
Lecture #28

Review -- 1 min

RAID: use redundancy to make multiple disks feasible�

 good performance�
 excellent availability

1 disk: 1M hours mttf
100 disks: 90 data, 10 parity, (G=11) 1hr mttr: 1B hr mttf

100K years!
100 disks: 80 data, 20 parity (G=12), 1 hr mttr: 1x10^14 hr mttf

1B years!
RAID Architectures

• mirroring
• parity on blocks
• interleaved parity on blocks

Outline - 1 min

System-level availability
Benchmarking

Preview - 1 min

Networks --

Intro – networking basics
Performance models

Lecture - 20 min

System-level availability
motivation: disk-only piece now seems pretty reliable

other pieces will limit availability

--

System-level availability

Any of those pieces can fail
worry about cable failures?
Yes – at rates of 1 per billion years, cable failures are

significant

3 levels – bottom up
1) disks – more complicated than RAID model
2) other hardware in the box
3) system – software, environment, etc.

1) Disk failure models

�������	��
 ���	��	��� ���	��
 �	�����	��
 � ��	������� �

♦
♦

• correlated disk failures
• same shipment, same environment

• system crash during parity update + disk failure
 need atomic update of data + parity � logging, NVRAM, …
• predict failures by watching “soft errors”
 “negative” MTTR – pull disk before it fails
• reconstruction can “cause” failures

• uncorrectable bit errors of 1 per 10^14 bits read
• � 1 512 byte sector in 24 billion cannot be read
• � P(sucessful reading 100M sectors

= (1-1/(2.4*10^10)) ^ 2*10^8 = 99.2%�
 0.8% of disk failures result in data loss

(Not so much “causing” failure – just that there is another failure
mode other than head crash that the earlier model didn’ t account for)

2) Non-disk Hardware failures
Most common component failures (in order of failures)

fans, power supplies, controllers, cables

Solution 1: “Orthogonal RAID”

Solution 2: “Fully dual-redundant”

3) System-level availability
sources:

• environment – e.g. power outage
• need UPS

• operations – e.g. “rm -r * ”
• maintenance – e.g. kick power cord out of wall while

cleaning
• software
 e.g. bug in software
• hardware

e.g. disk failure, CPU failure, memory failure

 �����!��#"��!����"	$ $ ���% ����
 �	��#"��!����"	$ $ ���

% ����
 �	��#"��!����"	$ $ ��� % �&��
 �����"����&��"�$ $ �	�

% �&��
 �����"����&��"�$ $ �	� % ���'
 ����#"	�����'"�$ $ �	�

% ���'
 ����#"	�����'"�$ $ �	� % ���'
 ����#"	�����'"�$ $ �	�

("�)*�

GRAPH: figure 1 Jim Gray “A Census of Tandem System
Availability between 1985 and 1990” IEEE Transactions on Reliability v39
n4 Oct 1990

Moral: Hardware is pretty good (HW and maintenence terms)
environment is significant (need uninterruptable power supply)
software, operations are big problem

Admin - 3 min

hw5

checkpoint
♦ should be starting to see progress; even some preliminary results
♦ want roadmap of what remains to be done

Schedule
Next week – no class Monday

Guest lecture Wednesday
Regular lecture Friday

NOTE: Discussion of final pair of papers (parallel arch) moved
To Friday 4/30

Lecture - 24 min

 Benchmarks

 “For better or worse, benchmarks shape a field”

 I/O Benchmarks
 typically measure throughput
 possibly with upper limit on response time

 Key issue – benchmark scaling

 what if fix problem size, given 60%/year increase in DRAM
capacity?
 Benchmark Size of Data %Time in IO (1992)
 IO Stones 1MB 26%
 Andrew 4.5MB 4%
 (1MB? Fits in L2 cache on modern machines!!!)

 Observation – most benchmarks synthetic
♦ scaling
♦ hard to deal with large data sets

 Self-scaling, Synthetic Benchmarks
 --
 Idea: automatically increase workload to stress system being
measured
 3 examples

• TPC – transaction processsing (TPC-A, TPC-B, TPC-C,
TPC-D)

• NFS: SPEC SFS (aka Laddis)
• Unix I/O: Willy

 Transaction Processing
 TP aka OLTP (On-lin transaction processing)

• Changes to a large body of shared information from many terminals,
with the TP system guaranteeing proper behavior on failures

• e.g. if bank’s computer fails when a customer withdraws money, the TP
system would guarantee that the account is debited if the customer
received the mondy and that the account is unchanged if the money was
not received

• Airline reservation systems and banks use TP

Key idea: Atomic Transactions

Each transaction + 2-10 disk I/Os + 5K-20K CPU instructions per
disk I/O

SW efficiency crucial to avoiding disk accesses

Classic metric: TPS (Transactions per second)
♦ but under what workload? How were machines configured?

 TPC Benchmark history

• Early 1980’s: great interest in OLTP

♦ Expecting demand for high TPS(e.g. ATM machines, credit
cards)

♦ Each vendor picked own conditions for TPS claims, report
only CPU times with widely different I/O

♦ Conflicting claims , disbelief of all benchmarks - chaos
in market

• 1984 – Jim Gray of Tandem distributed paper to Tandem employees and
19 other companies to propose standard benchmark

• Published “A measure of transaction processing power” Datamation,
1985 by Anonymous et. Al

♦ to indicate this was an effort of a large group
♦ to avoid delays of legal department of each author’s firm

 TP by Anon et. al

• Proposed 3 standard tests to characterize commercial OLTP

♦ TP1: OLTP test “DebitCredit” – simulates ATMs
♦ Batch sort
♦ Batch scan

• DebitCredit
♦ One type of transaction – 100 bytes each
♦ recorded 3 places: account file, branch file, teller file + all

events recorded in history file
• Scaling: size of account, branch, teller, history are all function of

throughput
 TPS #ATMs account-file size
 10 1000 0.1GB

 100 10K 1.0 GB
 1000 100K 10.0 GB
 10,000 1000K 100.0 GB

 . each TPS / 100K account records, 10 branches, 100 ATMs

• response time: 95% transactions take < 1 second
• Configuration control: report price (initial purchase price + 5 year

maintenence = cost of ownership)

 Problems with TP1

 Often ignored the user network to terminals
 used transaction generator with no think time (made sense for vendor
but not what customer would see)

 Solution: hire auditor to certify results
 auditors soon saw many ways to trick system
 0 propsed minimum compliance list (13 pages)
 still can’ t reproduce results

 1 1988: TPPC (Transaction processing performance council)
 they create standard TPC benchmarks in 1990

 New TP benchmarks

• TPC-A: Revised TP1/DebitCredit

• Arrivals: Random (TPC) v. uniform (TP1)
• Terminals: smart v. dumb (affects instr. Path lenght)
• ATM scaling: 10 terminals per TPS v 100
• branch scaling: 1 record per TPS v. 10
• response time constraint: 90% < 2 seconds v. 95% < 1
• full disclosure: approved by TPC
• complete TPS/response time plot v. single point

• TPC-B: Same as TPC-A but without terminals (batch processing)
• Other efforts:

• TPC-C – complex query processing

• TPC-D – decision support

 Lessons from TPC

• importance of scaling
• importance of standard
• peformance/cost metric

 NFS Benchmark – SPEC SFS/LADDIS

 1993 – attempt by NSF companies to agree on standard benchmark
• multiple “client” load generator machines
• no caching at clients
• read and write (and stat and …) random files
• reads: 85% full block + 15% partial block
• writes: 50% full block + 15% partial block
• each client access private subdirectory (subdirectories can even be in

different file systems!)
• max avg response time 50 ms
• scaling: for every 100 NFS ops/sec, increase capacity by 1GB
• Result: plot of server load (throughput) v. response time

 Limitations
• low-level benchmark – NFS server specific

 e.g. no client cache (so, an odd workload)
 2 not correspond to performance seen by client

• odd workload
 odd access patterns (no client caches)
 no client sharing of data
 each client gets own subdirectory or file system

 Willy – self-scaling UNIX file system benchmark

 (Chen and Patterson 1993)

 Self-scaling to stress different aspects of system
 Examine 5 paramers
• unique bytes touched -> gives file cache size
• percentage of reads
• avg I/O request size (Bernoulli C = 1)
• percentage of sequential requests: typically 50%
• Number of processes: concurrency of workload
 Idea : fix four parameters while vary 1 paramter
 Search space to find high throughput

 Example: Fig 6.26

 Benchmark conclusions

• scaling to track technology
• TPC: price performance as normalizing config
• auditing to ensure no foul play
• throughput with restricted response time is normal measure
• practical challenges

♦ large data sets 3 artificial workload (so can artificially generate)
♦ large configurations 4 expensive to do tests (e.g. for high TPC

need thousands of clients)

Summary - 1 min
