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But, the main reason for advocating the use of this pattern isto make your program more obiously,
and more robustly, correct...[T]his programming convention allows you to verify correctness by
local inspection, which is always preferable to global inspection.”

Andrew Birrell “An introduction to programming with threads”

One final warning: don’t emphasize efficiency at the expense of correctness. It is much easier to
start with a correct program and ...[make] it efficient, thanto start with an efficient program and
...[make] it correct.

Andrew Birrell “An introduction to programming with threads”

”Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code
as cleverly as possible, you are, by definition, not smart enough to debug it.”

Brian W. Kernighan

1 Preliminaries

1.1 Review

Last few weeks: OS structure

• Origin of modern OSes: Multix, THE, Unix

• Minimal abstractions: Scheduler activations, exokernel

• Hypervisors: Disco, ESX

What we didn’t cover:

• Other classics: Plan9, OsKit/Flux, Alto/Pilot, microkernels, hydra, mach, Xen, ...

• Security, information flow: Asbestos, Flume, HiStar
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• Scalable support for multicore: K42, ...

• Dependability: Singularity, Nooks (device driver isolation)

• ...and many others...

1.2 Preview

This week: Correctness/Concurrency local/distributed

• Today: Basic threads programming

• Thursday: liveness properties of distributed systems

1.3 Non-preview

Wanted to do a broader study of correctness of large systems
Touches on OS, distributed systems, formal methods, AI
A sampling of cool papers:

1.3.1 Other takes on threads

• case against threads (for event-driven)

– Event-driven Programming for Robust Software (Dabek et. al. 2002)

• Binary rewriting for correct multithreading:

– Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson, Eraser:
A Dynamic Race Detector for Multi-Threaded Programs, ACM Transactions on Computer Systems,
15(4): 391-411, November 1997.

• transactional memory

– Christopher J. Rossbach, Owen S. Hofmann, Donald E. Porter,Hany E. Ramadan, Aditya Bhandari,
Emmett Witchel TxLinux: Using and Managing Transactional Memory in an Operating System

• Stream programming

– Lagniappe (Taylor Riche)
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1.3.2 Other cool papers on correctness/understanding systems

• Debugging/performance black box systems

– Performance Debugging for Distributed Systems of Black Boxes Marcos K. Aguilera, Jeffrey C.
Mogul, Janet L. Wiener, Patrick Reynolds, Athicha Muthitacharoen SOSP 2003

• AI to diagnose faults

– Capturing, Indexing, Clustering, and Retrieving System History. Ira Cohen (HP Labs), Moises
Goldszmidt (HP Labs), Steve Zhang (Stanford University), Terence Kelly (HP Labs), Armando
Fox (Stanford), Julie Symons (HP Labs) SOSP 2005

• Model checking/program analysis to find serious OS bugs

– EXE: Automatically Generating Inputs of Death, (postscript) (PDF) Cristian Cadar, Vijay Ganesh,
Peter M. Pawlowski, David L. Dill, Dawson R. Engler, 13th ACMConference on Computer and
Communications Security, 2006.

– eXplode: a Lightweight, General System for Finding SeriousStorage System Errors, Junfeng Yang,
Can Sar, and Dawson Engler, Proceedings of the 7th Symposiumon Operating System Design and
Implementation, 2006.

• Data mining/AI to analyze code

– From Uncertainty to Belief: Inferring the Specification Within, Ted Kremenek, Paul Twohey, God-
mar Back, Andrew Ng, Dawson Engler, Proceedings of the 7th Symposium on Operating System
Design and Implementation, 2006. (PDF)

– Shan Lu, Soyeon Park, Chongfeng Hu, Xiao Ma, Weihang Jiang, Zhenmin Li, Raluca A. Popa,
Yuanyuan Zhou. MUVI: Automatically Inferring Multi-Variable Access Correlations and Detecting
Related Semantic and Concurrency Bugs. In the Proceedings of the 21st ACM Symposium on
Operating Systems Principles (SOSP’07), October 2007

– Bugs as Deviant Behavior: A General Approach to Inferring Errors in Systems Code Dawson
Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.

– Checking System Rules Using System-Specific, Programmer-Written Compiler Extension Dawson
Engler, Benjamin Chelf, Andy Chou, and Seth Hallem.

– Shan Lu, Soyeon Park, Eunsoo Seo, Yuanyuan Zhou. Learning from Mistakes — A Comprehensive
Study on Real World Concurrency Bug Characteristics. In theproceedings of the 13th International
Conference on Architecture Support for Programming Languages and Operating Systems (ASP-
LOS’08), March 2008

– Lin Tan, Ding Yuan, Yuanyuan Zhou. /* iComment: Bugs or Bad Comments? */. In the Proceed-
ings of the 21st ACM Symposium on Operating Systems Principles (SOSP’07), October 2007
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1.4 Outline

Basic threads programming

• background

• tirade

• deadlocks

2 Rules to live by

Mostly from Lamspon and Redell “Experience with processorsand monitors in Mesa” CACM v23 n2 1980.

2.0.1 History

• Mesa: programming language for Pilot personal computer at Xerox PARC

– Personal computer for PARC Computer scientists: write software in one language (Mesa), each
user has own machine→ protection is to guard against bugs not malicious attacks; resource mgmt
is minor concern

• Extreme research: light weight threads

– “Second system”

∗ First system was Alto (pre-PC PC)

∗ Second system: support muti-programming

– Debate of concurrent programming model

∗ Message passing, or

∗ Shared memory

∗ Debate settled on the ground of ease of programming

– Debate of synchronization primitives

∗ Non-preemptive scheduler, or

∗ Semaphores, or

∗ Monitors (locks + condition variables)

· Hoare semantics, or

· Hansen semantics

∗ Debate settled on the ground of structures

• Terminology and modern languages
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– Lampson/Redell “process” = modern “thread”

∗ Mesa: no HW protection – process == thread

– LR “Monitor” v. “Monitored record”

∗ LR Default “monitor” associates synchronization variables with code (e.g., class variables/static
variables)

∗ LR “Monitored record” associates synchronization variables with object (e.g., member vari-
ables)

∗ Modern: Member variables are default→ when I say “monitor” I mean “montored record”

∗ NB: many textbooksreally broken (IMHO) – no OO programming; “critical section” focuses
on code (not shared data) and uses global variables for synchronization. (See Lampsen and
Redell p. 106 “(c) Creating monitors. A fixed number of monitors is also unacceptable...but
many of the details of existing proposals depended on a fixed association of a monitor with a
block of the rpogram text.”

– Monitor the language construct v. the programming construct

∗ My definition: monitor = programming style that uses locks + condition varaibles as synchro-
nization primitive

∗ Some programming languages (Mesa, Java) add syntactic sugar to automatically grab locks at
start of procedure, release at end

∗ Some programming languages (C++, C) require programmer to follow coding conventions and
manually acquire/release locks

∗ Both use “monitors” in my terminology (not everyone would agree.)

2.0.2 Invariants are key

• Sequential object-oriented programming

– Each object has invariants assumed on public method entry and established before method exit

• Monitor: Establish invariants

– Object initialization

– Before return from public method

– Before wait

– Before throw (or pass through) exception from public method

• Monitor: Safe to assume invariants

– Public entry

– Return from wait
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∗ Note: do not assumemorethan invariant on return!

• Signal ishint

– Notsafe to assume anything stronger than invariants on return from wait→ must check condition

∗ Always: while(...){wait(&lock);}

– Hansen semantics aremuch betterthan Hoare semantics

1. Modularity: LR: “Verification is made simpler and more localized.” Look at code around the
wait to see when the thread will proceed v. look at all code that cancall signal
∗ NB: Textbooks often assert that Hoare variables are preferable for “proving correctness”

of programs.
∗ This is bunk (IMHO). Much easier to prove safety under Hansensemantics. Placement of

signals/broadcasts irrelevant to safety.
∗ Hoare semantics convenient for proving liveness/progress/fairness.

2. Simpler signalling: LR “many applications do not troubleto determine whether the exact con-
dition needed by a waiter has been established. Instead, they choose a very cheap [MDD:
or simple] predicate which implies the exact condition...and NOTIFY a coveringcondition
variable.”

3. Simpler run-time support
∗ Fewer constraints on scheduler
∗ Supports timeout, abort, broadcast

4. Portability: Are correct Hansen programs still guaranteed correct under Hoare threads library?
Vice versa?

∗ Hansen program need not re-establish invariants before signalling, but Hoare threads li-
brary schedules waiter immediatly after signal. Correct Hansen programs can break under
Hoare.

∗ Hoare programs can assume something stronger than monitor invariants when rescheduled
after wait. Correct Hoare programs can break under Hansen.

∗ Practical answer: essentially all real systems are Hansen semantics.Always use while(...)wait
∗ Not a bad idea to always signal/broadcast at the end of a method just before releasing lock

(e.g., after re-establishing invariants.)
∗ But I don’t regard it as a huge sin to signal in the middle of a method; sometimes signalling

immediately after doing some action will be more clear...
∗ If you do both of these things, your program will always work regardless of underlying

semantics.

∗ What about performance?
∗ Hansen “while”: Extra check of condition (usually cheap)
∗ Hoare: an extra context switch if signaller has more work to do before leaving monitor
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2.0.3 Other issues

Deadlock

• Biggest problem for monitors

– Deadlock breaks modularity

– Fundamental problem. No known general solution. Instead: coding standards, defensive program-
ming, etc.

• Pairwise deadlock case 1: Mutual waiting within monitor

– LR: “Localized bug in the monitor code . . . usually easy to locate and correct

• Pairwise deadlock case 2: Lock cycle across monitors

– Simplest solution: partial ordering across resources (avoid mutually recursive monitors)

– What about callbacks?

• Pairwise deadlock case 3: Nested monitors + wait

– Solution: “Break [monitor]M into two parts: a monitorM ′ and an ordinary moduleO which
implements the abstraction defined byM , and callsM ′ for access to shared data. The call on
[nested monitor]N must now be done fromO rather than from withinM ′.”

• Solutions to cases 2 and 3 break modularity and are not general

– They require knowledge of internals of other modules:Can this module call me? Can this method
wait?

∗ Target of call: no lock→ OK. Caller can continue to hold lock

∗ Target of call: locks but never waits→ caller can continue to hold lock if partial ordering exists
(e.g., callee never calls back to caller or higher)

∗ Target of call: locks and may wait→ dangerous to call while holding a lock

• Proposed rule: Manually release lock when calling another module

– Why not automatically release lock on any call out?

∗ Unacceptable semantic burden for reasoning about procedure calls – need to establish invariant
before each call!

– Manual requires lots of careful thought

∗ Birrell: “You should generally avoid holding a mutex while making an up-call (but this is easier
said than done).”
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– Still follow rule: release lock only at beginning/end of procedure

∗ → wrapper procedures?
∗ → continuation style of programming?
∗ Be careful not to assume anything stronger than invariant upon re-entry (danger: “implicit”

reasoning based on “program counter”).

– Exceptions to rule

∗ Callee uses no locks OR Callee uses no condition variables and partial order exists
∗ Inner classes only?
∗ Manually verify and hope invariant continues to hold?
∗ Syntactic sugar? (e.g., similar toconst)
∗ Static/run-time verficiation?
∗ Project idea: Extend Lin and Guyers (or Engler’s) static checker to detect possible deadlocks

where “no locks” rule is violated? (I think the partial orderrule has already been done)
∗ Other exeptions? (When is it safe to call a method that might wait?)

– Consider major restructuring

∗ Birrell: Upcalls for message reception (e.g., link→ IP → tcp) can be made into top-down
reads of data

∗ Birrell: For message processing this gives “uniformly bad performance”→ use upcalls instead
∗ Dahlin: Beware premature optimization. You give up a lot of simplicity when you use upcalls;

make sure it is worth the performance (measure it!)

Priority inversion

• Example

– Threads 1, 2, 3 have low, medium, and high priority

– Thread 1 acquires lock

– Thread 3 waits for lock

– Thread 2 chews up CPU

– → Thread 3 (high priority) is waiting for thread 2 (low priority)

– Example: Mars pathfinder bug (and many others)

• LR propose 3 solutions

1. Don’t worry about it

2. Thread holding lock is given highest priority of any thread waiting for lock

3. Thread holding lock is given highest priority in system

• Pros/cons in Mesa? In more general threads system?
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I/O, interrupts

• Hardware = globally shared data structure

– Concurrent access: hardware events + one or more software threads (to control, poll, etc the hard-
ware)

– Hardware cannot be forced to acquire monitor lock before accessing state

• Solution

– Software access via monitor (to limit access by multiple software threads)

– Software/HW synchronization is ad-hoc (typically uses atomic load/store to hardware registers;
hardware defines semantics)

– Mesa:Naked notifySoftware thread wants to wait for hardware event

∗ Problem: Event can happen between software “while()” and software “wait()” → software
waits forever

∗ Solution: add state to condition variable (b̃inary semaphore)

– General event solution: (first try)

∗ LR: “We briefly considered a design in which devices would wait on and acquire the monitor
lock, exactly like ordinary Mesa processes”

∗ LR: “This design is attractive because it avoids both .. anomolies just discussed”

∗ LR: “The worst case response time of the faster process therefore cannot be less than the time
the slower one needs to finish its critical section....We consider this a fundamental deficiency”

∗ Interrupt based world... (LR can consider modifying all hardware, we can’t)
∗ Interruptt̃hread – have it enter monitor and deposit new data

∗ Problem: Do not acquire lock when servicing interrupt (roughly for reasons above; also b/c
timer interrupt often turned off..)

∗ Have interrupt fork a new thread whose job it is to deposit work

∗ Overhead

∗ Lose FIFO order

∗ Same “fundamental problem”: LR: “Although one can get higher throughput from the faster
processor than the slower one, one cannot get better worst-case real-time performance.”

∗ How did we pass work to thread in thread pool? (Same problem, we’ve just pushed it down a
level...)

– General event solution: Queue of events

– Producer/consumer queue of events

– HW synchronization between producer and consumer via semaphore
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∗ HW/SW boundary

– History: Dijkstra invented semaphores to solve the I/O problem! No surprise they are a good match.

– Recent history: Many high-performance I/O systems use queue of pending events as primary ab-
straction – Exokernel interrupts, Active Messages, TRIPS ... (think about this as we read the Active
Messages paper in a few weeks)

High-performance implementation Lots of work to make ‘extreme concurrency” work. I won’t cover all
points. 2 points worth noting.

1. Memory overhead

• C/C++ stack, stack frame allocation

– Stack frame allocation: bump stack pointer
– Single thread: Fault (and grow stack) if stack crosses page boundary to unallocated memory
– Multi thread option 1: allocate each stack on separate page;use unallocated pages between to

detect and deal with growth→ space overhead 1 page per thread
∗ OS/2 anecdote

– Multi thread option 2: allocate stacks with “enough” room between them. Hope they don’t
grow too big.→ stack smash bugs
∗ Stack smash bugs also an option for single-threaded programs in C/C++ world...

• Mesa stack, stack frame allocation

– Requirement: type safety – no stack smashing allowed
– Requirement: cheap threads – don’t allocate excess stack space per thread
– Solution: Allocate call stacks as linked structures in heap.

∗ Mesa: 10 bytes overhead per thread

2. Context switch overhead

• Goal: want to make context switches as fast as procedure calls

• Two ways of accomplishing this:

– Make context switches fast
– Make procedure calls slow
– They did both in Mesa

• Context switch: 2x procedure call

• Procedure calls: 30 instructions, 10x RISC cost

• (Typical) Unix context switch: 1000-2000 instructions (100-1000x)

• Reason

– Heap-allocated procedure frames
– (Implementation artifact or fundamental to making threadscheap?)
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2.1 Basic threads programming

Dahlin “Basic Threads Programming: Standards and Strategy” CS372 (Undergrad OS) handout

• These rules keep you from making most common mistakes

• Fall 2001 midterm/final exam:

– Every incorrect program violated at least one rule

– 90% of programs that violated at least one rule were semantically incorrect

∗ All that violate one rule arewrong– they are harder to read, understand, maintain.

• Depart from these rules only with careful consideration andonly after discussion of alternatives with at
least 2 other good programmers

3 Admin

4 Other views

Note: these “other views” would probably agree with the vastmajority of what is said above. One of them
appears to beslightly more liberal about programming rules. One of them appears tobeslighlty more conser-
vative about when threads should be used at all. I believe Birrell or Ousterhout would agree that if you use
threads, you should follow the simple rules above the vast majority of the time and unless you have a very good
reason.

4.1 Advance threads programming

Andrew Birrell “An introduction to programming with threads” Digital SRC Tech report, Jan 1989.

• Same basic message as Lampson/Redell (and me)

– Not too surprising...

• More tolerant than I am about exceptions to the rules

– He “discourages” rather than “forbids”

∗ Birrell “strongly discourage doing X, but if you do X make sure you consider Y and Z...”

∗ Dahlin “Don’t do X. If you really think you need to do X, first think about how to restructure
your code. If you still think you need to do X, talk to at least 2other competent engineers first
and/or code it the other way and measure it first.”

• “Double checked locking pattern for lazy initialization”
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– e.g.

IF NOT initDone THEN
LOCK m DO
IF NOT initDone THEN
Initialize();
initDone := TRUE

END
END

END

– Broken. Don’t do this.

– Reason 1: assumes a lot about the memory model, allowed compiler optimizations, etc.

∗ See Bacon, et al ’The ”Double-Checked Locking is Broken” Declaration’
http://www.cs.umd.edu/ pugh/java/memoryModel/DoubleCheckedLocking.html

∗ Memory model: processor may see initialized object but not see initialized fields within object

∗ “There are lots of reasons it doesn’t work. The first couple ofreasons we’ll describe are more
obvious. After understanding those, you may be tempted to try to devise a way to ”fix” the
double-checked locking idiom. Your fixes will not work: there are more subtle reasons why
your fix won’t work. Understand those reasons, come up with a better fix, and it still won’t
work, because there are even more subtle reasons....Lots ofvery smart people have spent lots
of time looking at this. There is no way to make it work withoutrequiring each thread that
accesses the helper object to perform synchronization.” (Bacon et al)

– Reason 2: How long until some bonehead behind you deletes thesecond check as redundant?

– Reason 3: Do things the same way every time

• Releasing the mutex within a LOCK clause

– Birrell strongly discourages “SRC discourages this paradigm, to reduce the tendency to introduce
quite subtle bugs”

– But if you still want to do this...Birrell “You must exerciseextra care”

∗ Operations must be correctly bracketed even in presence of exceptions

∗ Object state may have changed while you had the mutex unlocked...your embedded control
flow might depend decisions based on on previous state that isno longer valid

– But if you still want to do this...Dahlin “Don’t do this!”

∗ Restructure code to acquire/release lock at beginning/endof procedures (e.g., wrapper proce-
dure, explicit continuations)

∗ → force you to think about re-establishing invariants, etc.
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∗ I predict: 9 times out of 10, in the process of re-writing you will end up with much cleaner
code

• Some useful tricks

– Move signal after lock release...

∗ I hesitate to bring this one up b/c it actually makes enough sense tosometimesconsider using
it. (But I still suspect that 99% of time, you are better off sticking with the simplest possible
answer. I worry that legitimizing this optimization will encourage people to use it when it is
not needed and thereby unnecessarily complicate their code. Don’t even think about doing this
sort of thing until you are really comfortable with the basics and can write correct code every
time...)

∗ The problem (under Hansen semantics) – on a multiprocessor,signal occurs when lock is held,
singalled thread made ready, scheduled, and immediately blocked (for the lock). Then the
lock is finally released and the thread rescheduled and gets to run. → “The cost is two extra
re-schedule operations, which is a significant expense.” [p21]

∗ Solution: do signal after lock release (e.g., set a local flagand then at end of procedure check
local flags and do signals...)

∗ Case for

· Birrell says it is worth it for performance

· Could argue: “do same thing same way every time→ always signal at end

· Could argue: signal at end “fixes” Hansen programs to run correctly under Hoare

∗ Case against

· Premature optimization? Added complexity? Get people thinking about performance
rather than correctness?

· Not sure I buy Birrell’s performance argument: on uniprocessor no problem. On multipro-
cessor with idle processor, this occurs, but processor was idle anyhow, so no damage done.
On multiprocessor with busy processors and FIFO ready queue, no damage done (newly
scheduled thread probably doesn’t run until after lock released.) On multiprocessor with
busy processors and LIFO ready queue, maybe damage; but maybe not – probably don’t
go to ready queue until next timer interrupt→ rare event...

∗ Bottom line: I don’t do this. This performance optimizationwill seldom matter (and I’m not
even sure that I buy that it ever matters.) But, if you are persuaded by the “correctness” parts
of the “case for” this is probably OK to do.

∗ Caveat: Being conservative is safe. I advised against the “double checked load” primitive
described by Birrell for years on the basis of simplicity before I realized that it was completely
broken. I don’t see any problem with deferred signal, but that doesn’t mean there are none.

– Thread pools(“work crews”)
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– Version stamps to support caching

• 99% of time, right answer is “keep it simple”

– “As you can see, worrying about these spurious wake-ups, lock conflicts and starvation makes the
program more complicated. The first solution of the reader/writer problem that I showed you had
15 lines inside the procedure bodies; the final version had 30lines, and some quite subtle reasoning
about its correctness....Usually, I find that moving the call of Signal to beyond the end of the LOCK
clause is easy and worth the trouble, and that the other performance enhancements are not worth
making.” – Birrell

4.2 Case against threads

John Ousterhout “Why Threads Are A Bad Idea (for most purposes).” This talk was presented as an Invited
Talk at the 1996 USENIX Technical Conference (January 25, 1996).

The talk compares the threads style of programming to an alternative approach, events, that use only a single
thread of control. Although each approach has its weaknesses, events result in simpler, more manageable code
than threads, with efficiency that is generally as good as or better than threads. Most of the applications for
which threading is currently recommended (including nearly all user-interface applications) would be better off
with an event-based implementation.
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