
Lecture #33

Review -- 1 min

Beyond the NI:

Media
Topologies
Routing
Connections and flow control
Topology

Finish up flow control: and topology

Flow Control
• Tech trends
• Memory capacity improving as fast as signaling technology
• Buffer size = round-trip-time * bandwidth
• Buffer size = queue length needed to avoid drops with specified

probability given expected burstiness

Design rules
• Avoid bursts to get good latency and bandwidth
• Queuing theory v. pipeline
• Exponential backoff needed once network congested
• easier to overflow network than to empty it

• analogy—rush hour traffic
• “Social cost” of congestion
• My packets slow down other packets

• Send overhead < recv overhead
• Delay in send loop can speed up whole network

• Brewer et al “How to get good performance from the CM-5 data
network” http.cs.berkeley.edu/~brewer

Switch topologies

Factors
degree – number of links from a node
diameter – max # links crossed between nodes
avg distance – number of hops to random destination
bisection – minimum number of links that separate

the network into two halves

These factors relate to higher level properties
latency – diameter, distance
bandwidth – bisection
cost – degree (larger degree increases cost per switch

and reduces number of switches)

Warnings against beautiful topologies

1) 3-d or N-d drawings must be mapped onto chip and boards

♦ elegant when sketched on blackboard may be awkward
to build from chips, cables, boards, and boxes

2) subtlety – routing
up*down* routing leads to symmetries

�
 all packets try

to go through same link

e.g. 2-d mesh (see slide)

3) Simple, fast v. beautiful, slow

4) Behavior “ in the limit” not terribly relevant
• Biggest machine = 2048 processors
• Most machines < 32 processors

Switch topology: Reliability

another consideration – how many nodes become disconnected when
a switch fails? How many switches must fail to partition the network?

Solution – redundant connections, careful topologies

Outline - 1 min

Into to parallel architecture

motivation
applications
arch categories

flynn categories
what level parallelism
shared address v. message passing
numa v. uma
cc-numa v. shared memory

convergence of architectures
fundamental issues

naming
synchronization
latency, bandwidth
consistency, coherency

Preview - 1 min

caching, consistency, and coherency
snooping v. directory-based coherency
synchronization
consistency models
case study: SGI Origin
case study: NOW

Lecture - 20 min

Motivation

Almasi and Gottlieb Highly Parallel Computing 1989
“A parallel computer is a collection of processing elements
that cooperate and communicate to solve large problems
fast.”

Key questions
• how large a collection?
• how powerful are processing elements?
• How do they cooperate and communicate?
• What type of interconnect?
• What are HW and SW primitives for programmer?
• Does it translate into performance (is it fast)?

• Wouldn’ t voluntarily parallelize program if no more
performance

Parallel processing: the dream of architects for 30 years – replicate
processors to add performance v. design a faster processor

• rather than design a new processor from scratch (hard), just get
people to buy more current processors

• dream v. reality
• dream: better performance, easier to program, more reliable
• reality: ??? performance, HARD to program, less reliable

The hype:
speed of light limits

�
 must go parallel (since at least 1972)

The reality:
1) processors faster today than 1972
at least 5 years of future improvements understood
beyond that?

I wouldn’ t bet against improved performance

2) MPP bankruptcy
KSR, TMC, Cray…

Jim gray: “Chapter 11”

Opportunities and Applications

1) Scientific computing

Grand challenge problems: <slide>

problem w scientific – tied to govt funding
collapse of TMC, etc. due to end of cold ware
Total NSF budget $3B – even if every penny went to buying parallel

computers, that is still a small market v. PCs

Success in real industries
petrolium – reservoir modeling
automotive: crash simulation, drag analysis, engines
aeronautics: airflow analysis, engine design, structural

mechanics
pharmaceuticals – molecular modeling

2) Commercial computing

Transaction processing & TPC-C benchmark

<slide>

♦ all vendors serious about TPC are doing MPP
♦ range – small to medium scale

Others: CAD, entertainment (“Toy story”)…

Application challenge: Programming
<slide: mortar shot Amber molecular dynamics 4 months of effort>

♦ load balancing,
♦ optimize communication

“Attach of the killer micros”

1) uniprocessor performance closing in on supercomputers
 <slide>
2) MPP performance surpassing vector supercomputers
 <slide>
3) bus-based machines getting bigger, more common
 <slide>
4) Top-500 – micros dominate; bus based micros increasing

<slide>

Categories of Parallel Architectures
--
basic questions

what level parallelism
how communicate
how cache?
…

What level parallelism?

1) Processor evolution: Bit-level v. instruction-level v. thread level?

<slide>

2) larger-scale parallelism (multiple processors)

Flynn categories

1. SISD – single instruction single data
-- uniprocessors

2. MISD – multiple instruction single data

 -- ???

3. SIMD – single instruction multiple data
 --- examples – Illiac IV, CM-2

 <slide>

 simple programming model
 simple compiler model!

 low overhead
 flexibility
 all custom integrated circuits

 might also classify: vector machines, MMX as SIMD

4. MIMD – multiple instruction multiple data
♦ examples : sun Enterprise 5000, Cray T3D, SGI origin
♦ flexible
♦ use off-the-shelf micros

Admin - 3 min

sermon: stay broad (or maybe engineering = craft)

* * *******************************
Lecture - 24 min

Message passing v. shared memory

Message Passing

<slide>
• Computers (processor + memory) communicate via network
• Explicit network commands to access other computers
• Send: specifies local buffer + receiving process on remote

computer
• Receive: specifieds sending process on remote computer + local

buffer to place data
• pairwise syncrhonization – match send and receive;

• other MP models relax sync for better performance (e.g.
AM)

History of Message Passing
♦ network topology important b/c could only send to immediate

neighbor
♦ typically synchronous, blocking sends and receives
♦ later: DMA w. non-blocking sends; DMA for recv.; DMA to

buffer until processor does receive, then copy to correct
destination in processor local memory

♦ later: SW libraries to allow arbitrary communication

Message Passing example: IBM SP-2 = RS6000 workstations in rack
♦ Network interface card has Intel 960
♦ 8x8 crossbar building block of network
♦ 40 MB/s link

Shared memory
• Communicate via Load and Store
• Usual model: share code, private stack, some shared heap, some private

heap <slide>

♦ each processor can name every physical location in macine
♦ data xfer via load,store
♦ data size: byte, word, … cache block
♦ Use virtual memory to map virtual to local or remote physical
♦ memory hierarchy model applies: communication moves data to

local cache (as load moves data from memory to cache)

Comparison: message passing v. shared memory
• Shared memory

• proc communicate with shared address space
• easy to implement on small-scale machines
• advantages

♦ model of choice for uniprocessors, small-scale MPs
♦ ease of programming
♦ lower latency
♦ easier to use hardware controlled caching

• message passing
• processors have private memories, communicate via messages
• advantages

♦ less hardware, easier to design
♦ focuses attention on costly, non-local operations

Shared memory: numa v. uma

UMA – uniform memory access
aka SMP – symmetric MP

design – interconnect (usu bus) connects all
processors, memories, IO devices

Uniform access time to memory from all processors

good for small-scale systems
often built with shared bus, single memory

key to design – aggressive caching to reduce traffic to
centralized resources

examples: SGI challenge, Intel systemPro

<slide>

NUMA – nonuniform memory access
each node = a processor (or several), caches, and local memory
example: CRAY T3D
<slide>

UMA v. NUMA
NUMA more scalable (most memory can be “far away”)
UMA easier to program

<slide: Sun E5000 – NUMA or UMA?>�
 uma for simplicity

Shared memory: bus v. switched network
Have alluded to fact that NUMA more scalable than UMA
b/c UMA usually built with a bus, but NUMA built with
more complex network

Bus – fast, but expensive to scale (adds pins)

<slide: bus BW v. year>

Multistage network: less expensive to expand than bus/crossbar�
 more bandwidth

<slide -- bus, crossbar, multistage>
<slide – cray t3e>

Shared memory: cc-numa v. non-cc numa
CC = cache coherence
basic problem – caches vital to performance (see above)
but, what happens when data change�

 cached data stale

fundamental rule – more copies of data makes reads faster,
but makes writes slower/more complex

cache consistency/coherency – how we keep multiple copies in
caches in sync

CC adds complexity
T3E avoids by not keeping caches coherent

♦ only cache reads to local data
♦ all remote reads go to remote node
♦ “cache” remote data by copying to local memory

♦ SW responsible for consistency

convergence of architectures
• Complete computers connected to scalable network
• different programming models place different requirements on

communications layer
• shared address space: tightintegration with memory to capture

memory events that interact with others and to accept requests
from other nodes

• message passing: send messages quickly and respond to incoming
messages: tag match, allocate buffer, transfer data, wait for recv
posting.

fundamental issues

Synchronization

To cooperate, processes must coordinate
message passing – implicit coordination when data

arrives/transmitted

shared adddress � addtional operations needed to expliclity
coordinate e.g. set a flag, awaken a thread, interrupt a processor

Latency, bandwidth
Bandwidth

need high BW in communication
cannot scale, but stay close
make limits in network, memory, processor (not software)
communication overhead is problem in many machines

Latency
affects performance, since processor may have to wait
affects ease of programming, since requires more thought to

overlap communication and computation
efforts to reduce latency increase hardware complexity

(e.g. caching)

Latency hiding
Examples: prefetch, overlap send with computation

consistency, coherency

Summary - 1 min
