
Scheduler Activations

CS380L: Mike Dahlin

September 24, 2003

1 Preliminaries

1.1 Review

1.2 Outline

� Scheduler activations

1.3 Preview

2 Principle: Expose revocation

� Exokernel theme: what is minimal abstraction needed for high performance
implementations (e.g., to expose resource to application but let application
control resource scheduling if it wants to do so.

� “Traditional” abstractions do a little too much

– Networks: AM says “must be async, no buffering” (� add synchro-
nization and buffering at user level if you need it)

– Network security?

– File system metadata

– Shared kernel cache buffer

– Paging

– Today: the traditional concurrency abstraction (threads) is too much

� QUESTION what is the traditional concurrency abstraction?

� SA approach

� don’t provide illusion of infinite processors (anti-THE!);

� don’t keep ready list or choose threads to run in kernel.

1

� Kernel (1) gives “activations” to user level and (2) informs
user-level when “activations” are revoked (and provides the
saved processor state),

� but user-level decides which threads run on which activations

3 Scheduler activations

3.1 Basics

Traditional threads:

signal

Unlock/ Lock/wait

De−schedule

Schedule

Blocked

RunningReady

� But people tend to adopt 2-level model: N user-level threads on M kernel
threads

� Why?

� Problems with kernel-thread-only approach

� Problems with user-thread-only approach

� But, problem with combined approach:

2

ublocked

uready

urunning

kblocked

urunning
krunning

urunning

kready

– How many kthreads?

– Lose control of user-level scheduling (what if thread holding UL lock
is preempted or high-priority UL thread is preempted?)

� Blumofe result

SA:

sa_has_been_preempted(state)

signal

unlock

wait

lock

sa_hasUnblocked(state)

kernel block (e.g., system call, page fault)

u−level deschedule

u−level schedul
ready

kblocked

ublocked

running

basic interface:

� add processor() – an idle processor is now available

� has blocked() – an idle processor is now available

� has unblocked(stateA, [stateB]) – thread A unblocked (put it on ready queue);
BTW to tell you this I also blocked B (put it on ready queue too, and schedule
someone to run with this activation

3

� has been preempted(stateA, [stateB]) – thread A got preempted (put it on
ready queue); BTW to tell you this I also blocked B (put it on ready queue
too, and schedule someone to run with this activation

Notice: all schedule activation calls by kernel to user-level handlers provide an
activation (that is, a scheduled thread). In order to keep number of threads allocated
to a process from growing without bound, processor typically supends a running
activation in order to tell you “hasBeenPreempted” or “hasUnblocked”

3.2 Bells and whistles

� Advisory interface to tell kernel how many threads a process can profitably
run with

– Simple interface (could imagine a more complex one...is it worth it?)

– “Want one more” (I have more ready threads than activations)

– “Give one back” (I have fewer ready threads than activations)

� In exokernel: before revoking, kernel warns process “I’m about to take a
processor away...perhaps you should give one of your choice up voluntarily
instead”

– Would that be useful here?

3.3 Details

Interaction of user-level critical section and kernel suspensions

� Problem: What if thread is suspended while holding lock on user-level sched-
uler?

– Possible deadlock: activation call tries to grab lock to move suspended
thread to ready list

� Example of general problem we’ve seen several times:

– Mesa device drivers: kernel monitors v. hardware

– Active messages: enqueue incoming message w/o grabbing a lock (han-
dler cannot block)

– This really is same problem: “interrupt handlers cannot block”

� Proposed approaches

4

– Prevent: if thread is holding THE lock (not all locks), tell kernel to let
it keep running

� More generally: tell kernel the priority of the running thread?

� DA: overhead to tell kernel this whenever lock is grabbed

� DA: need to “pin” pages

� (Moral equivalent to AM: run with interrupts turned off...)

– Recover: Set flag when grabbing “THE” lock; activation handler checks
flag, if flag set, set YIELD flag; run current thread (without touching
normal scheduling data structures); when flag releases THE lock, check
YIELD flag and yield() if set

� DA: slows down common case for rare case

� Cute fix: 2 versions of code

– This is semantically equilvalent to ’‘turning off interrupts”, but w/o the
cost

– Other alternative: wait-free synchronization (e.g., Blumofe Cilk)

4 User-level threads v. kernel-level threads v. events

5 Subsequent systems

� Exokernel

– How differ from Anderson?

� K42

� Solaris

See Solaris Internals: Core Kernel Architecture by Mauro and McDougall,
Prentice Hall, 2001; chapter 9 “The Solaris Kernel Dispatcher” section 9.4
“Scheduler Activations.”

– Solaris: user-level threads and “LWPs” (kernel-level threads)

– Limits of “old” Solaris (pre 2.6 – no scheduler activations)

� No correlation between priority of user thread and priority of un-
derlying LWP

� User-level threads prone to priority inversion (fixed in Solaris for
kernel threads, but not for user threads)

5

� No inheritance (e.g., inherit priority of parent) at user threads level

� Difficult to implement adaptive locks (b/c kernel state not avail-
able to threads library)

� Keeping sufficient pool of kernel threads s.t. runnable threads can
run was not easily solved

� Workaround in 2.6: “SIGWAITING” signalled when last runnable
kernel thread blocks; handler can create new kernel thread

– Kernel threads only block on condition variables. The kernel CV wait()
code calls schedctl check(SC BLOCK) (“are all kernel threads for this
process blocked?”)

– If all kernel threads are now blocked

� currentThread.khandoff = Get a new kernel thread from the pro-
cess’s pool of inactive threads ()

– After returning from schedctl check(), the thread calls switch() which
notices that khandoff is non-null, so it passes control to the specified
kernel thread

– The specified kernel thread wakes up (in user mode), calls the scheduler
library, which hands it a user-level thread to run.

– Questions:

� Why do they only kick off a new activation/kernel thread if the ac-
tive number reaches 0? Would the implementation have to change
if they did something more general (like in original scheduler ac-
tivations – call any time a user-thread blocks?

� How else do they differ? What are pros and cons?

6 Project idea

Project 1: Perfect threads
I think you can build scheduler activations without modifying the kernel. (Idea

is: use /proc). (Possible exception is: multiprogramming descheduling, but this
should not be common for demanding apps. Actually, can still do it at user level,
but probably need to be root...)

Part 1: Build SA w/o modifying kernel
SEDA is weird – lots of kernel threads (but not too many!) to hide I/O, utilize

many processors (but don’t overload machine)
Part 2: Use lightweight user-level threads abstraction (e.g., get rid of space

overhead of utilizing many threads by using Mesa-style linked allocation of stack

6

frames). Use scheduler activations to keep 1 kernel thread per processor active. �

programming model is equilvalent to one-kernel-thread-per-request. Space over-
head is similar to events. Other overheads similar to having the minimum number
of kernel threads needed.

kernel threads user threads events
mem overhead 1page 1page NA
ctx-switch overhead ctxsw+copy-all-reg copy-all-reg copy-some-reg
wait/signal/lock ctx-sw
programming convenience yes yes no
tolerate blocking yes no no

SA makes user-threads heap allocation of stack
have the good k-thread frames makes user threads
properties have the good events properties

---> SA+HF <---

Project 2: Add scheduler activations to vin et al’s hierarchical CPU scheduler
(e.g., in QLinux)?

7 Admin

� Exam – 10/21

� Project checkpoint 10/30 – briefly list status and plan (e.g., orig 4 milestones.
what has changed. New schedule)

� Lecture series –

7

