
A Hierarchical CPU Scheduler for Multimedia Operating Systems�

Pawan Goyal� Xingang Guo� and Harrick M. Vin

Distributed Multimedia Computing Laboratory

Department of Computer Sciences, University of Texas at Austin

Taylor Hall 2.124, Austin, Texas 78712-1188

E-mail: fpawang,xguo,ving@cs.utexas.edu, Telephone: (512) 471-9732, Fax: (512) 471-8885

URL: http://www.cs.utexas.edu/users/dmcl

Abstract

The need for supportingvariety of hard and soft real-time,
as well as best effort applications in a multimedia comput-
ing environment requires an operating system framework
that: (1) enables different schedulers to be employed for
different application classes, and (2) provides protection
between the various classes of applications. We argue that
these objectives can be achieved by hierarchical parti-
tioning of CPU bandwidth, in which an operating system
partitions the CPU bandwidth among various application
classes, and each application class, in turn, partitions its
allocation (potentially using a different scheduling algo-
rithm) among its sub-classes or applications. We present
Start-time Fair Queuing (SFQ) algorithm, which enables
such hierarchical partitioning. We have implemented a
hierarchical scheduler in Solaris 2.4. We describe our
implementation, and demonstrate its suitability for mul-
timedia operating systems.

1 Introduction

Over the past few years, computing, communication, and
video compression technologies have advanced signifi-
cantly. Their synergistic advances have made the band-
width and the storage space requirements of digital video
manageable, and thereby have enabled a large class of
multimedia applications (e.g., video conferencing, dis-
tance learning, news-on-demand services, virtual reality
simulation of fire fighting, etc.). Since digital audio and
video convey appropriate meaning only when presented
continuously in time, such applications impose real-time
requirements on the underlying storage, transmission,
and processor sub-systems. Specifically, they require an

�This research was supported in part by IBM Graduate
Fellowship, IBM Faculty Development Award, Intel, the Na-
tional Science Foundation (Research Initiation Award CCR-
9409666), NASA, Mitsubishi Electric Research Laboratories
(MERL), and Sun Microsystems Inc.

operating system to allocate resources such as CPU, I/O
bus, disk, and network bandwidth in a predictable manner
as well as provide Quality of Service (QoS) guarantees
(in terms of throughput, response time, etc.). Since no
existing operating system meets these requirements, re-
alizing such applications requires conventional operating
systems to be extended along several dimensions. De-
sign and implementation of a CPU allocation framework
suitable for multimedia operating systems is the subject
matter of this paper.

To determine suitable CPU scheduling algorithms,
consider the requirements imposed by various applica-
tion classes that may co-exist in a multimedia system:

� Hard real-time applications: These applications re-
quire an operating system to deterministically guar-
antee the delay that may be experienced by various
tasks. Conventional schedulers such as the Earliest
Deadline First (EDF) and the Rate Monotonic Al-
gorithm (RMA) are suitable for such applications
[12].

� Soft real-time applications: These applications re-
quire an operating system to statistically guaran-
tee QoS parameters such as maximum delay and
throughput. Since a large number of such appli-
cations are expected to involve video, consider the
processing requirements for variable bit rate (VBR)
video:

Due to inherent variations in scene complexity as
well as the use of intra- and inter-frame compression
techniques, processing bandwidth required for com-
pression and decompression of frames of VBR video
varies highly at multiple time-scales. For instance,
Figure 1 illustrates that the processing bandwidth re-
quired for decompressing MPEG video varies from
frame-to-frame (i.e., at the time scale of tens of mil-
liseconds) as well as from scene-to-scene (i.e., at
the time scale of seconds). Furthermore, these vari-

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 20 40 60 80 100 120 140 160

 D
ec

od
in

g
tim

e
(s

)

Frame number

Decoding time

Figure 1 : Variation in decompression times of frames
in an MPEG compressed video sequence

ations are unpredictable. These features lead to the
following requirements for a scheduling algorithm
for VBR video applications:

� Due to the multiple time-scale variations in
the computation requirement of video appli-
cations, to efficiently utilize CPU, an operat-
ing system will be required to over-book CPU
bandwidth. Since such over-booking may
lead to CPU overload (i.e., cumulative require-
ment may exceed the processing capacity), a
scheduling algorithm must provide some QoS
guarantees even in the presence of overload.

� Due to the difficulty in predicting the computa-
tion requirements of VBR video applications,
a scheduling algorithm must not assume pre-
cise knowledge of computation requirements
of tasks.

EDF and RMA schedulers do not provide any QoS
guarantee when CPU bandwidth is overbooked.
Furthermore, their analysis requires the release time,
the period, and the computation requirement of each
task (thread) to be known a priori. Consequently, al-
though appropriate for hard real-time applications,
these algorithms are not suitable for soft real-time
multimedia applications. Hence, a new scheduling
algorithm that addresses these limitations is desir-
able.

� Best-effort applications: Many conventional appli-
cations do not need performance guarantees, but
require the CPU to be allocated such that average
response time is low while the throughput achieved
is high. This is achieved in current systems by time-
sharing scheduling algorithms.

From this, we conclude that different scheduling algo-
rithms are suitable for different application classes in a
multimedia system. Hence, an operating system frame-
work that enables different schedulers to be employed for
different applications is required. In addition to facilitat-
ing co-existence, such a framework should provide pro-
tection between the various classes of applications. For
example, it should ensure that the overbooking of CPU for
soft real-time applications does not violate the guarantees
of hard real-time applications. Similarly, misbehavior of
soft/hard real-time applications, either intentional or due
to a programming error, should not lead to starvation of
best-effort applications.

The requirements for supporting different scheduling
algorithms for different applications as well as protect-
ing application classes from one another leads naturally
to the need for hierarchical partitioning of CPU band-
width. Specifically, an operating system should be able
to partition the CPU bandwidth among various applica-
tion classes, and each application class, in turn, should be
able to partition its allocation (potentially using a different
scheduling algorithm) among its sub-classes or applica-
tions. In this paper, we present a flexible framework that
achieves this objective.

In our framework, the hierarchical partitioningis spec-
ified by a tree. Each thread in the system belongs to ex-
actly one leaf node, and each node in the tree represents
either an application class or an aggregation of applica-
tion classes. Whereas threads are scheduled by leaf node
dependent schedulers (determined by the requirements of
the application class), intermediate nodes are scheduled
by an algorithm that achieves hierarchical partitioning.
Specifically, intermediate nodes must be scheduled by
an algorithm that: (1) achieves fair distribution� of pro-
cessor bandwidth among competing nodes, (2) does not
require a priori knowledge of computational requirements
of threads, (3) provides throughput guarantees, and (4)
is computationally efficient. We present Start-time Fair
Queuing (SFQ) algorithm which meets all of these re-
quirements. We further demonstrate that SFQ is suitable
for video applications. We have implemented our hierar-
chical scheduling framework in Solaris 2.4. We describe
our implementation and evaluate its performance. Our
results demonstrate that the framework: (1) enables co-
existence of heterogeneous schedulers, (2) protects appli-
cation classes from each other, and (3) does not impose
higher overhead than conventional time-sharing sched-
ulers.

Observe that our hierarchical partitioning framework
�Intuitively, a CPU allocation is fair if, in every time inter-

val, all runnable threads receive the same fraction of CPU band-
width. This notion of uniform fairness generalizes to weighted
fairness when threads have different weights and each thread
receives CPU bandwidth in proportion to its weight. We will
formalize this notion in Section 3.

also facilitates the development of a QoS manager that
allocates resources as per the requirements of applica-
tions [10]. To illustrate, if an application requests hard
(soft) real-time service, then the QoS manager can use
a deterministic (statistical) admission control algorithm
which utilizes the capacity allocated to hard (soft) real-
time classes to determine if the request can be satisfied,
and if so, assign it to the appropriate partition. On the
other hand, if an application requests best-effort service,
then the QoS manager would not deny the request but
assign it to an appropriate partition depending on some
other resource sharing policies. A QoS manager can
also dynamically change the hierarchical partitioning to
reflect the relative importance of various applications.
For example, initially soft real-time applications may
be allocated very small fraction of the CPU, but when
many video decoders requesting soft real-time services
are started (possibly as a part of a video conference), the
allocation of soft real-time class may be increased sig-
nificantly. The development of such policies, however,
is the subject of future research and beyond the scope of
this paper.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce our hierarchical CPU scheduling
framework. The Start-time Fair Queuing (SFQ) schedul-
ing algorithm and its properties are described in Section
3. The details of our hierarchical SFQ scheduler imple-
mentation are described in Section 4. Section 5 describes
the results of our experiments. We present related work
in Section 6, and summarize our results in Section 7.

2 A Framework for Hierarchical CPU
Scheduling

In our framework, the hierarchical partitioning require-
ments are specified through a tree structure. Each thread
in the system belongs to exactly one leaf node. Each leaf
node represents an aggregation of threads�, and hence an
application class, in the system. Each non-leaf node in
the tree represents an aggregation of application classes.
Each node in the tree has a weight that determines the
percentage of its parent node’s bandwidth that should be
allocated to it. Specifically, if r�� r�� ���� rn denote the
weights of the n children of a node, and if B denotes the
processor bandwidth allocated to the parent node, then
the bandwidth received by node i is given by:

Bi �

�
riPn
j�� rj

�
�B

Furthermore, each node has a scheduler. Whereas the
scheduler of a leaf node schedules all the threads that

�Threads are assumed to be the scheduling entities in the
system.

Root

Hard Soft

(EDF)

Real-time Real-time Best Effort

User1

(Fair Scheduler)

(Time-sharing)(Fair)
User2

(1) (3) (6)

(1) (1)

Figure 2 : An example scheduling structure

belong to the leaf node, the scheduler of an intermediate
node schedules its child nodes. Given such a scheduling
structure, the scheduling of threads occurs hierarchically:
the root node schedules one of its child nodes; the child
node, in turn, schedules one of its child nodes until a
leaf node schedules a thread for execution. Figure 2
illustrates one such scheduling structure. In this example,
the root class (node and class are used interchangeably)
has three sub-classes: hard real-time, soft real-time and
best-effort, with weights 1, 3, and 6, respectively. The
bandwidth of the best-effort class has been further divided
equally among leaf classes user1 and user2. Furthermore,
whereas the soft real-time and user1 leaf classes employ a
scheduler that fairly distributes its CPU allocation among
its threads, the hard real-time and user2 classes have EDF
and time-sharing schedulers, respectively.

Observe that the schedulers at leaf nodes in the hi-
erarchy are determined based on the requirements of the
applications. The requirements of a scheduling algorithm
for intermediate nodes in the hierarchy, on the other hand,
can be defined as follows:

1. To achieve hierarchical partitioning, the algorithm
for scheduling intermediate nodes in the hierarchy
should:

� Partition the bandwidth allocated to a class
among its sub-classes such that each sub-class
gets its specified share.

� Allocate the residual bandwidth fairly among
its sub-classes. For example, in Figure 2, if
there are no eligible threads in the hard real-
time class, then its allocation should be par-
titioned between the soft real-time and best-
effort nodes in the ratio 3:6.

Both these requirements would be met if the schedul-

ing algorithm partitions the allocation of a class
among its sub-classes in proportion to their weights,
i.e., achieves weighted fairness. Moreover, as the
following example illustrates, a key requirement for
such an algorithm is that it should achieve weighted
fairness even when the bandwidth available to a class
fluctuates over time.

Example � Consider the scheduling structure
shown in Figure 2. Initially, let there be no threads in
the hard and soft real-time classes. Consequently,
the best-effort class receives the full CPU band-
width. When threads join the hard and soft real-
time classes, the bandwidth available to the best-
effort class goes down to 60% of the CPU band-
width. In such a scenario, to ensure that user1
and user2 continue to receive equal share of the
available bandwidth, the scheduling algorithm for
the best-effort class must remain fair even when the
available bandwidth fluctuates over time.

2. Since the computational requirements of tasks may
not be known precisely, the scheduling algorithm
should not assume a prioriknowledge of the time du-
ration for which a task executes before it is blocked.

3. To support hard and soft real-time application
classes, the scheduling algorithm should provide
bounds on minimum throughput and maximum de-
lay observed by nodes. Furthermore, for the bounds
to be useful, they should hold in realistic computing
environments in which interrupts may be processed
at the highest priority [9].

4. To be feasible in general purpose operating systems,
the scheduling algorithm should be computationally
efficient.

Recently, we have developed a packet scheduling al-
gorithm, referred to as Start-time Fair Queuing (SFQ),
which achieves fair allocation of network bandwidth [6].
In the next section, we present the algorithm and demon-
strate that it meets the above requirements, and hence,
is suitable for CPU scheduling in multimedia operating
systems.

3 Start-time Fair Queuing

Start-time Fair Queuing (SFQ) is a resource allocation
algorithm that can be used for achieving fair CPU alloca-
tion. Before we present SFQ, let us formalize the notion
of fair allocation. Let rf be the weight of thread f and
Wf �t�� t�� be the aggregate work done in interval �t�� t��
by the CPU for thread f . For ease of exposition, let the
work done by the CPU for a thread be measured by the

number of instructions executed for the thread. Then, a
CPU allocation is considered to be fair if, for all intervals
�t�� t�� in which two threads f and m are runnable, the
normalized work (by weight) received by them is identi-
cal (i.e., Wf �t��t��

rf
� Wm�t��t��

rm
� �). Clearly, this is an

idealized definition of fairness as it assumes that threads
can be served in infinitesimally divisible units. Since the
threads are scheduled for a quantum at a time, there will
be some unfairness. Consequently, the objective of a fair
scheduling algorithm is to minimize the resultant unfair-

ness (i.e., ensure that
���Wf �t��t��

rf
� Wm�t��t��

rm

��� is as close

to 0 as possible)�.
To achieve this objective, SFQ assigns a start tag to

each thread and schedules threads in the increasing order
of start tags. To define the start tag, let the threads be
scheduled for variable length quantum at a time. Also,
let qjf and l

j
f denote the jth quantum of thread f and its

length� (measured in units of instructions), respectively.
Let A�qjf � denote the time at which the jth quantum
is requested. If the thread is making a transition from
a blocked mode to runnable mode, then A�qjf � is the
time at which the transition is made; otherwise it is the
time at which its previous quantum finishes. Then SFQ
algorithm is defined as follows:

1. When quantum q
j
f is requested by thread f , it is

stamped with start tag Sf , computed as:

Sf � maxfv�A�qjf ��� Ffg ���

where v�t� is the virtual time at time t and Ff is the
finish tag of thread f . Ff is initially 0, and when
jth quantum finishes execution it is incremented as:

Ff � Sf �
l
j
f

rf
�	�

where rf is the weight of thread f .

2. Initially the virtual time is 0. When the CPU is busy,
the virtual time at time t, v�t�, is defined to be equal
to the start tag of the thread in service at time t. On
the other hand, when the CPU is idle, v�t� is set to
the maximum of finish tag assigned to any thread.

3. Threads are serviced in the increasing order of the
start tags; ties are broken arbitrarily.

�Several other definitionsof fairnesshave been introduced in
the networking and operating systems literature. A comparative
evaluation of their relative merits, however, is beyond the scope
of this paper.

�If l
j

f
is the length of quantum q

j

f
in terms of instructions,

then its time duration is tj
f
�

l
j

f

C
whereC is the rate of execution

of the CPU.

Thread A

Thread B

start tag

finish tag

Virtual Time

0

0

100 200 Real Time (ms)

0

10

0

5

5

10

10

20

10

15

15

20

20

30

30

40

40

exits

exits

50

60

50

55

55

60

60

70

60

65

65

70

70

80

70

75

75

80

80

85

50 150

20

40

60

50

runnableblocked

blocked runnable

Figure 3 : Computation of virtual time, start tag, and finish tag in SFQ: an example

The following example illustrates the computation of
the virtual time, as well as the start and the finish tags
(and hence, the process of determining the execution se-
quence) in SFQ. Consider two threads A and B with
weights 1 and 2, respectively, which become runnable at
time t � �. Let the scheduling quantum for each thread
be 10ms and let lf � ��. Let each thread consume
the full length of the quantum each time it is scheduled.
Initially, the virtual time v�t� � �. Similarly, the start
tags of threads A and B, denoted by SA and SB , respec-
tively, are zero (i.e., SA � SB � �). Since ties are
broken arbitrarily, let us assume, without loss of gener-
ality, that thread A is scheduled first for one quantum.
Since v�t� is defined to be equal to the start tag of the
packet in service, for � � t � ��
 v�t� � SA � �.
At the end of that quantum, the finish tag of A is com-
puted as FA � � � ��

� � ��. Moreover, assuming
that the thread remains runnable at the end of the quan-
tum, it is stamped with SA � maxfv����� FAg � ��.
At this time, since SB � SA, the first quantum of
thread B is scheduled. Note that since SB � �, the
value of v�t�� �� � t � 	� continues to be equal to
0. At the end of this quantum, the finish tag for B is
set to FB � � � ��

� � �. Moreover, assuming that
B remains runnable at the end of the quantum, we get
SB � maxfv�	��� FBg � �. Carrying through this pro-
cess illustrates that, before thread B blocks at time t� ��,
threads A and B are scheduled for 20ms and 40ms, re-
spectively, which is in proportion to their weights. When
thread B is blocked, the entire CPU bandwidth is avail-

able to thread A, and the value of v�t� changes at the
beginning of each quantum of thread A. Now, when
thread A blocks at time t �
�, the system contains
no runnable threads. During this idle period, v�t� is set
to maxfFA� FBg � maxf��� 	�g � ��. When thread A
becomes runnable at time t � ���, v�t� � ��. Hence,
thread A is stamped with SA � maxf��� FAg � ��,
and is immediately schduled for execution. On the
other hand, when thread B becomes runnable at time
t � ���, v�t� � SA � ��. Hence, it is stamped with
SB � maxf��� FBg � maxf��� 	�g � ��. From this
point, the ratio of CPU allocation goes back to 1:2. Fi-
nally, when thread A exits the system, the entire CPU
bandwidth becomes available to thread B, until it com-
pletes execution. Figure 3 illustrates this complete exe-
cution sequence.

3.1 Properties of SFQ

In what follows, we describe the properties of the SFQ
scheduling algorithm, and demonstrate that it meets the
requirements of a hierarchical scheduler outlined in the
previous section.

1. SFQ achieves fair allocation of CPU regardless of
variation in available processing bandwidth and
hence meets the key requirement of a scheduling
algorithm for hierarchical partitioning. Specifically,
in [6], we have shown that regardless of fluctuations
in available processor bandwidth, SFQ guarantees
that in any interval �t�� t�� in which two threads f

andm are eligible for being scheduled, the following
inequality holds:����Wf �t�� t��

rf
�
Wm�t�� t��

rm

���� � lmax
f

rf
�
lmax
m

rm
���

where lmax
f and lmax

m , respectively, are the max-
imum length of quantum for which threads f

and m are scheduled	. It has been shown
in [4] that if a scheduling algorithm schedules
threads in terms of quantums and guarantees that���Wf �t��t��

rf
� Wm�t��t��

rm

��� � H�f�m� for all inter-

vals, then H�f�m� � �
� �

lmaxf

rf
� lmaxm

rm
�. Hence,

SFQ is a near-optimal fair scheduling algorithm. In
fact, no known algorithm achieves better fairness
than SFQ.

2. SFQ does not require the length of the quantum to
be known a priori: Since SFQ schedules threads in
the increasing order of start tags, it does not need
the length of the quantum of a thread to be known
at the time of scheduling. The length of quantum q

j
f

(namely, ljf) is required only when it finishes execu-
tion, at which time this information is always avail-
able. This feature is highly desirable in multimedia
computing environments, where the computation re-
quirements are not known precisely and threads may
block for I/O even before they are preempted.

3. SFQ provides bounds on maximum delay incurred
and minimum throughput achieved by the threads in
a realistic environment: In most operating systems
processing of hardware interruptsoccurs at the high-
est priority. Consequently, the effective bandwidth
of CPU fluctuates over time. SFQ provides bounds
on delay and throughput even in such an environ-
ment. To derive these bounds,however, the variation
in the CPU bandwidth has to be quantified. If the
maximum rate of occurrence of interrupts and the
CPU bandwidth used by the interrupts is known, the
effective CPU bandwidth can be modeled as a Fluc-
tuation Constrained (FC) server [11]. A FC server
has two parameters; average rate C (instructions/s)
and burstiness ��C� (instructions). Intuitively, in
any interval during a busy period, an FC server does
at most ��C� less work than an equivalent constant
rate server. Formally,

De�nition � A server is a Fluctuation Con-
strained (FC) server with parameters �C� ��C��, if
for all intervals �t�� t�� in a busy period of the server,

�The maximum quantum length may be known a-priori or
may be enforced by a scheduler by preempting threads.

the work done by the server, denoted by W �t�� t��,
satisfies:

W �t�� t�� � C � �t� � t��� ��C� ���

If only bounds on the computation time required by
the interrupts is known, then the FC server model is
sufficient. However, if distributions of the computa-
tion time requirements for processing interrupts are
known, then CPU is better modeled as an Exponen-
tially Bounded Fluctuation (EBF) server [11]. An
EBF server is a stochastic relaxation of FC server.
Intuitively, the probability of work done by an EBF
server deviating from the average rate by more than
�, decreases exponentially with �. Formally,

De�nition � A server is an Exponentially
Bounded Fluctuation (EBF) server with parameters
�C�B� �� ��C��, if for all intervals �t�� t�� in a busy
period of the server, the work done by the server,
denoted by W �t�� t��, satisfies:

P �W �t�� t�� � C � �t� � t�� � ��C�� �� � Be���

���

If CPU can be modeled as an FC or EBF server,
then SFQ provides throughput and delay guarantees
to each of the threads. To determine these guaran-
tees, let the weights of the threads be interpreted
as the rate assigned to the threads. For example, a
thread that needs 30% of a 100MIPS CPU would
have a rate of 30 MIPS. Let Q be the set of threads
served by CPU and let

P
n�Q rn � C where C is

the capacity of the CPU. Then, SFQ provides the
following throughput and delay guarantees [6]:

Throughput Guarantee: If the CPU is an FC
server with parameters �C� ��C��, then the through-
put received by a thread f with weight rf is also FC
with parameters:�

rf � rf

P
n�Q lmax

n

C
� rf

��C�

C
� lmax

f

�
���

If, on the other hand, the CPU is an EBF server with
parameters �C�B� �� ��C��, then the throughput re-
ceived by a thread f with weight rf is also EBF with
parameters:

�
rf � B�

rf

C
�� rf

P
n�Q lmax

n

C
� rf

��C�

C
� lmax

f

�
���

Hence, if SFQ is used for hierarchical partitioning
and if the CPU is an FC(EBF) server, then each of

the sub-classes of the root class are FC(EBF) servers.
Using this argument recursively, we conclude that if
the CPU is an FC(EBF) server, then each of the sub-
classes are also FC(EBF) servers, the parameters of
which can be derived using (6) and (7).

Delay Guarantee: If the CPU is a FC server, then
SFQ guarantees that the time at which quantum q

j
f

of thread f will complete execution, denoted by
LSFQ�q

j
f �, is given as:

LSFQ�q
j
f � � EAT �qjf � �

X
n�Q�n��f

lmax
n

C

�
l
j
f

C
�
��C�

C
���

whereEAT �qjf � is the expected arrival time of quan-

tum q
j
f . Intuitively, EAT �qjf � is the time at which

quantum q
j
f would start if only thread f was in the

system and the CPU capacity was rf . Formally,

EAT �qjf � � maxfA�qjf �� EAT �q
j��
f � �

l
j��
f

rf
g

�
�
where EAT �q�f � r

�
f � � ��.

If the CPU is an EBF server, then SFQ guarantees
that LSFQ�q

j
f � is given as follows:

P � LSFQ�q
j
f � � EAT �qjf � r

j
f � �

X
n�Q�n��f

lmax
n

C
�
l
j
f

C
�
��C�

C
�

�

C

�
A

� ��Be��� � � � ����

The following example illustrates the delay guaran-
tee of SFQ.

Example � Consider a constant rate 100MIPS
CPU that serves threads �, 	, and �. Let thread � re-
serve 30MIPS and execute 300K instructions every
quantum. Also, let the other two threads execute at
most 200K instructions every quantum. Then, since
��C� � � for a constant rate CPU, for thread �,P

n�Q�n��f
lmaxn

C
�

l
j

f

C
� ��C�

C
� �ms. Since exe-

cuting 300K instructions on a 30MIPS CPU takes
��ms, the expected arrival time of jth quantum of
thread �, assuming it remains runnable at the end
of each of its allocated quantum, is �j � �� � ��ms.
Hence, SFQ guarantees that jth quantum of thread
� will finish execution by �j � �� � �� � �ms.

Thus, SFQ not only guarantees fair allocation of
CPU to sub-classes, but also provides quantitative
bounds on performance.

4. SFQ is computationally efficient: Whereas the com-
putation of a start tag only requires one addition and
one division, sorting can be efficiently done using
a priority queue. The computational complexity of
a priority queue is known to O�logQ�, where Q is
the number of entities to be scheduled. Since the
number of children of a node in a hierarchy are ex-
pected to be small (of the order of 2-10), this cost is
insignificant when SFQ is used for hierarchical parti-
tioning. Furthermore, no other known algorithm that
simultaneously achieves predictable allocation and
protection has a lower complexity. Although static
priorityalgorithms have lower complexity, they pro-
vide no protection, and hence, have been found to
be unsatisfactory for multimedia operating systems
[15].

Recall from Section 1 that a scheduling algorithm suit-
able for video applications should: (1) provide QoS guar-
antees even in presence of overload, and (2) not require
computation requirements to be known precisely. Since
SFQ guarantees fair allocation of resources even in pres-
ence of overload and does not need computation require-
ments to be known precisely, it meets these requirements.
Hence, it suitable for video applications as well.

4 Implementation

We have implemented our hierarchical CPU allocation
framework in the Solaris 2.4 kernel, which is a derivative
of SVR4 UNIX. Our framework utilizes SFQ to schedule
all the intermediate nodes for achieving hierarchical par-
titioning. The requirements of hierarchical partitioning
are specified through a tree referred to as a scheduling
structure. Each node in the scheduling structure has a
weight, a start-tag, and a finish-tag that are maintained as
per the SFQ algorithm. A non-leaf node maintains a list
of child nodes, a list of runnable child nodes sorted by
their start-tags, and a virtual time of the node which, as
per SFQ, is the minimum of the start-tags of the runnable
child nodes. A leaf node has a pointer to a function that
is invoked, when it is scheduled by its parent node, to
select one of its threads for execution. Each node also
has a unique identity and a name similar to a UNIX file-
name. For example, in the scheduling structure shown in
Figure 2, the name of node user1 is "/best-effort/user1".
The scheduling structure is created using the following
system calls:

� int hsfq mknod�char �name� int parent� int
weight� int �ag� scheduler id sid�: This system call
creates a node with the given name as a child of
node parent in the scheduling structure and returns
the identifier of the new node. The �ag parameter

identifies the node to be created as a leaf or a non-
leaf node. If the node is a leaf node, a pointer to the
scheduling function of the class, identified by sid, is
installed in the node.

� int hsfq parse�char� name� int hint�: This system
call takes a name and resolves it to a node identifier
in the scheduling structure. The name can be abso-
lute or relative. If it is relative, it is considered to be
relative to the node with identifier hint.

� int hsfq rmnod�int id� int mode�: This system call
is used to remove a node from the scheduling struc-
ture. A node can be removed only if it does not have
any child nodes.

� hsfq move�int from� int to� ������: This system call
is used to move a thread from one leaf node to an-
other.

� hsfq admin�int node� int cmd� void �args� : This
system call is used for administration operations,
other than those mentioned above, on the scheduling
structure. Examples of administration operations
include changing the weight of a node, determining
the weight of a node, etc.

Given a scheduling structure, the actual scheduling of
threads occurs recursively. To select a thread for execu-
tion, a functionhsfq schedule�� is invoked. This function
traverses the scheduling structure by always selecting the
child node with the smallest start tag until a leaf node
is selected. When a leaf node is selected, a function
that is dependent on the leaf node scheduler, determined
through the function pointer that is stored in the leaf node
by hsfq mknod��, is invoked to determine the thread to
be scheduled. When a thread blocks or is preempted, the
finish and the start tags of all the ancestors of the node to
which the thread belongs have to be updated. This is done
by invoking a function hsfq update�� with the duration
for which the thread executed and the node identifier of
the leaf node as parameters.

A node in the scheduling structure is scheduled if and
only if at least one of the leaf nodes in the sub-tree rooted
at that node has a runnable thread. The eligibility of
a node is determined as follows. When the first thread
in a leaf node becomes eligible for scheduling, function
hsfq setrun�� is invoked with the leaf node’s identifier.
This function marks the leaf node as runnable and all
the other ancestor nodes that may become eligible as a
consequence. Note that this function has to traverse the
path from the leaf up the tree only until a node that is
already runnable is found. On the other hand, when the
last thread in a leaf node makes a transition to sleep mode,
function hsfq sleep�� is called with the leaf node’s iden-
tifier. This function marks the leaf node as ineligible and

all the other ancestor nodes that may become ineligible
as a consequence. This function has to traverse the path
from the leaf only until a node that has more than one
runnable child nodes is found.

In our implementation, any scheduling algorithm can
be used at the leaf node as long as it: (1) provides an
interface function that can be invoked by hsfq schedule��
to select the next thread for execution, and (2) invokes
hsfq setrun��, hsfq sleep��, and hsfq update�� as per the
rules defined above. We have implemented SFQ as well
as modified the existing SVR4 priority based scheduler
to operate as a scheduler for a leaf node. The SVR4
leaf scheduler in our implementation, as in the standard
release, uses a scheduling algorithm that is dependent on
the scheduling class of a thread (e.g., time-sharing, in-
teractive, system, etc.). Hence, in our implementation, a
scheduler for a leaf node itself can use multiple schedul-
ing policies.

Observe that the threads in a system may synchro-
nize or communicate with each other, which can result
in priority inversion (i.e., a scenario in which a lower
priority thread may block the progress of a higher prior-
ity thread). The threads that synchronize/communicate
may either belong to the same leaf class or different leaf
classes. If the threads belong to different leaf classes, the
notion of priority inversion is not defined. Furthermore,
synchronization between threads belonging to different
classes is not desirable, since that may lead to violation
of QoS requirements of applications. For example, if
a thread in the real-time leaf class synchronizes with a
thread in the best-effort class, then, since the best-effort
class does not perform any admission control, the QoS re-
quirement of the thread may be violated. Techniques for
avoiding priority inversion among threads belonging to
the same leaf class, on the other hand, depend on the leaf
class scheduler. For example, if the leaf scheduler uses
static priority Rate Monotonic algorithm, then standard
priority inheritance techniques can be employed [13, 14].
Similarly, when the leaf scheduler is SFQ, priority in-
version can be avoided by transferring the weight of the
blocked thread to the thread that is blocking it. Such a
transfer will ensure that the blocking thread will have a
weight (and hence, the CPU allocation) that is at least as
large as the weight of the blocked thread.

We envision that our scheduling infrastructure would
be used by a QoS manager [10] in a multimedia sys-
tem (see Figure 4). Applications will specify their QoS
requirements to the QoS manager which would: (1) deter-
mine the resources needed to meet the QoS requirements
of the applications; (2) decide the scheduling class the ap-
plication should belong to, and create the class if it does
not exist; (3) employ class dependent admission control
procedures to determine if the resource requirements can
be satisfied (some classes may have no admission con-

User thread

EDFRMA
Node

User Applications

QoS Specifications

Hierarchical scheduler
Interface

time-

sharing

QoS Manager

Hierarchical Scheduler

Figure 4 : Quality of Service Manager

trol); and (4) allocate the resources to the application and
move it to appropriate class. The QoS manager may also
move applications between classes or change the resource
allocation in response to change in QoS requirements. It
would also dynamically change the relative allocations
of different classes so as to effectively meet the require-
ments of the applications that may coexist at any time.
The development of such policies is the subject of future
research and beyond the scope of this paper.

5 Experimental Evaluation

We have evaluated the performance of our implementa-
tion using a Sun SPARCstation 10 with 32MB RAM.
All our experiments were conducted in multiuser mode
with all the normal system processes. Most of our ex-
periments were carried out using the Dhrystone V2.1
benchmark, which is a CPU intensive application that
executes a number of operations in a loop. The number
of loops completed in a fixed duration was used as the
performance metric. We evaluated several aspects of the
hierarchical scheduler, the results of which are reported
in the following sections.

5.1 Limitation of Conventional Schedulers

We had argued that conventional time-sharing schedulers
are inadequate for achieving predictable resource allo-
cation in multimedia operating systems. To experimen-
tally validate this claim, we compared the throughput
of 5 threads running Dhrystone benchmark under time-
sharing and SFQ schedulers. Whereas in the case of
SFQ all the threads had equal weight, in the case of
time-sharing scheduler all the threads were assigned the
same initial user priority. Figure 5 demonstrates that,

90000

100000

110000

120000

130000

140000

150000

1 2 3 4 5

Time−sharing

SFQ

Thread Number

T
hr

ou
gh

pu
t (

in
 n

um
be

r
of

 lo
op

s)

Figure 5 : Comparison of throughput of threads under
SFQ and time-sharing schedulers

Root

SFQ-1 SFQ-2

Thread

TS
SYS

RT

Node

SVR4

Figure 6 : Scheduling structure used for the experiments

in spite of having the same user priority, the through-
put received by the threads in the time-sharing sched-
uler varies significantly, thereby demonstrating it’s inad-
equacy in achieving predictable allocation. In contrast,
all the threads in SFQ received the same throughput in
conformance with the theoretical predictions. In [15], it
has been demonstrated that when a multimedia applica-
tion is run as a real-time thread in the SVR4 scheduler,
the whole system may become unusable. This limitation
of the SVR4 scheduler coupled with the unpredictability
of time-sharing algorithm clearly demonstrates the need
for a predictable scheduling algorithm for multimedia
operating system.

5.2 Scheduling Overhead

A key concern in using dynamic priority-based algorithm
such as SFQ is that the scheduling overhead may be high.
To evaluate the overhead, we determined the ratio of
the number of loops completed by a thread in our hi-
erarchical scheduler and the unmodified kernel. In the

hierarchical scheduler, we used the scheduling structure
shown in Figure 6 with the threads belonging to node
SFQ-1. To determine the effect of the number of threads
on the scheduling overhead, the number of threads exe-
cuting the Dhrystone benchmark was varied from 1 to 20.
Figure 7(a) plots the variation in the ratio of the aggre-
gate throughput of threads in our hierarchical scheduler
to that in the unmodified kernel against the increase in
the number of threads. The ratio was determined by av-
eraging over 20 runs and using a time quantum of 20ms.
As Figure 7(a) demonstrates, the throughput achieved
by our scheduler is within 1% of the throughput of the
unmodified kernel.

To evaluate the impact of the depth of the scheduling
structure, the number of nodes between the root class
and the SFQ-1 class was varied from 0 to 30. As Figure
7(b) demonstrates, in spite of the significant variation in
the depth, the throughput remains within 0.2%. These
experiments demonstrates that it is feasible to employ
SFQ for hierarchical CPU scheduling.

5.3 Hierarchical CPU allocation

We evaluated the effectiveness of SFQ in achieving hi-
erarchical CPU allocation using the scheduling structure
shown in Figure 6. Nodes SFQ-1, SFQ-2 and SVR4 were
assigned weights of 2, 6, and 1, respectively. Two threads
executing the Dhrystone benchmark were added to leaf
nodes SFQ-1 and SFQ-2 (SVR4 node contained all the
other threads in the system). Figure 8(a) demonstrates
that the aggregate throughput of nodes SFQ-1 and SFQ-
2 (measured in terms of number of completed loops of
the Dhrystone benchmark) are in the ratio 1:3 (i.e., in
accordance to their weights). Observe that due to the
variation in the CPU usage of the threads belonging to
node SVR4, the aggregate throughput of nodes SFQ-1
and SFQ-2 fluctuates over time. In spite of this varia-
tion, nodes 1 and 2 receive throughput in the ratio 1:3,
thereby demonstrating the SFQ achieves fair allocation
even when the available CPU bandwidth fluctuates over
time.

A key advantage of our hierarchical scheduler is that
even though different leaf schedulers may be used, each
node receives its fair allocation and is isolated from the
other nodes. To demonstrate this, we used the schedul-
ing structure shown in Figure 6 with 2 threads in SFQ-1
and 1 thread in SVR4. SFQ-1 as well SVR4 nodes were
assigned the same weight. Figure 8(b) demonstrates that
the threads in SFQ-1 node as well as SVR4 node make
progress and are isolated from each other. Furthermore,
both SFQ-1 and SVR4 nodes receive the same through-
put. This is in contrast to the standard SVR4 scheduler
where a higher priority class, such as the real-time class,
can monopolize the CPU.

To demonstrate the feasibility of supporting hard real-
time applications in our hierarchical scheduling frame-
work, we used the scheduling structure shown in Figure
6, and executed two threads (namely, thread1 and thread2)
in the RT class of the SVR4 node, and an MPEG decoder
in SFQ-1 node. The SVR4 and the SFQ-1 nodes were
given equal weights. Whereas thread1 executed for 10
ms every 60 ms, thread2 required 150 ms of computa-
tion time every 960 ms. Rate monotonic algorithm was
used to schedule these two threads. For each thread, a
clock interrupt was used to announce the deadline for
the current round and the start of a new round of com-
putation. The threads were scheduled for 25ms quan-
tums. We measured the performance of the system using
two parameters: (1) scheduling latency, which refers to
the duration for which a thread has to wait prior to get-
ting access to the CPU after its clock interrupt; and (2)
slack time, which refers to the difference in time between
the deadline and the time at which the current round
of computation completes. Figure 9 depicts the varia-
tion in scheduling latency and slack time for each round
for thread1. Whereas Figure 9(a) illustrates that thread1
gained access to the CPU within a bounded period of time
(equal to the length of the scheduling quantum) after its
clock interrupt, Figure 9(b) demonstrates that none of the
deadlines for thread1 were violated (i.e., the slack time is
always positive).

5.4 SFQ as a Leaf Scheduler

To evaluate the use of SFQ as a leaf scheduler, two threads
with weights 5 and 10, each running the Berkeley MPEG
video player, were assigned to node SFQ-1. Figure 10
plots the number of frames decoded by each thread as
a function of time. It demonstrates that the thread with
weight 10 decodes twice as many frames as compared to
the other thread in any time interval.

5.5 Dynamic Bandwidth Allocation

A QoS manager may dynamically change the bandwidth
allocation of classes to meet the application requirements.
Hence, SFQ should be able to achieve fair allocation even
when bandwidth allocation is dynamically varied. To
evaluate this aspect of SFQ, two threads, each execut-
ing the Dhrystone benchmark, were run in the SFQ-1
node. The behavior of the threads was varied over time
as follows:

� At time 0, both threads were assigned a weight of
4. Hence, the throughput ratio between threads was
4:4.

� At time 4, the weight of thread 2 was changed to 2.
Hence, the throughput ratio became 4:2.

1

1.1

1.2

1.3

1.4

1.5

2 4 6 8 10 12 14 16 18 20

R
at

io
 o

f t
hr

ea
d

th
ro

ug
hp

ut
 (

S
F

Q
/T

S
)

Number of threads

(a)

SFQ/TS

840000

845000

850000

855000

860000

0 5 10 15 20 25 30

T
hr

ea
d

th
ro

ug
hp

ut

Depth

(b)

Depth overhead

Figure 7 : (a) Ratio of number of loops executed in hierarchical and unmodified scheduler; (b) Variation in throughput
with increase in depth of hierarchy

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

0 5 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t

Time

(a)

Throughput of SFQ-1
Throughput of SFQ-2

0

500000

1e+06

1.5e+06

2e+06

0 5 10 15 20 25 30

T
hr

ou
gh

pu
t

Time

(b)

Throughput of SFQ-1
Throughput of SVR4

Figure 8 : (a) Aggregate throughput of nodes SFQ-1 and SFQ-2; (b) Throughput of nodes SFQ-1 and SVR4

-5

0

5

10

15

20

25

20 40 60 80 100 120 140 160 180

S
ch

ed
ul

in
g

La
te

nc
y

(m
s)

Round Number

(a)

Scheduling Latency

25

30

35

40

45

50

55

20 40 60 80 100 120 140 160 180

S
la

ck
 T

im
e

(m
s)

Round Number

(b)

Slack Time

Figure 9 : Variation in: (a) scheduling latency and (b) slack time

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18

N
um

be
r

of
 fr

am
es

 d
ec

od
ed

Time

weight 10
weight 5

Figure 10 : Number of frames decoded as a function of
time

� At time 6, thread 1 was put to sleep. Hence, the
throughput ratio became 0:2.

� At time 9, thread 1 resumed execution. Hence, the
throughput ratio became 4:2.

� At time 12, the weight of thread 1 was changed to
8. Hence, the throughput ratio became 8:2.

� At time 16, the weight of thread 2 was changed to
4. Hence, the throughput ratio became 8:4.

� At time 22, the weight of thread 1 was changed to
4. Hence, the throughput ratio became 4:4.

Figures 11(a) and 11(b), respectively, illustrate that the
throughput of the threads (measured in terms of number of
completed loops) and their ratio varies as per the changes
in the weights of the threads. This demonstrates that
SFQ can achieve fairness even in the presence of dynamic
variation in weight assignments.

6 Related Work

We are not aware of any CPU scheduling algorithm that
achieves hierarchical partitioning while allowing differ-
ent schedulers to be used for different applications. How-
ever, since a fair scheduling algorithm is the basis for
achieving hierarchical partitioning,we discuss other such
algorithms proposed in the literature. Most of these algo-
rithms have been proposed for fair allocation of network
bandwidth; we have modified their presentation appro-
priately for CPU scheduling.

The earliest known fair scheduling algorithm is
Weighted Fair Queuing (WFQ) [3]. WFQ was designed
to emulate a hypothetical weighted round robin server in
which the service received by each thread in a round is
infinitesimal and proportional to the weight of the thread.

Since threads can only be serviced in quantums at a
time, WFQ emulates a hypothetical server by schedul-
ing threads in the increasing order of the finishing times
of the quantums of the threads in the hypothetical server.
To compute this order, WFQ associates two tags, a start
tag and a finish tag, with every quantum of a thread.
Specifically, the start tag S�qjf � and the finish tag F �qjf �

of quantum q
j
f are defined as:

S�qjf � � maxfv�A�qjf ��� F �q
j��
f �g j � � ����

F �qj��f � � S�qj��f � �
l
j��
f

rf
j � � ��	�

whereF �q�f � � � and v�t� is defined as the round number
that would be in progress at time t in the hypothetical
server. Formally, v�t� is defined as:

dv�t�

dt
�

CP
j�B�t� rj

����

where C is the capacity of the CPU measured in in-
structions/second and B�t� is the set of runnable threads
at time t in the hypothetical server. WFQ then sched-
ules quantums in the increasing order of their finish tags.
WFQ has several drawbacks for scheduling a CPU:

� As demonstrated in [6], WFQ does not provide fair-
ness when the processor bandwidth fluctuates over
time. Since fairness in the presence of variation in
available CPU bandwidth is crucial for supporting
hierarchical partitioning, WFQ is unsuitable for a
CPU scheduler in a general purpose operating sys-
tem.

� WFQ requires the length of the quantums to be
known a priori. Though the maximum length of the
quantum may always be known (as the scheduler
can enforce it by preempting a thread), for environ-
ments in which the computation requirements are
not known precisely, the exact quantum length may
not be known. If WFQ assumes the maximum quan-
tum length for scheduling and if the thread uses less
than the maximum, the thread will not receive its fair
share. On the other hand, if WFQ is modified to re-
flect the actual length of the execution (by changing
the finish tag of a quantum after the end of its exe-
cution), then WFQ would have been modified in a
non-trivial manner. Though WFQ is known to have
bounded fairness, it is not known if the modified
algorithm retains its fairness properties.

� WFQ requires the computation of v�t�, which, in
turn, requires simulation of the hypothetical server.
This simulation is known to be computationally ex-
pensive [4]. In contrast, SFQ computes the start and
the finish tags efficiently.

0

200000

400000

600000

800000

1e+06

1.2e+06

0 5 10 15 20 25 30

T
hr

ou
gh

pu
t

Time

(a)

thread 1
thread 2

0

1

2

3

4

5

0 5 10 15 20 25 30

T
hr

ea
d

th
ro

ug
hp

ut
 r

at
io

Time

(b)

SFQ-1 node

Figure 11 : (a) Throughput of threads 1 and 2; (b) Ratio of throughputs of threads 1 and 2

� The unfairness of WFQ, as derived in [16], is sig-
nificantly higher than SFQ.

� WFQ provides high delay to low throughput appli-
cations. Specifically, it guarantees that quantum q

j
f

will complete execution by:

EAT �qjf � �
l
j
f

rf
�
lmax

C
����

where lmax is the maximum quantum length ever
scheduled at the CPU. Hence, using (8), we conclude
that the difference in maximum delay incurred in
SFQ and WFQ, denoted by ��qjf�, is given as:

��qjf � �
X

n�Q�n��f

lmax
n

C
�
l
j
f

C
�
l
j
f

rf
�
lmax

C
����

Now, if all quantums are of the same lengths, then
��qjf � � � (i.e., SFQ provides a better delay guaran-
tee) if rf � �

jQj�� . Since this condition is expected
to hold for low throughput applications,we conclude
that SFQ provides lower delay to low throughput
applications. Since interactive applications are low
throughput in nature, this feature of SFQ is highly
desirable for CPU scheduling.

Fair Queuing based on Start-time (FQS) was proposed
in [7] to make WFQ suitable for CPU scheduling when
quantum length may not be known a priori. It computes
the start tag and the finish tag of a quantum exactly as in
WFQ. However, instead of scheduling quantums in the
increasing order of finish tags, it schedules them in the
increasing order of start tags. Since quantum length is not
required for computing the start tag, it becomes suitable
for CPU scheduling. However, its main drawbacks are
that: (1) just as WFQ, it is computationally expensive,
and (2) it does not provide fairness when the available

CPU bandwidth fluctuates over time, and consequently
is unsuitable for hierarchical partitioning. Furthermore,
it is not known to have any better properties than SFQ.

Self Clocked Fair Queuing (SCFQ), originally pro-
posed in [2] and later analyzed in [4], was designed to
reduce the computational complexity of fair scheduling
algorithms like WFQ. It achieves efficiency over WFQ
by approximating v�t� with the finish tag of the quantum
in service at time t. However, since SCFQ also sched-
ules quantums in increasing order of finish tags, it is
unsuitable for scheduling CPU in a multimedia operating
system. Furthermore, although it has the same fairness
and implementation complexity as SFQ, it provides sig-
nificantly larger delay guarantee than SFQ. Specifically,

it increases the maximum delay of quantum q
j
f by

l
j

f

rf
[6].

In the OS context, a randomized fair algorithm, termed
lottery scheduling, was proposed in [19]. Due to its ran-
domized nature, lotteryscheduling achieved fairness only
over large time-intervals. This limitation was later ad-
dressed by stride scheduling algorithm [18]. The stride
scheduling algorithm is a variant of WFQ and, conse-
quently, has all the drawbacks of WFQ. Furthermore, no
theoretical properties of the stride scheduling algorithm
are known. Recently, a proportionate share resource al-
location algorithm, referred to as Earliest Eligible Virtual
Deadline First (EEVDF), has been proposed [17].

Hierarchical partitioning of resource allocation was
also proposed in [19] using the abstraction of tickets and
currencies. In that framework, a thread is allocated tick-
ets in some currency and the currency, in turn, is funded
in terms of tickets of some other currency. The “fund-
ing” relationship is such that the value of a ticket in every
currency can be translated to a value in the base currency.
Every thread then is allocated resources in proportion to
the value of its tickets in the base currency using lottery
scheduling. This achieves hierarchical partitioning since
if a thread becomes inactive, the value of the tickets of the

threads that are funded by the same currency increases.
This specification of hierarchical partitioning is similar
to our scheduling structure. However, the key differences
between our framework and the approach of [19] are as
follows. First, our framework permits different schedul-
ing algorithms to be employed for different classes of
applications, whereas the framework of [19] does not.
Second, hierarchical partitioning is achieved in [19] by
re-computation of ticket values of every thread that are
funded in the same currency or some ancestor of the cur-
rency every time a thread gets blocked or exits. This ap-
proach not only incurs additional overhead of computing
ticket values, but also does not provide any guarantees.
Hence, the requirements of hard and soft real-time ap-
plications can not be met in this framework. In contrast,
our framework achieves hierarchical partitioning through
a theoretically sound hierarchical scheduler.

Several other efforts have investigated scheduling
techniques for multimedia systems [1, 5, 8, 13]. These
scheduling algorithms are complementary to our hier-
archical scheduler and can be employed as leaf class
scheduler in our framework. Most of these algorithms
require precise characterization of resource requirements
of a task (such as computation time and period) as well
as admission control to achieve predictable allocation
of CPU. In contrast, SFQ requires neither of these; it
just requires relative importance of tasks (expressed by
weights) to be known. It requires admission control only
if the applications desire a certain guaranteed minimum
CPU bandwidth. Thus, SFQ allows a range of control
over CPU allocation: whereas admission control can be
used to guarantee a certain minimum CPU allocation to
tasks and thus match the performance of the existing
algorithms, admission control can be avoided when ap-
plications only require relative resource allocation. Such
a flexibility is highly desirable in multimedia systems and
the lack of it is one of the main disadvantage of existing
algorithms. A detailed experimental investigation of the
relative merits of these algorithms vis-a-vis SFQ as a leaf
class scheduler is the subject of our current research.

7 Concluding Remarks

In this paper, we presented a flexible framework for hier-
archical CPU allocation, using which an operating system
can partition the CPU bandwidth among various applica-
tion classes, and each application class, in turn, can par-
tition its allocation (potentially using a different schedul-
ing algorithm) among its sub-classes or applications. We
presented the Start-time Fair Queuing (SFQ) algorithm,
which enabled such hierarchical partitioning. We demon-
strated that SFQ is not only suitable for hierarchical par-
titioning, but is also suitable for video applications. We
have implemented the hierarchical scheduler in Solaris

2.4. We demonstrated that our framework: (1) enables
co-existence of heterogeneous schedulers, (2) protects
application classes from each other, and (3) does not
impose higher overhead than conventional time-sharing
schedulers. Thus, our hierarchical scheduling framework
is suitable for multimedia operating systems.

References

��� D� P� Anderson� Metascheduling for Continuous
Media� ACM Transactions on Computer Systems�
�����
	���	�	� August �

��

�	� J� Davin and A� Heybey� A Simulation Study
of Fair Queueing and Policy Enforcement� Com-
puter Communication Review� 	����
	��	
� Octo�
ber �

��

��� A� Demers� S� Keshav� and S� Shenker� Analysis
and Simulation of a Fair Queueing Algorithm�
In Proceedings of ACM SIGCOMM� pages ���	�
September �
�
�

��� S�J� Golestani� A Self�Clocked Fair Queueing
Scheme for High Speed Applications� In Pro-
ceedings of INFOCOM’94� �

��

��� R� Govindan and D� P� Anderson� Scheduling
and IPC Mechanisms for Continuous Media� In
Proceedings of the 13th ACM Symposium on Op-
erating System Principles� pages ������ October
�

��

��� P� Goyal� H� M� Vin� and H� Cheng� Start�
time Fair Queuing
 A Scheduling Algorithm for
Integrated Services Packet Switching Networks�
In Proceedings of ACM SIGCOMM’96� pages ����
���� August �

��

��� A� Greenberg and N� Madras� How Fair is Fair
Queuing� The Journal of ACM� �
���
�����
��
July �

	�

��� K� Je�ay� D� L� Stone� and F� D� Smith� Kernel
Support for Live Digital Audio and Video� Com-
puter Communications� ��
�����
�� July�August
�

	�

�
� K� Je�ay and D�L� Stone� Accounting for Inter�
rupt Handling Costs in Dynamic Priority Task
Systems� In Proceedings of 14th IEEE Real-Time
Systems Symposium Raleigh-Durham, NC� pages
	�	�		�� December �

��

���� M�B� Jones� P� Leach� R� Draves� and III J� Bar�
rera� Support for User�Centric Modular Real�
Time Resource Management in Rialto Oper�

ating System� In Proceedings of NOSSDAV’95,
Durham, New Hampshire� April �

��

���� K� Lee� Performance Bounds in Communica�
tion Networks With Variable�Rate Links� In
Proceedings of ACM SIGCOMM’95� pages �	��
���� �

��

��	� C�L� Liu and J�W� Layland� Scheduling Algo�
rithms for Multiprocessing in a Hard�Real Time
Environment� JACM� 	�
������ January �
���

���� C� W� Mercer� S� Savage� and H� Tokuda� Pro�
cessor Capacity Reserves
 Operating System
Support for Multimedia Applications� In Pro-
ceedings of the IEEE ICMCS’94� May �

��

���� T� Nakajima� T� Kitayama� H� Arakawa� and
H� Tokuda� Integrated Management of Priority
Inversion in Real�Time Mach� In Proceedings
of the 14th IEEE Real-Time Systems Symp.� pages
�	������ December �

��

���� J� Nieh� J� Hanko� J� Northcutt� and G� Wall�
SVR�UNIX Scheduler Unacceptable for Multi�
media Applications� In Proceedings of 4th In-
ternational Workshop on Network and Operating
System Support for Digital Audio and Video� pages
������ November �

��

���� D� Stiliadis and A� Varma� Design and Analysis
of Frame�based Fair Queueing
 A New Tra�c
Scheduling Algorithm for Packet Switched Net�
works� In Proceedings of SIGMETRICS’96� May
�

��

���� I� Stoica� H� Abdel�Wahab� and K� Je�ay� A
Proportional Share Resource Allocation Algo�
rithm for Real�Time� Time�Shared Systems� In
Proceedings of Real Time Systems Symposium (to
appear)� December �

��

���� C� Waldspurger and W� Weihl� Stride Schedul�
ing
 Deterministic Proportional�share Resource
Management� Technical Report TM��	�� MIT�
Laboratory for Computer Science� June �

��

��
� C� A� Waldspurger and W� E� Weihl� Lot�
tery Scheduling
 Flexible Proportional�share
Resource Management� In Proceedings of sym-
posim on Operating System Design and Implemen-
tation� November �

��

