
Disco

CS380L: Mike Dahlin

September 13, 2007

“Disco: A bad idea from the 70’s, and it’s back!”
Mendel Rosenblum (tongue in cheek)

1 Preliminaries

1.1 Review

1.2 Outline

1.3 Preview

• This week: Disco and Exokernel. One lesson: “If at first you don’t succeed, try try again”

2 Overview

• Disco motivation

OS

AppsApps

OSOS

Apps

Hardware

Disco

VMVMVM

– Background: Stanford FLASH

∗ SMP
∗ NUMA
· performance (e.g., memory locality)
· scale (bottlenecks; NUMA enables larger scale than SMP)
· fault tolerance (isolation; NUMA enables larger scale and less tight coupling

than SMP – some need for/hope for isolation)

– Want: convert a large SMP into a collection of virtual machines that run concurrently

1



– Existing commcercial OSs dont do well on FLASH (thanks to NUMAness)

∗ Hard to modify them
· Traditional view: “Software flexible, HW inflexible”
· Reality: processor architectures respun every 3-5 years, OS architectures respun

never
→ Reality: Software inflexible
· Why? (One theory: HW has narrow interface; OS interface gets broader and

broader)
∗ The VMs will hopefully share resources better than the big OS can
· locality – VM small ← can be hand-tuned “like a parallel program
· bottlenecks – hierarchical mgmt – Guest OS/VM
· isolation – OS runs in different address spaces “distributed system”

∗ Mix OSs, especially commercial ones with specialized ones
∗ Fault containment
∗ Economics: if you are a commercial operating system vendor, where spend time:

adding features to commodity OS that sells millions of copies per year or porting
and maintaining 50M-line OS to run on a few hundred high-end machines?

• Basic goals

– Support commodity OS with no modification

∗ Disco: 13000 lines of code
∗ v. Exokernel goal: absolute max performance

• Basic solution

– Disco

∗ Virtualize the hardware
∗ Guest OS’s have no idea that multipexing is happening
∗ Core challenge: virtualize hardware without breaking existing OS

– (v. Exokernel)

∗ Export the hardware
∗ LibOS’s are active accomplices in virtualizing hardware
∗ Core challenge: balance cooperation v. protection for max performance

• Challenges for VM’s

– Overhead of virtualizing hardware

∗ Emulate key instructions (IO, interrupts, memory management, ...)
∗ Space overhead: many copies of OS, binaries, etc in memory

– Difficult to manage resources w/o OS participation

∗ When is cpu idle?
· Disco guest OS gives hint for idle loop (give up a bit of transparancy...)

∗ When is memory free?

– Lack of sharing across VM’s

2



∗ Interprocess communication on IBM VM: Connect virtual card punch of VM1 to
virtual card reader of VM2.

– Lack of ccNUMA support

3 Virtualizing a machine

• Most instructions execute at hardware speed

• Privleged instructions?

– Trap to VM; VM emulates

– Example: What is pseudo-code for “handle process in guest OS TLB miss (for SW filled
TLB)?”

• Exceptions and interrupts?

• “Virtualizable machine”

4 Admin

• Project

• hamming paper

5 Key subsystems

5.1 Virtual memory

• GuestOS sees only “virtual physical addresses”

– When GuestOS tries to update TLB, VM remaps virtual PA to real PA

– GuestApp only sees virtual addresses – it cannot detect the “lie”

– GuestOS sees GuestApp virtual addresses and virtual physical addresses – it cannot
detect the “lie”

– QUESTION: Why does Disco relink the OS?

– QUESTION: What does disco need internally to do this? How do you handle TLB
miss? How do you take a page away from a VM? How do you migrate a page within a
VM? How do you give a page to a VM? Why does Disco not virtualize ASIDs?

– Disco intercepts disk requests for blocks already cached and gives the requesting VM a
read-only mapping to the page (if the request is a multiple of the page size). This leads
to transparent sharing of root disk.

– But how do we do this trick when OSes are sharing mutale file systems via NFS? A
virtual network device with unlimited MTU. Change IRIX mbuf implementation to not
write buffer memory and change bcopy to monitor’s remap

– OS tells monitor when a page will not be reclaimed (break abstraction)

• Virtual Memory on ccNUMA (pre-disco)

3



VM 0

Physical Page

Virtual Page

Node2Node1Node0

VM 2VM 1

– Shared virtual address space across nodes – where to locate data?

– Disjoint virtual address space within a node – replicate identical data (e.g., “/bin”)

• Virtual Memory on ccNUMA (Disco)

VM 0

Physical Page

Machine Page

Virtual Page

Node2Node1Node0

VM 2VM 1

– Transparent replication and migration for shared virtual pages on different machine
nodes

– Transparent sharing of machine pages that are virtually different on same machine node

– QUESTION: Given pmap, how share a page between VMs? How replicate a (read
only) page within a VM on multiple processors?

5.2 File system

• Virtually distinct disks

• Optimization: Identical data on virtually distinct disks

– Copy-on-write sharing

– Read-only disk file system sharing

– Write sharing via NFS

• Optimization: Copy-on-write + rollback → useful for debugging, test, etc.

5.3 Devices

• Option 1: Trap all programmed I/O and emulate

• Option 2: Add fake Disco-aware device drivers

• Ranges from transparent to not-so-transparent

• Ranges from slow to fast

4



5.4 Fast communication

• VM370: Virtual card writer to virtual card reader

• Disco: Fake virtual subnet

– Use TCP/NFS to connect virtual machines

– Zero copying by sharing underlying VMM buffers

5.5 Resource allocation

• Simple time-sharing scheduler among VM’s

– Guest OS hints for idle loop

• ccNUMA-aware management (e.g., affinity scheduling)

– How to do gang scheduling?

– How to do real time applications?

6 Disco evaluation

• More complete than the original UNIX paper...they measure compilation of GNU chess

• What are they trying to prove? What should they be trying to prove (what are key questions
about VMM approach?) Taking their experiments at face value, should you be convinced?

• Discussion

– IRIX memlock was a total disaster and no OS has a problem that big today

– NUMA scalability experiment compares to optimal (UMA)

7 Questions

• Research question: Is Disco simple enough to allow formal verification of correctness?

– Can you add “performance hints” interface that does not hurt correctness argument?

• What lessons (if any) for structuring OS’s?

• How much complexity belongs in “virtual machine” and how much in OS? As we add more
to virtual machine, can we simplify OS?

• What is the right layering? (What layering does Disco end up using?)

• What is the right HAL interface?

5



8 Evaluation: Disco v. Exo v. Micro

• Extensibility

– - Microkernel: experiment with new subsystems
– - Exokernel: some of the most interesting apps are specialized appliances, but how much

protection do you need?
– - Disco: specialized OS for novel machines

• Concurrent personality

– Microkernel: by hopefully sharing some underlying subsystems
– Exokernel: concurrent secure sharing of low level resource by different personalities
– Exokernel: the most interesting personalities (apps) do not necessarily have to be con-

current
– Disco: excellent support for concurrent personality but how many VMM subsystems can

you share?

• Modularity

– Microkernel: easier to foster good s/w engineering discipline
– Exokernel: ouch
– Disco: OS/HAL, no more modular than that

• Dstributed system support

– Microkernel: moving subsystems over the net
– Exokernel: N/A
– Disco
∗ Aggressive copy-on-write is cool
∗ The opposite–distributed system support enables the communication of VMs
∗ Its a strange idea to turn an expensive SMP into a dumb cheap cluster

• Security

– Microkernel: smaller trust base, hopefully
– Exokernel
∗ Exokernel itself is smaller so this is good
∗ But unclear with all the code injection and tight interactions with apps
∗ But maybe protection doesnt matter that much for specialized appliances

– Disco
∗ Nice opportunity of fault containment of VMs on SMPs

• Portability

– Microkernel: subsystems are easier to port
– Exokernel: ouch
– Disco:
∗ HAL in modern OS makes this easy
∗ Small tweaks of OS can make it more efficient

6


