Disco

(CS380L: Mike Dahlin

September 13, 2007

“Disco: A bad idea from the 70’s, and it’s back!”
Mendel Rosenblum (tongue in cheek)
1 Preliminaries

1.1 Review
1.2 Outline
1.3 Preview

e This week: Disco and Exokernel. One lesson: “If at first you don’t succeed, try try again”

2 Overview

e Disco motivation

VM VM VM

Disco

Hardware

— Background: Stanford FLASH
* SMP
* NUMA
- performance (e.g., memory locality)
- scale (bottlenecks; NUMA enables larger scale than SMP)

- fault tolerance (isolation; NUMA enables larger scale and less tight coupling
than SMP — some need for/hope for isolation)

— Want: convert a large SMP into a collection of virtual machines that run concurrently

— Existing commcercial OSs dont do well on FLASH (thanks to NUMAness)

x Hard to modify them
- Traditional view: “Software flexible, HW inflexible”

- Reality: processor architectures respun every 3-5 years, OS architectures respun
never

— Reality: Software inflexible

- Why? (One theory: HW has narrow interface; OS interface gets broader and
broader)

x The VMs will hopefully share resources better than the big OS can
- locality — VM small <+ can be hand-tuned “like a parallel program
- bottlenecks — hierarchical mgmt — Guest OS/VM
- isolation — OS runs in different address spaces “distributed system”
x Mix OSs, especially commercial ones with specialized ones
* Fault containment

*x Economics: if you are a commercial operating system vendor, where spend time:
adding features to commodity OS that sells millions of copies per year or porting
and maintaining 50M-line OS to run on a few hundred high-end machines?

e Basic goals

— Support commodity OS with no modification

x Disco: 13000 lines of code
x v. Exokernel goal: absolute max performance

e Basic solution

— Disco
* Virtualize the hardware
* Guest OS’s have no idea that multipexing is happening
x Core challenge: virtualize hardware without breaking existing OS

— (v. Exokernel)

x Export the hardware
* LibOS’s are active accomplices in virtualizing hardware
x Core challenge: balance cooperation v. protection for max performance

e Challenges for VM’s

— Overhead of virtualizing hardware

« Emulate key instructions (IO, interrupts, memory management, ...)
* Space overhead: many copies of OS, binaries, etc in memory
— Difficult to manage resources w/o OS participation
* When is cpu idle?
- Disco guest OS gives hint for idle loop (give up a bit of transparancy...)
* When is memory free?

— Lack of sharing across VM’s

x Interprocess communication on IBM VM: Connect virtual card punch of VM1 to
virtual card reader of VM2.

— Lack of ccNUMA support

3 Virtualizing a machine

e Most instructions execute at hardware speed

Privleged instructions?

— Trap to VM; VM emulates

— Example: What is pseudo-code for “handle process in guest OS TLB miss (for SW filled
TLB)?”

Exceptions and interrupts?

e “Virtualizable machine”

4 Admin

e Project

e hamming paper

5 Key subsystems

5.1 Virtual memory

e GuestOS sees only “virtual physical addresses”

— When GuestOS tries to update TLB, VM remaps virtual PA to real PA
— GuestApp only sees virtual addresses — it cannot detect the “lie”

— GuestOS sees GuestApp virtual addresses and virtual physical addresses — it cannot
detect the “lie”

— QUESTION: Why does Disco relink the OS?

— QUESTION: What does disco need internally to do this? How do you handle TLB
miss? How do you take a page away from a VM? How do you migrate a page within a
VM? How do you give a page to a VM? Why does Disco not virtualize ASIDs?

— Disco intercepts disk requests for blocks already cached and gives the requesting VM a
read-only mapping to the page (if the request is a multiple of the page size). This leads
to transparent sharing of root disk.

— But how do we do this trick when OSes are sharing mutale file systems via NFS? A
virtual network device with unlimited MTU. Change IRIX mbuf implementation to not
write buffer memory and change bcopy to monitor’s remap

— OS tells monitor when a page will not be reclaimed (break abstraction)

e Virtual Memory on ccNUMA (pre-disco)

~_ | o] | o g
][] 00

Node0 Nodel Node2

— Shared virtual address space across nodes — where to locate data?

— Disjoint virtual address space within a node — replicate identical data (e.g., “/bin”)

e Virtual Memory on ccNUMA (Disco)

e =i
= 5o) [Pyo

Node0 Nodel Node2

— Transparent replication and migration for shared virtual pages on different machine
nodes

— Transparent sharing of machine pages that are virtually different on same machine node

— QUESTION: Given pmap, how share a page between VMs? How replicate a (read
only) page within a VM on multiple processors?

5.2 File system
e Virtually distinct disks

e Optimization: Identical data on virtually distinct disks

— Copy-on-write sharing
— Read-only disk file system sharing
— Write sharing via NFS

e Optimization: Copy-on-write + rollback — useful for debugging, test, etc.

5.3 Devices

e Option 1: Trap all programmed I/O and emulate
e Option 2: Add fake Disco-aware device drivers
e Ranges from transparent to not-so-transparent

e Ranges from slow to fast

5.4 Fast communication

e VM370: Virtual card writer to virtual card reader
e Disco: Fake virtual subnet

— Use TCP/NFS to connect virtual machines
— Zero copying by sharing underlying VMM buffers

5.5 Resource allocation

e Simple time-sharing scheduler among VM’s
— Guest OS hints for idle loop
e ccNUMA-aware management (e.g., affinity scheduling)

— How to do gang scheduling?

— How to do real time applications?

6 Disco evaluation

e More complete than the original UNIX paper...they measure compilation of GNU chess

e What are they trying to prove? What should they be trying to prove (what are key questions
about VMM approach?) Taking their experiments at face value, should you be convinced?

e Discussion

— IRIX memlock was a total disaster and no OS has a problem that big today
— NUMA scalability experiment compares to optimal (UMA)

7 Questions

e Research question: Is Disco simple enough to allow formal verification of correctness?

— Can you add “performance hints” interface that does not hurt correctness argument?

What lessons (if any) for structuring OS’s?

How much complexity belongs in “virtual machine” and how much in OS? As we add more
to virtual machine, can we simplify OS?

What is the right layering? (What layering does Disco end up using?)

What is the right HAL interface?

8 Evaluation: Disco v. Exo v. Micro

e Extensibility

— - Microkernel: experiment with new subsystems

— - Exokernel: some of the most interesting apps are specialized appliances, but how much
protection do you need?

— - Disco: specialized OS for novel machines
e Concurrent personality

— Microkernel: by hopefully sharing some underlying subsystems

— Exokernel: concurrent secure sharing of low level resource by different personalities

Exokernel: the most interesting personalities (apps) do not necessarily have to be con-
current

Disco: excellent support for concurrent personality but how many VMM subsystems can
you share?

e Modularity

— Microkernel: easier to foster good s/w engineering discipline
— Exokernel: ouch
— Disco: OS/HAL, no more modular than that

e Dstributed system support

— Microkernel: moving subsystems over the net

— Exokernel: N/A

— Disco
x Aggressive copy-on-write is cool
x The opposite—distributed system support enables the communication of VMs
x Its a strange idea to turn an expensive SMP into a dumb cheap cluster

e Security

— Microkernel: smaller trust base, hopefully
— Exokernel

x Exokernel itself is smaller so this is good

* But unclear with all the code injection and tight interactions with apps

x But maybe protection doesnt matter that much for specialized appliances
— Disco

x Nice opportunity of fault containment of VMs on SMPs

e Portability

— Microkernel: subsystems are easier to port
— Exokernel: ouch
— Disco:
* HAL in modern OS makes this easy
* Small tweaks of OS can make it more efficient

