Lecture #36

R R R ek Rk S b S bk e S Sk b b S e bk S

Review -- 1 min
khkkkkhkhkhkhkkhkhkhkkhkhkhkhkhkhkhkkkkhkhkhkikhkkkkkkk*kx
coherency — can you tell that memory system is playing tricks by looking at
one address?
consistency — can you tell that the memory system is playing tricks by
looking at multiple addresses?
Summary -- snooping:
1) Bus makes broadcast possible - allows snooping
2) Bus serializes requests = simplifies protocol
3) DA: busses limit scalability
-- wide busses, split transaction busses, more complex
coherency protocols to reduce bus traffic

4) protocol more complicated than simple diagram

khkkkkhkhkhkkhkhkhkkkhkhkhkhkhkkhkkkkkhkikhkkkkkkkk*%x

Outline- 1 min

kkhkkkhkkkkhkkhkhkkhkhkkhkhkkhkhkkhkkhkhkkikkhkkkikkk*k

Directory-based coherency

Consistency
achieving acceptable consistency with good performance
algorithms

Parallel Case Studies

khkkkhkkhhkkhkhkkhkkhhkkhhkkhkkhhkhkhkkhkkhkkhkk%x*%x

Lecture- 20 min
khkkhkkhkhkhkkhkhkhkhkhkhkhkkhdhdhdhdhdhdhkhkhhhhhkkkdkdd%k

Directory-based coherency

Large-scale systems
replace bus with scal able interconnect
-> no single place to watch everything go by

Need to check separate data structure
when? On memory accesses
-> put directory by memory

Proc + Proc + Proc +
Cache Cache Cache
Memory Memory Memory
Directory Directory Directory
Qerconnection Net)
Directory

1) Distributed — each directory tracks memory whose “home” is on same
node
2) DA: directory scales with size of memory not size of cache
3) distributed — scalable
4) history — centralized directories pre-date snooping
(logical approach — you need to keep track of dependencies - need
something like a scoreboard)

Basic Directory Protocol
(Again, ssimplify — 3 state protocol)
Note — need state machine at cache AND at directory
3 states
1) Shared
2) Uncached
3) Exclusive
Directory also keeps list of nodes caching the data
¢ Kkept as bit vector (usually)
(Candidate talk a couple weeks ago — looked at range of ways to keep
this data structure)

FIGURE FROM TEXT - cache, directory FSMs

o statesidentical to snoopy protocol

e transactionsv. similar to snoopy

* messages sent to relevant nodes (caching nodes, home node) rather than
broadcast on bus

Node 1: “A” Directory: Node 2: “A”
state: shared state: shared state: shared

Example: suppose node 1 writes B —what happens?

<Animate on chak board>

Complications

1) Non-atomic operations
get requests while you are waiting for your request
to be serviced
e.g. get invalidate while waiting for upgrade

solution: cache controller throws away all requests
that come while waiting for read or write miss

2) Out-of-order messages
¢ network congestion/routing
¢ logt, retransmitted messages

example — Node 1 read, Node 2 write, directory gets read then
write, node 1 getsinvalidate then data

example — node 1 has the data and starts write, then getsinvalidate
then gets permission to write
do | get to keep caching after | write?

Solution: version numbers, queue or NACK requests, careful
reasoning about message order

3) avoid deadlock from running out of network buffers
separate request and reply logical networks (buffer pools actually)
¢ never send arequest w/o reserving buffer for reply
¢ alowed to rgject request (NAK) but must always drain replies
from the network
¢ requests can generate replies; replies cannot generate other
network messages

Side note: same cache consistency protocols for distributed file systems
most systems — centralized directory
XFS — my thesis — includes distributed directory

Tools for Cache Controller Design

Don’'t underestimate difficulty of the various complications for snooping
and directories (and remember, these are still simplified cases)

Design approach

» basically impossibleto sit down in aroom and write down the correct
protocol

» Dbasically impossible to test — bugs come from unexpected ordering of
messages — basically unrepeatable

 solution: formal methods, verification tools

/*****************************

Admin

******************************/

/*********************************

Lecture
*********************************/

Consistency

Coherency v. Consistency

QUESTION: what is the difference?

Reminder of motivation
Remember definition of coherency:

The problem of Coherency

Time Event Cache A Cache B Mem
0 1
1 A read X 1 1
2 B read X 1 1 1
3 A write 0 to X 0 1 0
4 B read X 0 1 0
Coherency:

* Any write must eventually be seen by a read
» All writes seen in order

Example (from above) violates first rule — absent coherency via snooping or
directories— B could read X==1 indefinitely
Consistency goes to the question of what does “eventually” mean?

We could definite it in terms of time —“within 1 us’ or whatever
We don't do that

Instead we assume

e communication between processors via memory

» causal mode
If event X precedes event Y at processor 1, we expect processor
2 to observe that X precedes Y

In our example —if, after P1 updates X, it setsaflag Y saying “I've
finished updating X", if P2 reads Y and seemsthat X has been updated, it
had better see the new value of X when it reads X

Simple Consistency Example

Pl1: A=0; P2: B=0;
A=1, B=1;
If(B==0) { If(A == 0){
printf(“P1.”); printf(“P2.”);
} }
Output Legal (“Consistent”)?
113 Pl.”
113 P2.”
“P1.P2.
113 P2.Pl-”
Why might this be a problem?
Write buffer.
In big MPP —read could go through network faster than write
invalidates

Consistency Example

P1. P2:

for(it = 0; 1i <100; ii++){ while(1){
A =ii; printf(“ (%d, %d), ",
B =i A, B);

} }

Output: (Where isinconsistecy?)
(0,1), (1,2), (1,2), (4,8), (9,9), (9,10), (9,10), (10,10,
(11,11), (12,12), ...

dlide: consistency example

Consistency
notice memory system playing tricks by looking at multiple locations
want: observe updates in consistent/causal order

Consistency — goal: present consistent (‘causal’) view of memory

| mplementing consistency

Analysis of Examples

In first example — two writes by one processor must be observed in
same order at another processor
(Fairly obvious definition of causality)

In second and third example — the order between writes and reads

must be maintained
(Less obvious?)

—> consistency involves ordering both writes and reads

sequential consistency

reads and writes by a processor are observed in same order
that they are executed by a processor

timesharing model — global pattern of reads and writes
corresponds to some possible interleaving of sequential
processor executions

simple implementation — delay each memory access until
the previous one has completed

Problem: write buffers,
lockup free caches,
reads must wait for writes to compl ete,
can’'t pipeline memory system, ...

- SLOW

Solution: Weaker consistency models
» alow out-of-order memory accesses (sometimes)
 synchronization operations enforce order when needed

TSO (total store order aka processor consistency)
motivation: processors have write buffers

TSO Consistency model:
» alow readsto bypass writes
» writes completein order
» write barrier —forces synchronous write flush

Partial store ordering — allows overlap/pipelining of writes
Weak ordering — alow reads and writes to get out of order

Programming Model : Synchronization

We want relaxed consistency models for performance, but how do we avoid
confusion like examples.

Think about parallel programming model —
» shared variables protected by locks/monitors
(even in sequential consistency environment)

* Whilel hold alock, no other processor should be reading the
things I’m writing anyhow!

 Whilel don’t hold alock, | should not be reading things that other
nodes are writing.

data race free programs

Every write of avariable by one processor is separated from a
read/write of that variable by another processor by a pair of synchronization
operations — ar elease (unlock) by thefirst and an acquir e (lock) by the
second.

For TSO, PSO, weak ordering — add acquires and rel eases that
act as read and write fences.
Write fence
¢ all writes by P that occur before P executed the write

fence complete before the write fence completes

¢ no writes by P that occur after the fence are initiated
before the fence completes

Read fence similar
Memory fence == both

Release Consistency

TSO, PSO, weak ordering — treat each synchronization as a memory
fence
Release consistency distinguishes acquire from release

FIGURE 8.40
Sa-> W
Sa=-> R
R->% [* Error in text */
W-=>%

A range of consistency models implemented in hardware:
FIGURE 8.39

Beyond rel ease consistency

Lazy release consistency (figure 8.40)

specific locks w. specific data

| mplementation Complexities
Atomic lock operations:
e test and set
 load-linked and store conditional

Efficiency
spin locking
exponential back off
gueue locks

kkkkkkkkkkkkkkhkhkkkkkhkkkkkkkkkxx

Summary - 1 min

kkkkkkkkkkkkkkhkhkkkkkhkkkkkkkkkxx

Consistency — want strong semantics, weak performance
Release Consistency

