
Lecture #36

Review -- 1 min

coherency – can you tell that memory system is playing tricks by looking at
one address?
consistency – can you tell that the memory system is playing tricks by
looking at multiple addresses?���������	��

���������������������

���
 � ��� ���	!�"�� #	�$���	%'&$�	��()�������*��#	+,"-�/. �	+,+���01� ���������������

2	�
 � ��� ��"��$���	+,�,34"��5�$"�6	��"���(��-7 ���,����+��,8��,"��5���$��(���&9��+

:	�
 ;=< ��#	������"�� +,�����,()��&$�	+,�	#	��+,��(�

-- wide busses, split transaction busses, more complex
coherency protocols to reduce bus traffic

>	�

���9��(?��&9��+@�����9"A&$������+��,&9�	(�"�%B(�C��	�����,����+�"A%����	�D�9�	�

Outline - 1 min

Directory-based coherency

Consistency
achieving acceptable consistency with good performance
algorithms

Parallel Case Studies

Lecture - 20 min

Directory-based coherency

Large-scale systems
replace bus with scalable interconnectE

 no single place to watch everything go by

Need to check separate data structure
when? On memory accessesF

 put directory by memory

 Directory

1) Distributed – each directory tracks memory whose “home” is on same

node
2) DA: directory scales with size of memory not size of cache
3) distributed – scalable
4) history – centralized directories pre-date snooping

(logical approach – you need to keep track of dependencies G need
something like a scoreboard)

Basic Directory Protocol

(Again, simplify – 3 state protocol)
Note – need state machine at cache AND at directory
3 states

1) Shared
2) Uncached
3) Exclusive

Directory also keeps list of nodes caching the data
♦ kept as bit vector (usually)
(Candidate talk a couple weeks ago – looked at range of ways to keep
this data structure)

FIGURE FROM TEXT – cache, directory FSMs

• states identical to snoopy protocol
• transactions v. similar to snoopy
• messages sent to relevant nodes (caching nodes, home node) rather than

broadcast on bus

Example: suppose node 1 writes B – what happens?

<Animate on chalk board>

HJILKLM4NLO�PRQ$STVUXWYU M�O T[Z�WL\ MLK H]ILK�M_^�OLP`Q$STaUXWYU MLO TbZLWL\ MLKcJd \ MLe U I \ f OTVUXWYU M�O T[Z�WL\ MLK

Complications

1) Non-atomic operations
 get requests while you are waiting for your request
 to be serviced

 e.g. get invalidate while waiting for upgrade

 solution: cache controller throws away all requests
 that come while waiting for read or write miss

2) Out-of-order messages
♦ network congestion/routing
♦ lost, retransmitted messages

example – Node 1 read, Node 2 write, directory gets read then
write, node 1 gets invalidate then data

example – node 1 has the data and starts write, then gets invalidate
then gets permission to write
do I get to keep caching after I write?

Solution: version numbers, queue or NACK requests, careful
reasoning about message order

3) avoid deadlock from running out of network buffers
separate request and reply logical networks (buffer pools actually)
♦ never send a request w/o reserving buffer for reply
♦ allowed to reject request (NAK) but must always drain replies

from the network
♦ requests can generate replies; replies cannot generate other

network messages

Side note: same cache consistency protocols for distributed file systems
most systems – centralized directory
xFS – my thesis – includes distributed directory

Tools for Cache Controller Design
--
Don’ t underestimate difficulty of the various complications for snooping
and directories (and remember, these are still simplified cases)

Design approach
• basically impossible to sit down in a room and write down the correct

protocol
• basically impossible to test – bugs come from unexpected ordering of

messages – basically unrepeatable
• solution: formal methods, verification tools

/* ****************************
Admin
****************************** /

/* * *******************************
Lecture
********************************* /

Consistency

Coherency v. Consistency

QUESTION: what is the difference?

Reminder of motivation
Remember definition of coherency:

•
•

Example (from above) violates first rule – absent coherency via snooping or
directories – B could read X==1 indefinitely
Consistency goes to the question of what does “eventually” mean?

We could definite it in terms of time – “within 1 us” or whatever
We don’ t do that

Instead we assume
• communication between processors via memory
• causal model

if event X precedes event Y at processor 1, we expect processor
2 to observe that X precedes Y

In our example – if, after P1 updates X, it sets a flag Y saying “I’ve
finished updating X” , if P2 reads Y and seems that X has been updated, it
had better see the new value of X when it reads X

Simple Consistency Example

P1: A = 0; P2: B = 0;
… …
A = 1; B = 1;
if(B == 0) { if(A == 0){

 printf(“P1.”); printf(“P2.”);
} }

Output Legal (“Consistent”)?
“P1.”
“P2.”
“”
“P1.P2.”
“P2.P1.”

Why might this be a problem?
Write buffer.
In big MPP – read could go through network faster than write

invalidates

Consistency Example
P1: P2:
for(ii = 0; ii < 100; ii++) { while(1){

A = ii; printf(“ (%d, %d), ” ,
B = ii; A, B);

} }

Output: (Where is inconsistecy?)
(0,1), (1,1), (1,2), (4,8), (9,9), (9,10), (9,10), (10,10),
(11,11), (12,12), …

slide: consistency example

Consistency
notice memory system playing tricks by looking at multiple locations
want: observe updates in consistent/causal order

Consistency – goal: present consistent (‘causal’) view of memory

Implementing consistency

Analysis of Examples

In first example – two writes by one processor must be observed in
same order at another processor
(Fairly obvious definition of causality)

In second and third example – the order between writes and reads
must be maintained

(Less obvious?)

g
 consistency involves ordering both writes and reads

sequential consistency

reads and writes by a processor are observed in same order
that they are executed by a processor

timesharing model – global pattern of reads and writes
corresponds to some possible interleaving of sequential
processor executions

simple implementation – delay each memory access until
the previous one has completed

Problem: write buffers,
lockup free caches,
reads must wait for writes to complete,
can’ t pipeline memory system, …

h
 SLOW

Solution: Weaker consistency models
• allow out-of-order memory accesses (sometimes)
• synchronization operations enforce order when needed

TSO (total store order aka processor consistency)
motivation: processors have write buffers

TSO Consistency model:
• allow reads to bypass writes
• writes complete in order
• write barrier – forces synchronous write flush

Partial store ordering – allows overlap/pipelining of writes
Weak ordering – allow reads and writes to get out of order

Programming Model : Synchronization

We want relaxed consistency models for performance, but how do we avoid
confusion like examples.

Think about parallel programming model –
• shared variables protected by locks/monitors

(even in sequential consistency environment)

• While I hold a lock, no other processor should be reading the
things I’m writing anyhow!

• While I don’ t hold a lock, I should not be reading things that other
nodes are writing.

data race free programs

Every write of a variable by one processor is separated from a
read/write of that variable by another processor by a pair of synchronization
operations – a release (unlock) by the first and an acquire (lock) by the
second.

For TSO, PSO, weak ordering – add acquires and releases that
act as read and write fences.

Write fence
♦ all writes by P that occur before P executed the write

fence complete before the write fence completes

♦ no writes by P that occur after the fence are initiated
before the fence completes

Read fence similar

Memory fence == both

Release Consistency

TSO, PSO, weak ordering – treat each synchronization as a memory
fence

Release consistency distinguishes acquire from release

FIGURE 8.40

Sa i W
Sa j R
R k Sr /* Error in text * /
W l Sr

A range of consistency models implemented in hardware:

FIGURE 8.39

Beyond release consistency

Lazy release consistency (figure 8.40)

specific locks w. specific data

Implementation Complexities

Atomic lock operations:
• test and set
• load-linked and store conditional

Efficiency
spin locking
exponential back off
queue locks

m,m�m,m,m�m,m�m,m,m�m,m�m,m,m�m,m�m,m,m�m,m�m,m,m�m,m�m,m,m�m,m�m
npo9qrqrs*tvuxwzy{qr|R}
m,m�m,m,m�m,m�m,m,m�m,m�m,m,m�m,m�m,m,m�m,m�m,m,m�m,m�m,m,m�m,m�m
~��9}*��|����[�9}?��u��r��s*}������bt��9}*�r���*qrs*}��[| ���J�����9s*���9�*tv�[�9t�qrs9}?���
� �9�R�*s*���r~��*}9�J|R���b�*}��Ju

