2.1.1 Types of Attacks

e Needham (one of the authors) elsewhere classifies 4 types of attacks on crypto systems

A 10giC Of aUthentlcatlon — This paper only looks at one of them.
CS380L: Mike Dahlin 1. Attacks on the cryptographic algorithm
November 25, 2002 o brute force

1 Preliminaries

1.1 Review

1.2 Outline

1.3 Preview

2 Background

2.1 Scope
e This paper is a tool you need to have in your toolbag
e But, it alone won’t make you a security expert

o As earlier reading indicates: sophisticated crypto/protocol attacks are what designers (and aca-
demics) obsess about, but most real attacks come from “social engineering” or insider attacks

e Examples from “Why cryptosystems fail”

— Insider arranges for all accounts to have same password

Aside: You might be wondering: how does brute force computer decide it got the right
message?
unstated assumption: message has redundancy to indicate it is ” well formed”
examples: (1) ASCII text, english words (exceedingly unlikely random bits turn into
ascii or english), (2) checksum, (3) magic number
BTW DES (56 bits) isn’t enough any more
% Michael Wiener 1993: build a search machine (CMOS chips)
$1 million — 3.5 hours
$10 million — 21 minutes

key idea: easy to parallelize/build hardware: no per-key I/O just load each chip
with ”starting key” ”encrypted message” ”plaintext message”

* 2002 — assume (conservatively) halve cost every 2 years

% a $1M machine can crack 1 password every 600 seconds or so

* about 100 passwords/day — 30,000/year — 100K passwords during a 3-year life-
time — $10/password

% Don’t use DES-56 for secrets worth more than $1.00

% Question: How much did it cost NSA to crack a password when they approved
DES in the mid 1970s? about $10007

— Insider steals money — knows customer will be blamed 2. Attacks on the message

* Broad conclusion: make the entity responsible for verifying security the one at risk if

security authorization fails e.g. DES codes messages as seperate 64 bit blocks

* In US — burdon of proof on bank (for ATM)

* In Britain — burdon of proof on end-user 5——>A
<AAAAAAAA><BBBBBBBB><CCCCCCCC>. " *
— Test-sequence causes machine to disgorge money "You can trust" "machine bar" "to act as badguy"

— Fake ATM machine scam
S-—>A

<DDDDDDDD><EEEEEEEE><FFFFFFFF>. * *
"You can trust" "machine foo" "to act as dahlin"

e Example from “reflections on trusting trust”

— Do you trust the compiler, editor, ... adversary could munge second message
<DDDDDDDD><BBBBBBBB><FFFFFFFF>. *

— Once your system is cracked, you are doomed

— Principle: minimize “trusted computing base”

--> solution:
1. checsums across entire message
2. chain encryption state across message

All standard practise today

Correct implementation assumed the

‘‘conjunction’’ rules in BAN paper

3. Attacks on keys based on guessing

e Humans can’t remember 56-bit DES keys (let alone 511-bit RSA keys)

o These keys generated from something humans can remember: passwords

e Humans generate really bad passwords

— (e.g. the space of all likely passwords is a small subset of 25¢ or 2511)

*

*

*

*

*

*

*

*

*

common words (english or other languages)

names (TV, movies, music, famous people, nicknames, brand names...)
easily obtained information (birthday, licens #, userid..)

keyboard batterns ” qwerty”

simple permutations (eg. backwards)

systematic substitution (0 — 0,1 — 1)

passwords on other systems

. Internet work (nov 1988)

no password

user name

user name appended to itself
nickname for user name

last name

last name backwards

432 word dictionary
dictionary of english words

4. attacks on the protocol by a set of messages

o adversary replays and misues my messages

e e.g. consider how often I say "Hello, mike dahlin here”

— here I am on machine redhook”,

— "here I am on redhook running telnet to senna”,

— "here I am on machine senna”, ...)

e solution: timestamps and nonces

o adversary uses message from one part of protocol in another part of a different conversation

o (e.g. the CCITTT example in paper)

2.2 motivation

e Background:

e Needham and Schroeder built a distributed authentication protocol published 1978

e They were pretty famous and their protocol did (just about) exactly what you want it to do —
so this protocol became famous and was actually used pretty widely

When it got to be widely used, people found a bug

This upset Needham and Schroeder
— they had thought long and hard about the protocols and didn’t realize they were making a
much stronger assumption about one message than they wanted to

— Cryptography has this tradition of naming protocols after their inventors — the flawed
protocl was called the ”Needham Schroeder protocol”

They are pretty smart guys and they made this mistake conclude: need a better way to design
protocols

I'm not sure of the exact timing, but I think the following is not too far off. The original
protocol was published in 1978; the correction to the protocol was published in 1987 This bug
hung around for a long time!

Also, CCITT protocol made it a long ways through international standards process before this
paper blew it out of the water.
2.2,.1 The needham schroeder protocol

1. A— S: A,B,N, (Note: N, is a nonce)

2. S = A: {Ny, B, Kap, {Kab, A} Ky, } K

3. A— B: {Ku, A}k,

4. B = A: {Ny}«k,,

5. A= B: {Ny— 1}k,

o Notice this looks pretty much like kerberos

— (Actually, kerberos looks pretty much like this!)
e Intuition:

— Step 2: S sends A Kgp and {Kgp}Kps — all encrypted by Ky
— A has and believes K, (in fact, believes A Kab B)

— Step 3: A sends B {Kgp } Kps
— B has and believes (?) Ky

— Step 4-5: A and B handshake nonces to make sure they're both currently talking to each
other
¢ QUESTION: What’s the problem with this?
¢ ANSWER: Message 3 is not protected by nonces

— There’s no way for B to conclude that the K, it receives is a current key

— Example: Intruder has unlimited time to crack an old session key and reuse it as if it were
fresh

— Example: Suppose A’s private key were compromised Intruder uses K, to get K, for many

services s — intruder can continue to use these session keys even after K,’s private key is
changed

e In BAN logic, we will discover that B believes S once said (A Keb g), but we will not be

able to show that B believes S believes (A Kb g)

— So we won’t be able to take S has jurisdiction over (A EB) and upgrade to B believing
that it has a good key.
2.2.2 Timestamps and nonces
e goal: avoid being confused by replays
e (x) is fresh == this message has never gone over the network before
e you do this by including a nonce

1. a timestamp in the message
2. challenge-response:
If I issue a new challenge and get a new response then the message is fresh

o In the logic, the only way to upgrade from principle once said X to principle believes X is the
nonce verification rule:
P believes (X) is fresh , P believes Q once said X
P believes Q believes X

e In the example, after B decrypts the message, we have

— B believes S once said A ¢’ B
e.g., A and B can communicate using shared key Kab”

e There’s no way to get from that step to a statement about belief unless you include as an initial
assumption

— B believes (A Hqb B) is fresh
e If you make that assumption that B accepts the key as new, then you can proceed:

— B believes S believes A %%’ B
(e.g., B believes S believes A and B can communicale using Koap)

— B believes A 5¥ B

(e.g., B believes A and B can communicate using Kqp — authority)

3 Admin

4 BAN Logic

4.1 Definitions and notation

Verbose Blackboard
A believes X A EX
A once said X A X
A sees X A «X
A has jurisdiction over X A =X
(X) is fresh #(X)
K is a shared key for communicating between A and B AEB
V is a secret shared between A and B A \L B
K is B’s public key & B

4.1.1 Key postulates in the logic

1. message meaning

o This is the rule that lets you upgrade from
P sees X
to
P believes Q once said X

e e.g., for shared keys

A believes (A Kab B), A sees Xg,,

A believes B once said X
e To upgrade from A sees X” to ”A believes B once said X” X must be associated with
a secret B has:
— A %% B - A and B’s shared key
— B’s private key
— A and B’s shared secret

2. Nonce verification

o lets you upgrade from
Q once said X
to
Q believes X
o discussed above
A believes (X) is fresh , A believes B once said X
A believes B believes X

3. jurisdiction

o Lets you upgrade from A believes X to B believes X
e e.g., lets you transfer beliefs from authority to someone who trusts authority
A Dbelieves B has jurisdiction over X, A believes B believes X
A believes X

4. etc. e From A’s point of view, this message could just be

B — A: {OKab}
o (joining, dividing, associating freshness with entire message... Kab
e Without this message, A would end the protocol knowing that A & B, but not knowing

4.2 Needham Shroeder protocol example that the key had successfully been transmitted to B.

o Would this message have been better formalized as:

Assumptions b
4. B — A: {A"¥'B,N,
AEspAéB { s NoYry,
BESRAEB 5. A— B: {Ny—1}x,,
A E #(Na) . .
B = #(Nb) e Without a shared key, no way to apply message meaning and no way for B to know who
A EA Kas g said this. We're stuck.
S EA Kasg e What was desired:
B EB Kbs g — Apply (erroneously, it turns out) message meaning
s eB%s B EA h{N,—1,4%%B}
Protocol analysis: — Apply nonce verification (to get this far, B = #(Kab)):
BEAEATSB

1. A— S: A,B,N, (Note: N, is a nonce)
2. S— A: {N,, A Kab B, {A Kab B}x, }Kas One last point
The construction of messages 4 and 5 suggests (I think incorrectly) that Nj has something to
¢ Apply message meaning: do with proving freshness. E.g., that it is a challenge/response for A to prove it has the key. All
A ES | {Na A g B} we really need to do is send 2 different messages encrypted by the shared key. E.g.,
o Apply “if one part of a formula is fresh, the entire formula must be fresh” (rule 5 in article)
A E#(4¥'B)
e Apply nonce verification:
AESEAYS
e Apply jurisdiction:
AEA%B

— 4) B — A: {Messaged}k,,
— 5) A— B: {Messageb}x,,

How should this be formalized?

At some level what we are saying is:

- 4) B> A {A¥B)k,

3. A— B: {A ¥ B}y,
- 5) A— B: {A%¥B}k,

o Apply message meaning:

B ES KA RLS:) But since we need to ignore the “C — D” part of the message, how would these things be
o We're stuck! distinguishable? (e.g., how to avoid replay attacks?)
— NowaytogettoB ES EA K p e Proposal:
. Kab
4. B —» A: {Ny}g,, - 4) B— A: {B,A%¥'Blg,,
¢ Apply message meaning: - 5) A— B: {4, 141}5—">bB}Ka,>
A EB N, — This, I think, follows the “prudent practice” of “Explicit communication...interpretation of
A EB A RES: the message should depend only on its content.”
e Apply nonce verification: — English translation: “After receiving Kab, B says that Kab is a key that A and B can use
(recall A E #(AK<—a>bB)) to communicate.” and similarly for msg 5.

AEBEA®S

¢ Notice, this message is a bit subtle. The nonce is not here to prove freshness to A. Ignore
it in interpreting this message. A already knows that K, is fresh, and already knows that
A %% B, so this message proves to A that B believes in the shared key.

