Lecture #34

R R R ek Rk S b S bk e S Sk b b S e bk S

Review --1min
khkkhkkhkhkhkkhkhkhkhkhkhkhkhhdhdhdhdhkhkhkhhkhhhkkhddd%k

Convergence of MP designs

Network

Design questions
» Interface to network (want low overhead, high BW)
» Network design (scalable, low latency, high BW)

Key challenge
programming MPs

R Rk Rk S b Sk e e kb b S b e kS

Outline- 1 min
khkkkkhkhkhkhkkhkhkhkkhkhkhkhkhkhkhkkkkhkhkhkikhkkkkkkk*kx
Programming MP’s: shared memory v. message passing
NUMA v. UMA
Network: Busv. Switched
Consistency v. Coherency
Cache consistency
CC-numayv. non-cc-numa

Snooping v. Directories

Snooping Protocol

khkkkkhkhkhkkhkkhkkkhkhkhkhkkhkkkkkkkhkikhkkkkkkkk*%x

Preview - 1 min
kkhkkkhkkkkhkkhkhkhkhkkhkhkkhkhkkhkkhkhkkikkhkikkikkk*k
Directory protocol

Consistency models

NOW, SGI Origin

khkkkhkkhhkkhkhkkkhkkhhkkhkhkkhkkhhkhkhkkhkkhkkhkk%x*x

Lecture - 20 min
khkkkkhkhkhkhkkhkhkkkhkhkhkhkhkhkhkkkkhkhkhkikhkkkkkkkx*kx
fundamental issues
naming/programming model
synchronization
latency, bandwidth
consistency, coherency

Programming model — shared memory v. msg passing

Shared Memory Message Passing
easier to program interface makes costly operations explicit
lower latency less hardware, easier to design

easier to do HW controlled caching

Message passing v. shared memory

Message Passing
<dlide>
» Computers (processor + memory) communicate via network
» Explicit network commands to access other computers
» Send: specifieslocal buffer + receiving process on remote
computer
» Receve: specifieds sending process on remote computer + local
buffer to place data
e pairwise syncrhonization — match send and receive;

» other MP modelsrelax sync for better performance (e.g.
AM)

History of Message Passing

¢ network topology important b/c could only send to immediate
neighbor

¢ typically synchronous, blocking sends and receives

¢ later: DMA w. non-blocking sends; DMA for recv.; DMA to
buffer until processor does receive, then copy to correct
destination in processor local memory

¢ later: SW librariesto alow arbitrary communication

Message Passing example: IBM SP-2 = RS6000 workstations in rack
¢ Network interface card has Intel 960
¢ 8x8 crossbar building block of network
¢ 40 MB/slink

Shared memory

e Communicate viaLoad and Store

» Usual model: share code, private stack, some shared heap, some private
heap <dide>

each processor can name every physical location in macine
data xfer viaload,store

data size: byte, word, ... cache block

Use virtua memory to map virtual to local or remote physical
memory hierarchy model applies: communication moves data to
local cache (as |oad moves data from memory to cache)

* & & o o

Comparison: message passing v. shared memory
e Shared memory
» proc communicate with shared address space
» easy to implement on small-scale machines
» advantages
¢ model of choice for uniprocessors, small-scale MPs
¢ ease of programming
¢ lower latency

¢ easier to use hardware controlled caching
* message passing
* Processors have private memories, communicate via messages
» advantages
¢ less hardware, easier to design
¢ focuses attention on costly, non-local operations

UMA v. NUMA

UMA NUMA

Memm

00000 (W)

| |
Mem Mem Mem \\\\
<::> Memm <::> Memm

UMA — Uniform memory access
aka SMP — symmetric multi-processing
network — usually a bus
good for small-scale systems
QUESTION: why hard for large systems?

examples — SGI challenge, Intel Systempro

<slide>

NUMA - nonuniform
each node: a processor (or several), caches, local memory
e.g. CRAY T3D
<slide>

UMA v. NUMA

QUESTION: advantage/DA of each
UMA — easier to program
NUMA — more scalable

Network for Shared Memory -- bus v. switched

QUESTION: advantage/DA of each
Bus —fast, but expensive to scale (adds pins)

<dlide: bus BW v. year>

Multistage network: less expensive to expand than bus/crossbar
—> more bandwidth

<dlide -- bus, crossbar, multistage>
<dlide — cray t3e>

Synchronization

To cooperate, processes must coordinate

message passing — implicit coordination when data
arrives/transmitted

shared adddress - addtional operations needed to expliclity
coordinate e.g. set aflag, awaken athread, interrupt a processor

Latency, bandwidth
Bandwidth
need high BW in communication
cannot scale, but stay close
make limits in network, memory, processor (not software)
communication overhead is problem in many machines

Latency
affects performance, since processor may have to wait
affects ease of programming, since requires more thought to
overlap communication and computation
efforts to reduce latency increase hardware complexity
(e.g. caching)

Latency hiding
Examples: prefetch, overlap send with computation
consistency, coherency

sk sk skosksk sk sk sk sk sk sk sk sk ko sk skeskok kR skookskesk sk ko

Admin - 3 min
skskckskockskskosk sk ckskskskskosk sk sksk Rk ks sk sk skskskskskskskesk

Sermon: stay broad
HWS5 due today
skkskoskoskoskeskosk sk sk skosk skosko kR sk sk skoskokosko ok sk sk skokskesk

Lecture - 24 min
skskckskockskskosk sk ckskskskskosk sk sksk Rk ks sk sk skskskskskskskesk

Cache coherency and consistency

The problem of Coherency

Time Event Cache A Cache B Mem

0 1
1 Aread X 1 1

2 B read X 1 1 1
3 A write 0 to X 0 1 0

What does coherency mean?

Informally:
* Any read must return most recent write
* Too strict — dificult to implement

Better:
¢ Any write must eventually be seen by a read
o All writes seen in order

Key idea — can a processor detect a bug in the memory system by
looking at writes other processors make?

e.g. — another processor count to 10 by writing numbers into a
memory location.

Are the following legal or illegal?
0123...10 --legal

0 4 10 — legal (I might have been slow)

0213456789 10 —illegal — something bad happened to
memory system

0123456789999999 ... -- after a couple days,
I can suspect that it is illegal

Consistency v. Coherency
Note: there is another way to detect that the memory system
is playing tricks on me

Suppose other processor counts to 10 by first writing to addresss
A and then writing to B and I see

A:0,B:0,A:1,B:1,A:1,B:2,A:1,B: 3 ...

This is a consistency bug in the memory system
coherency — a single address looks right
consistency — multiple addresses are consistent

People (including me) don’t always make distinction as clear as
could be.

Approaches to coherency

Key idea: when a write occurs, there can be only one copy of the
data (that way other copies won’t be out of date)

Strategies:
1) No caching remote data
example: cray T3D/T3E
2) Snooping
¢ Send all requests for data to all processors
¢ processors snoop and update cache state appropriately
¢ requires a broadcast b/c cache state distributed
¢ works well on a bus
¢ Bus also provides point of serialization
¢ dominates small scale machines (most of market)

3) Directory
¢ Directory tracks sharing
¢ distributed memory->distributed directory (avoid
bottleneck)
¢ send point-to-point requests to processors
¢ scales better than snoop
¢ Note: directory existed BEFORE snoop

Snooping Protocol

Simplified 3-state protocol

Slide: figure 8-11 H&P

2 notes on figure

1) left side (processor side) : figure is per cache block not per
memory location — this is why we can have a read miss
while we’re in the shared state — read miss is to a
different block that maps to this state

2) right side (bus side): notice the “abort memory access”
action. This means that suppose I'm trying to do a write
just as someone else is. They are in invalid and I am in
exclusive, but they get the bus first — I have to go to

invalid and restart my write request (otherwise —
deadlock)

BUS SERIALIZES REQUESTS!
Snoopy details

1) Intermediate states
<figure E.1>

any set of actions that includes getting the bus is not atomic

¢ other actions could happen while I'm waiting for
bus

<example — “Pending read” state>

2) Write back
<figure E.1, again>
key idea — writes are a 2-step process
1) detect miss and request bus
2) get bus, place miss on bus, get data, complete write

3) Split transaction bus
more pending states

4) squash memory access
when data in exclusive state, it must come from
cache when anothe cache reads,
but memory doesn’t know cache state, so it will try
to respond with wrong value

solution — extra wire on bus that allows caches to
signal memory when it has dirty data

note: snooping takes variable time so caches signal
with wired-or when it is OK to proceed (they release
the line when they know they do NOT have the data)

5) 4-state protocol
split exclusive to exclusive-clean and exclusive-dirty
“MESI”

Summary:
1) Bus makes broadcast possible -- allows snooping
2) Bus serializes requests 2 simplifies protocol
3) protocol more complicated than simple diagram

Ssksskok sk sk sk sk sk sk R sk sk sk sk Rk sk sk sk kR skeckskesk sk ko

Summary - 1 min
Y N TP R T P P S P

