
*********************************
Review  -- 1 min
*********************************
coherency – can you tell that memory system is playing tricks by looking at
one address?
consistency – can you tell that the memory system is playing tricks by
looking at multiple addresses?
Directory-based coherency

-- scalable�
 challenges – out-of-order msgs, limited buffering, …

tools for cache design
example: used teapot yesterday

/*********************************
Lecture
********************************* /

Consistency

Coherency v. Consistency
-------------------------------

QUESTION: what is the difference?

Reminder of motivation
Remember definition of coherency:

The problem of Coherency
Time Event Cache A Cache B Mem
0 1
1 A read X 1 1
2 B read X 1 1 1
3 A write 0 to X 0 1 0
4 B read X 0 1 0



• 
• 

Example (from above) violates first rule – absent coherency via snooping or
directories – B could read X==1 indefinitely
Consistency goes to the question of what does “eventually”  mean?

We could definite it in terms of time – “within 1 us”  or whatever
We don’ t do that

Instead we assume
• communication between processors via memory
• causal model

if event X precedes event Y at processor 1, we expect processor
2 to observe that X precedes Y

In our example – if, after P1 updates X, it sets a flag Y saying “I’ve
finished updating X” , if P2 reads Y and seems that X has been updated, it
had better see the new value of X when it reads X

Simple Consistency Example
-----------------------------------

P1: A = 0; P2: B = 0;
… …
A = 1; B = 1;
if(B == 0) { if(A ==  0){

       printf(“P1.” );         printf(“P2.” );
} }

Output Legal (“Consistent” )?
“P1.”
“P2.”
“ ”



“P1.P2.”
“P2.P1.”

Why might this be a problem?
Write buffer.
In big MPP – read could go through network faster than write

invalidates

Consistency Example
P1: P2:
for(ii = 0; ii < 100; ii++) { while(1){

A = ii; printf(“ (%d, %d), ” ,
B = ii; A, B);

} }

Output: (Where is inconsistecy?)
(0,1), (1,1), (1,2), (4,8), (9,9), (9,10), (9,10), (10,10),
(11,11), (12,12), …

slide: consistency example

Consistency
notice memory system playing tricks by looking at multiple locations
want: observe updates in consistent/causal order

Consistency – goal: present consistent (‘causal’ ) view of memory



Implementing consistency
-----------------------------------

Analysis of Examples

In first example – two writes by one processor must be observed in
same order at another processor
(Fairly obvious definition of causality)

In second and third example – the order between writes and reads
must be maintained

(Less obvious?)

�
 consistency involves ordering both writes and reads

sequential consistency

reads and writes by a processor are observed in same order
that they are executed by a processor

timesharing model – global pattern of reads and writes
corresponds to some possible interleaving of sequential
processor executions

simple implementation – delay each memory access until
the previous one has completed

Problem: write buffers,
lockup free caches,
reads must wait for writes to complete,
can’ t pipeline memory system, …

�
 SLOW



Solution: Weaker consistency models
• allow out-of-order memory accesses (sometimes)
• synchronization operations enforce order when needed

TSO (total store order aka processor consistency)
motivation: processors have write buffers

TSO Consistency model:
• allow reads to bypass writes
• writes complete in order
• write barrier – forces synchronous write flush

Partial store ordering – allows overlap/pipelining of writes
Weak ordering – allow reads and writes to get out of order

Programming Model : Synchronization
-------------------------
We want relaxed consistency models for performance, but how do we avoid
confusion like examples.

Think about parallel programming model –
• shared variables protected by locks/monitors

(even in sequential consistency environment)

• While I hold a lock, no other processor should be reading the
things I’m writing anyhow!

• While I don’ t hold a lock, I should not be reading things that other
nodes are writing.

data race free programs
----------------------------

Every write of a variable by one processor is separated from a
read/write of that variable by another processor by a pair of synchronization
operations – a release (unlock) by the first and an acquire (lock) by the
second.



For TSO, PSO, weak ordering – add acquires and releases that
act as read and write fences.

Write fence
♦ all writes by P that occur before P executed the write

fence complete before the write fence completes
 

♦ no writes by P that occur after the fence are initiated
before the fence completes

Read fence similar

Memory fence == both

Release Consistency
------------------------

TSO, PSO, weak ordering – treat each synchronization as a memory
fence

Release consistency distinguishes acquire from release

FIGURE 8.40

Sa �  W
Sa �  R
R �  Sr /*  Error in text * /
W �  Sr

A range of consistency models implemented in hardware:

FIGURE 8.39

Performance: figure 8.41



Beyond release consistency
---------------------------------

Lazy release consistency (figure 8.40)

specific locks w. specific data

Implementation Complexities
-----------------------------------

Atomic lock operations:
• test and set
• load-linked and store conditional

Efficiency
spin locking
exponential back off
queue locks

/*****************************
Admin
****************************** /
M: project office hours
Q&A: Wednesday class
Exam: Wednesday evening 6-9 PM TAY 3.144
F: advice on technical writing and speaking; course evals
M-W: project presentations

*********************************
Lecture - 24 min
*********************************

The future: Large-scale commercial machines

Limits of bus-based SMP
-------------------------------

SGI slide – mem size increasing faster than system BW

Papadopolous slide -- # nodes per SMP will fall



Solutions
-----------

1)  Better busses
• wider busses – more parallelism

• today 256 bits data, separate address, data busses
• DA: cost – more pins

• note: cost scales with size of biggest system you want
to build

• more busses
• busses not inherently unscalable
• e.g. each processor snoops 2 or 4 busses
• DA: cost – more pins, more tags, more controllers

• fundamental limitation – max length f(speed of light)
• �  hard to increase frequency

2)  Crossbar
<picture>

e.g. mainframes, Cray T90, Sun E10000

e.g. Sun E10000
Sun E5000 – 2 GB/s bus – 2-16 processors
Sun E10000 – 12 GB/s crossbar – 2-64 processors

16x16 crossbar; 16-bytes wide (128 bits)

Question – how do you maintain consistency
A: (in Sun E10K) – crossbar for data, 4 busses for addresses

each address bus goes to 1 of 4 banks of memory
all address busses snooped



DA: cost – typically crossbar is a unit
e.g. Sun E10000 - crossbar is $375K (list) (1997)

nprocessors list list/processors
4 500K 125K
8 625K 78K
16 875K 55K
32 1375K 43K
64 2375K 31K

3)  CC-NUMA
Sun E5000 hardware looks like NUMA – they just don’ t quite go all

the way
(good bet next generation will)

A few machines do CC-NUMA
Convex Exemplar, DASH, FLASH, Alewife,

SGI Origin 2000 --
Directory-based coherency
8-128 processors

Main components
• processor board – dual MIPS 195MHz R10000
• 2 processors connected by bus
• hub – connects processor bus to memory/other processors

• coherence controller
• up to 12 outstanding mem requests per processor

• IO Crossbar “Xbow” – connects to 6 IO interfaces and 2
nodes

• up to 480 MB/s per Xbow
• Router – 6-way crossbar @ 800 MB/s per link

• 2 local nodes + up to 4 other routers
• 2 routers �  8 other routers 	  max 64 nodes
• (128 nodes is a hack)

• Hypercube toplogy
• Bisection bandwidth



• 8 nodes – 1.6 GB/s
• 64 nodes – 12.8 GB/s??

Key technologies
directory-based coherence
OS support for locality
cheap ASICS – scalable interconnect

scales DOWN as well as UP
(only scales UP to a max size)

4)  Clusters of SMPs

SGI Origin 2000 was meant to be most scalable architecture. Still only
scale to 128 nodes  (why might they do that?)

What if you want more than 128 nodes –
Option: engineer a more scalable version of O2000 architecture

(expensive, low volume)
Option: connect together a bunch of O2000’s with high-performance

networks (they do the latter)

Trade-offs:
Cheap, scalable
More difficult programming model

*********************************
Summary - 1 min
*********************************
Consistency – want strong semantics, weak performance
Release Consistency
Trends – economical scaling


