
Lecture #36

*********************************
Review  -- 1 min
*********************************
coherency – can you tell that memory system is playing tricks by looking at
one address?
consistency – can you tell that the memory system is playing tricks by
looking at multiple addresses?���������	��
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-- wide busses, split transaction busses, more complex
coherency protocols to reduce bus traffic
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*********************************
Outline - 1 min
*********************************
Directory-based coherency

Consistency
achieving acceptable consistency with good performance
algorithms

Parallel Case Studies

*********************************
Lecture - 20 min
*********************************

Directory-based coherency



--------------------------------

Large-scale systems
replace bus with scalable interconnectE

 no single place to watch everything go by

Need to check separate data structure
when? On memory accessesF

 put directory by memory

 Directory
------------
1)  Distributed – each directory tracks memory whose “home” is on same

node
2)  DA: directory scales with size of memory not size of cache
3)  distributed – scalable
4)  history – centralized directories pre-date snooping

(logical approach – you need to keep track of dependencies G  need
something like a scoreboard)



Basic Directory Protocol
------------------------------
(Again, simplify – 3 state protocol)
Note – need state machine at cache AND at directory
3 states

1)  Shared
2)  Uncached
3)  Exclusive

Directory also keeps list of nodes caching the data
♦ kept as bit vector (usually)
(Candidate talk a couple weeks ago – looked at range of ways to keep
this data structure)

FIGURE FROM TEXT – cache, directory FSMs

• states identical to snoopy protocol
• transactions v. similar to snoopy
• messages sent to relevant nodes (caching nodes, home node) rather than

broadcast on bus

Example: suppose node 1 writes B – what happens?

<Animate on chalk board>
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Complications
-----------------

1) Non-atomic operations
 get requests while you are waiting for your request
 to be serviced

 e.g. get invalidate while waiting for upgrade
 

 solution: cache controller throws away all requests
 that come while waiting for read or write miss

2) Out-of-order messages
♦ network congestion/routing
♦ lost, retransmitted messages

example – Node 1 read, Node 2 write, directory gets read then
write, node 1 gets invalidate then data

example – node 1 has the data and starts write, then gets invalidate
then gets permission to write
do I get to keep caching after I write?

Solution: version numbers,  queue or NACK requests, careful
reasoning about message order

3) avoid deadlock from running out of network buffers
separate request and reply logical networks (buffer pools actually)
♦ never send a request w/o reserving buffer for reply
♦ allowed to reject request (NAK) but must always drain replies

from the network
♦ requests can generate replies; replies cannot generate other

network messages



Side note: same cache consistency protocols for distributed file systems
most systems – centralized directory
xFS – my thesis – includes distributed directory

Tools for Cache Controller Design
------------------------------------------
Don’ t underestimate difficulty of the various complications for snooping
and directories (and remember, these are still simplified cases)

Design approach
• basically impossible to sit down in a room and write down the correct

protocol
• basically impossible to test – bugs come from unexpected ordering of

messages – basically unrepeatable
• solution: formal methods, verification tools

/* ****************************
Admin
****************************** /

/* * *******************************
Lecture
********************************* /

Consistency



Coherency v. Consistency
-------------------------------

QUESTION: what is the difference?

Reminder of motivation
Remember definition of coherency:

• 
• 

Example (from above) violates first rule – absent coherency via snooping or
directories – B could read X==1 indefinitely
Consistency goes to the question of what does “eventually”  mean?

We could definite it in terms of time – “within 1 us”  or whatever
We don’ t do that

Instead we assume
• communication between processors via memory
• causal model

if event X precedes event Y at processor 1, we expect processor
2 to observe that X precedes Y



In our example – if, after P1 updates X, it sets a flag Y saying “I’ve
finished updating X” , if P2 reads Y and seems that X has been updated, it
had better see the new value of X when it reads X

Simple Consistency Example
-----------------------------------

P1: A = 0; P2: B = 0;
… …
A = 1; B = 1;
if(B == 0) { if(A ==  0){

       printf(“P1.” );         printf(“P2.” );
} }

Output Legal (“Consistent” )?
“P1.”
“P2.”
“”
“P1.P2.”
“P2.P1.”

Why might this be a problem?
Write buffer.
In big MPP – read could go through network faster than write

invalidates

Consistency Example
P1: P2:
for(ii = 0; ii < 100; ii++) { while(1){

A = ii; printf(“ (%d, %d), ” ,
B = ii; A, B);



} }

Output: (Where is inconsistecy?)
(0,1), (1,1), (1,2), (4,8), (9,9), (9,10), (9,10), (10,10),
(11,11), (12,12), …

slide: consistency example

Consistency
notice memory system playing tricks by looking at multiple locations
want: observe updates in consistent/causal order

Consistency – goal: present consistent (‘causal’ ) view of memory

Implementing consistency
-----------------------------------

Analysis of Examples

In first example – two writes by one processor must be observed in
same order at another processor
(Fairly obvious definition of causality)

In second and third example – the order between writes and reads
must be maintained

(Less obvious?)

g
 consistency involves ordering both writes and reads



sequential consistency

reads and writes by a processor are observed in same order
that they are executed by a processor

timesharing model – global pattern of reads and writes
corresponds to some possible interleaving of sequential
processor executions

simple implementation – delay each memory access until
the previous one has completed

Problem: write buffers,
lockup free caches,
reads must wait for writes to complete,
can’ t pipeline memory system, …

h
 SLOW

Solution: Weaker consistency models
• allow out-of-order memory accesses (sometimes)
• synchronization operations enforce order when needed

TSO (total store order aka processor consistency)
motivation: processors have write buffers

TSO Consistency model:
• allow reads to bypass writes
• writes complete in order
• write barrier – forces synchronous write flush

Partial store ordering – allows overlap/pipelining of writes
Weak ordering – allow reads and writes to get out of order



Programming Model : Synchronization
-------------------------
We want relaxed consistency models for performance, but how do we avoid
confusion like examples.

Think about parallel programming model –
• shared variables protected by locks/monitors

(even in sequential consistency environment)

• While I hold a lock, no other processor should be reading the
things I’m writing anyhow!

• While I don’ t hold a lock, I should not be reading things that other
nodes are writing.

data race free programs
----------------------------

Every write of a variable by one processor is separated from a
read/write of that variable by another processor by a pair of synchronization
operations – a release (unlock) by the first and an acquire (lock) by the
second.

For TSO, PSO, weak ordering – add acquires and releases that
act as read and write fences.

Write fence
♦ all writes by P that occur before P executed the write

fence complete before the write fence completes
 

♦ no writes by P that occur after the fence are initiated
before the fence completes

Read fence similar

Memory fence == both

Release Consistency



------------------------

TSO, PSO, weak ordering – treat each synchronization as a memory
fence

Release consistency distinguishes acquire from release

FIGURE 8.40

Sa i  W
Sa j  R
R k  Sr /*  Error in text * /
W l  Sr

A range of consistency models implemented in hardware:

FIGURE 8.39

Beyond release consistency
---------------------------------

Lazy release consistency (figure 8.40)

specific locks w. specific data

Implementation Complexities
-----------------------------------

Atomic lock operations:
• test and set
• load-linked and store conditional

Efficiency
spin locking
exponential back off
queue locks
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