 int msg1[1000];
 while(1){
 prepare message; // add coke to mach.
 Send(msg1, mbox);
 }

Consumer
 int msg2[1000];

 while(1){
 receive(msg2, mbox);
 process message; // drink coke
 }

no need for producer/consumer to keep track of space in mailbox –
handled by send/receive

2-way communication

What about 2-way communication? Request/response – e.g. “read a
file” stored on a remote machine

Also called – client-server
 Client = requestor
 server = responder
 Server provides “service” to client

request/response:

 client:
 char response[1000];

 send(“read rutabaga”, mbox1);
 receive(response, mbox2);

 server:
 char command[1000], answer[1000];

 receive(command, mbox1);
 decode command;
 read file into answer;
 send(answer, mbox2);

Remote procedure call
Call a procedure on a remote machine

client
 remoteFileSys->Read(“rutabaga”);

translated into call on server:
 fileSys->Read(“rutabaga”);

Implementat on top of request-response message passing
 “stub” provides glue

client stub:
 build message
 send message
 wait for response
 unpack reply
 return result

server stub:
Create N threads to wait for work to do
 loop:
 wait for command
 decode and unpack request parameters
 call procedure
 build reply message with results
 send reply

Comparison between RPC and procedure call
What’s equivalent
 Parameters – request message

 call send
 Client client Packet
 (caller) stub Handler
 return receive

 network
 transport

 return send
 Server server Packet
 (callee) stub Handler
 call receive

 Result – reply message
 Name of procedure – passed in request message
 return address – mbox2

Implementation issues

Stub generator – implements stubs automatically

for this, only need procedure signature – types of arguments,
return value
generate code on client to pack message, send it off, on server
to unpack message, call procedure

How does client know which mbox to send to? Binding
 static – fixed at compile time (e.g. C)
 dynamic – fixed at runtime (e.g. Lisp, RPC)

In most RPC systems, dynamic binding via name service.
Name service provides dynamic translation of service à mbox

Why runtime binding?
 Access control – check who is permitted to access service
 fail-over – if server fails, use another

Problems with RPC

 Problem solved?

RPC provides location transparency – except

Failures -- message loss, machine crash
Performance
Consistency/replication
Security

o All hard problems.
o Fundamental limits (e.g., you can't atomically update an object replicated

at multiple machines)
o Diffcult trade-offs among goals -- e.g., consistency v. availability CAP

Failures
Different failure modes in distributed system than on single machine

Several kinds of failure
(1) communication interruption

n lost message
n lost reply
n cut wire
n …

Simple solution:
Request/acknowledge protocol
Common case:
1) Sender sends message (msg, msgId) and sets timer
2) Receiver receives message and sends (ack, msgId)
3) Sender receives (ack, msgId) and clears timer

If timer goes off, goto (1)

How does this work? Local procedure call guarantes exactly
once semantics. What does retransmission guarantee?
n What if msg 1 lost?
n What if ack lost?

Guarantees at least once semantics assuming no machines
crash or otherwise discontinue protocol
n Receiver guaranteed to recv message at least once
n Receiver may recv message multiple times. Receiver MAY

use sequence number to filter repeated transmissions so that
each is acted upon just once (but what if receiver crashes
and loses seq number info?)

in general -- request may be executed 0, 1, 2, or more times.

(2) Machine fails
Several variations:

♦ user level bug causes address space to crash
♦ machine failure, kernel bug causes all AS on same machine

to fail
♦ power outage causes all machines to fail

Before, whole system would crash. Now: one machine can crash,
while others stay up.
Now, one machine can crash, while others stay up. If file server goes
down, what do the other machines do?

Example: simple send/ack protocol above -- Difficult to deal with
machine crashes

n If sender crashes (or if sender gives up because it has tried
100 times in a row) what is the post condition?
o Receiver may or may not have received message

n If receiver crashes, filtering repeated messages to act on
them exactly once is tricky à carefully design protocol to
either (a) tolerate at least once semantics or (b) detect/avoid
replication even across sender/receiver failures

Tricky – processing a message can have arbitrary side effects. Want
exactly once semantics or protocol may have strange behaviors

Tomorrow: strategies for dealing with machine failures in distributed
protocols
 Ad-hoc strategies (file systems)
 Two-phase commit
 Persistent message queues

