An Introduction to
Disk Drive Modeling

Chris Ruemmler and John Wilkes

Hewlett-Packard Laboratories

Much research in I/O
systems is based on
disk drive simulation
models, but how good
are they? An accurate
simulation model
should emphasize the
performance-critical
areas.

March 1994

odern microprocessor technology is advancing at an incredible rate,

and speedups of 40 to 60 percent compounded annually have become

the norm. Although disk storage densities are also improving impres-
sively (60 to 80 percent compounded annually), performance improvements have
been occurring at only about 7 to 10 percent compounded annually over the last
decade. As a result, disk system performance is fast becoming a dominant factor in
overall system behavior.

Naturally, researchers want to improve overall I/O performance, of which a
large component is the performance of the disk drive itself. This research often
involves using analytical or simulation models to compare alternative approaches,
and the quality of these models determines the quality of the conclusions; indeed,
the wrong modeling assumptions can lead to erroneous conclusions. Nevertheless,
little work has been done to develop or describe accurate disk drive models. This
may explain the commonplace use of simple, relatively inaccurate models.

We believe there is much room for improvement. This article demonstrates and
describes a calibrated, high-quality disk drive model in which the overall error fac-
tor is 14 times smaller than that of a simple first-order model. We describe the var-
ious disk drive performance components separately, then show how their inclusion
improves the simulation model. This enables an informed trade-off between effort
and accuracy. In addition, we provide detailed characteristics for two disk drives,
as well as a brief description of a simulation environment that uses the disk drive
model.

Characteristics of modern disk drives

To model disk drives, we must understand how they behave. Thus, we begin
with an overview of the current state of the art in nonremovable magnetic disk
drives with embedded SCSI (Small Computer Systems Interconnect) controllers,
since these are widely available.

Disk drives contain a mechanism and a controller. The mechanism is made up of
the recording components (the rotating disks and the heads that access them) and
the positioning components (an arm assembly that moves the heads into the cor-
rect position together with a track-following system that keeps it in place). The

0018-9162/94/ $4.00 © 1994 IEEE 17

disk controller contains a microproces-
sor, some buffer memory, and an inter-
face to the SCSI bus. The controller
manages the storage and retrieval of
data to and from the mechanism and
performs mappings between incoming
logical addresses and the physical disk
sectors that store the information.
Below, we look more closely at each
of these elements, emphasizing features
that need to be considered when creat-
ing a disk drive model. It will become
clear that not all these features are
equally important to a model’s accuracy.

The recording components. Modern
disks range in size from 1.3 to 8 inches
in diameter; 2.5, 3.5, and 5.25 inches are
the most common sizes today. Smaller
disks have less surface area and thus
store less data than their larger coun-
terparts; however, they consume less
power, can spin faster, and have
smaller seek distances. Historically, as
storage densities have increased to
where 2-3 gigabytes can fit on a single
disk, the next-smaller diameter in the
series has become the most cost-effec-
tive and hence the preferred storage
device.

Increased storage density results
from two improvements. The first is
better linear recording density, which is
determined by the maximum rate of
flux changes that can be recorded and
read back; current values are around
50,000 bits per inch and will approxi-
mately double by the end of the
decade. The second comes from pack-
ing the separate tracks of data more
closely together, which is how most of
the improvements are occurring.
Current values are about 2,500 tracks

per inch, rising to perhaps 20,000 TPI
by the end of the decade. The product
of these two factors will probably sus-
tain a growth rate above 60 percent per
year to the end of the decade.

A single disk contains one, two, or as
many as a dozen platters, as shown in
Figure 1. The stack of platters rotates
in lockstep on a central spindle.
Although 3,600 rpm was a de facto
standard for many years, spindle rota-
tion speed has increased recently to as
much as 7,200 rpm. The median rota-
tion speed is increasing at a compound
rate of about 12 percent per year. A
higher spin speed increases transfer
rates and shortens rotation latencies
(the time for data to rotate under
the head), but power consumption
increases and better bearings are
required for the spindle. The spin speed
is typically quoted as accurate within
0.5 to 1 percent; in practice, the disk
speeds vary slowly around the nominal
rate. Although this is perfectly reason-
able for the disk’s operation, it makes it
nearly impossible to model the disk’s
rotational position some 100-200 revo-
lutions after the last known operation.
Fortunately, many I/O operations occur
in bursts, so the uncertainty applies
only to the first request in the burst.

Each platter surface has an associ-
ated disk head responsible for record-
ing (writing) and later sensing (reading)
the magnetic flux variations on the
platter’s surface. The disk drive has a
single read-write data channel that can
be switched between the heads. This
channel is responsible for encoding and
decoding the data stream into or from a
series of magnetic phase changes stored
on the disk. Significant fractions of the

encoded data stream are dedicated to
error correction. The application of
digital signal processing may soon
increase channel speeds above their
current 100 megabits per second.
(Multichannel disks can support more
than one read/write operation at a time,
making higher data transfer rates possi-
ble. However, these disks are relatively
costly because of technical difficulties
such as controlling the cross talk
between the concurrently active chan-
nels and keeping multiple heads
aligned on their platters simultane-
ously. The latter is becoming more dif-
ficult as track densities increase.)

The positioning components. Each
data surface is set up to store data in a
series of concentric circles, or tracks. A
single stack of tracks at a common dis-
tance from the spindle is called a cylin-
der. Today’s typical 3.5-inch disk has
about 2,000 cylinders. As track densi-
ties increase, the notion of vertical
alignment that is associated with cylin-
ders becomes less and less relevant
because track alignment tolerances are
simply too fine. Essentially, then, we
must consider the tracks on each plat-
ter independently.

To access the data stored in a track,
the disk head must be moved over it.
This is done by attaching each head to
a disk arm — a lever that is pivoted
near one end on a rotation bearing. All
the disk arms are attached to the same
rotation pivot, so that moving one head
causes the others to move as well. The
rotation pivot is more immune to linear
shocks than the older scheme of
mounting the head on a linear slider.

" The positioning system’s task is to

Figure 1. The mechanical components of a disk drive; (a) side view, (b) top view.

18

COMPUTER

ensure that the appropriate head gets
to the desired track as quickly as possi-
ble and remains there even in the face
of external vibration, shocks, and disk
flaws (for example, nonconcentric and
noncircular tracks).

Seeking. The speed of head move-
ment, or seeking, is limited by the
power available for the pivot motor
(halving the seek time requires quadru-
pling the power) and by the arm’s stiff-
ness. Accelerations of 30-40g are
required to achieve good seek times,
and too flexible an arm can twist and
bring the head into contact with the
platter surface. Smaller diameter disks
have correspondingly reduced distances
for the head to move. These disks have
smaller, lighter arms that are easier to
stiffen against flexing — all contribut-
ing to shorter seek times.

A seek is composed of

® a speedup, where the arm is acceler-
ated until it reaches half of the seek
distance or a fixed maximum veloc-
ity,

*a coast for long seeks, where the
arm moves at its maximum velocity,

sa slowdown, where the arm is
brought to rest close to the desired
track, and

s a settle, where the disk controller
adjusts the head to access the
desired location.

Very short seeks (less than, say, two
to four cylinders) are dominated by the
settle time (1-3 milliseconds). In fact, a
seek may not even occur; the head may
just resettle into position on a new
track. Short seeks (less than 200-400
cylinders) spend almost all of their time
in the constant-acceleration phase, and
their time is proportional to the square
root of the seek distance plus the settle
time. Long seeks spend most of their
time moving at a constant speed, taking
time that is proportional to distance
plus a constant overhead. As disks
become smaller and track densities
increase, the fraction of the total seek
time attributed to the settle phase
increases.

“Average” seek times are commonly
used as a figure of merit for disk drives,
but they can be misleading. Such aver-
ages are calculated in various ways, a
situation further complicated by the
fact that independent seeks are rare in

March 1994

practice. Shorter seeks are much more
common,!? although their overall fre-
quency is very much a function of the
workload and the operating system
driving the disk.

If disk requests are completely inde-
pendent of one another, the average
seek distance will be one third of the
full stroke. Thus, some sources quote
the one-third-stroke seek time as the
“average.” Others simply quote the
full-stroke time divided by three.
Another way is to sum the times
needed to perform one seek of each
size and divide this sum by the number
of different seek sizes. Perhaps the best
of the commonly used techniques is to
weight the seek time by the number of
possible seeks of each size: Thus, there
are N — 1 different single-track seeks

Average seek times,
commonly used as a
disk drive figure of
merit, can be
misleading.

that can be done on a disk with N cylin-
ders, but only one full-stroke seek. This
emphasizes the shorter seeks, providing
a somewhat better approximation to
measured seek-distance profiles. What
matters to people building models,
however, is the seek-time-versus-dis-
tance profile. We encourage manufac-
turers to include these in their disk
specifications, since the only alternative
is to determine them experimentally.
The information required to deter-
mine how much power to apply to the
pivot motor and for how long on a par-
ticular seek is encoded in tabular form
in the disk controller. Rather than
every possible value, a subset of the
total is stored, and interpolation is used
for intermediate seek distances. The
resulting fine-grained seek-time profile
can look rather like a sawtooth.!
Thermal expansion, arm pivot-bear-
ing stickiness, and other factors occa-
sionally make it necessary to recali-
brate these tables. This can take
500-800 milliseconds. Recalibrations
are triggered by temperature changes

and by timers, so they occur most fre-
quently just after the disk drive is pow-
ered up. In steady-state conditions,
recalibration occurs only once every 15-
30 minutes. Obviously, this can cause
difficulties with real-time or guaran-
teed-bandwidth systems (such as multi-
media file servers), so disk drives are
now appearing with modified controller
firmware that either avoids these visi-
ble recalibrations completely or allows
the host to schedule their execution.

Track following. Fine-tuning the head
position at the end of a seek and keep-
ing the head on the desired track is the
function of the track-following system.
This system uses positioning informa-
tion recorded on the disk at manufac-
turing time to determine whether the
disk head is correctly aligned. This
information can be embedded in the
target surface or recorded on a separate
dedicated surface. The former maxi-
mizes capacity, so it is most frequently
used in disks with a small number of
platters. As track density increases,
some form of embedded positioning
data becomes essential for fine-grained
control — perhaps combined with a
dedicated surface for coarse positioning
data. However, the embedded-data
method alone is not good at coping with
shock and vibration because feedback
information is only available intermit-
tently between data sectors.

The track-following system is also
used to perform a head switch. When
the controller switches its data channel
from one surface to the next in the
same cylinder, the new head may need
repositioning to accommodate small
differences in the alignment of the
tracks on the different surfaces. The
time taken for such a switch (0.5-1.5
ms) is typically one third to one half of
the time taken to do a settle at the end
of a seek. Similarly, a track switch (or
cylinder switch) occurs when the arm
has to be moved from the last track of a
cylinder to the first track of the next.
This takes about the same time as the
end-of-seek settling process. Since set-
tling time increases as track density
increases, and the tracks on different
platters are becoming less well aligned,
head-switching times are approaching
those for track switching.

Nowadays, many disk drives use an
aggressive, optimistic approach to head
settling before a read operation. This
means they will attempt a read as soon

19

as the head is near the right track; after
all, if the data are unreadable because
the settle has not quite completed,
nothing has been lost. (There is enough
error correction and identification data
in a misread sector to ensure that the
data are not wrongly interpreted.) On
the other hand, if the data are avail-
able, it might just save an entire revolu-
tion’s delay. For obvious reasons, this
approach is not taken for a settle that
immediately precedes a write. The dif-
ference in the settle times for reads and
writes can be as much as 0.75 ms.

Data layour. A SCSI disk appears to
its client computer as a linear vector of
addressable blocks, each typically
256-1,024 bytes in size. These blocks
must be mapped to physical sectors on
the disk, which are the fixed-size data-
layout units on the platters. Separating
the logical and physical views of the
disk in this way means that the disk can
hide bad sectors and do some low-level
performance optimizations, but it com-
plicates the task of higher level soft-
ware that is trying to second-guess the
controller (for example, the 4.2 BSD
Unix fast file system).

e Zoning. Tracks are longer at the
outside of a platter than at the inside.
To maximize storage capacity, linear
density should remain near the maxi-
mum that the drive can support; thus,
the amount of data stored on each
track should scale with its length. This
is accomplished on many disks by a
technique called zoning, where adja-
cent disk cylinders are grouped into
zones. Zones near the outer edge have
more sectors per track than zones on
the inside. There are typically 3 to 20
zones, and the number is likely to dou-
ble by the end of the decade. Since the
data transfer rate is proportional to the
rate at which the media passes under
the head, the outer zones have higher
data transfer rates. For example, on a
Hewlett-Packard C2240 3.5-inch disk
drive, the burst transfer rate (with
no intertrack head switches) varies
from 3.1 megabytes per second at the
inner zone to 5.3 MBps at the outer-
most zone.?

e Track skewing. Faster sequential
access across track and cylinder bound-
aries is obtained by skewing logical sec-
tor zero on each track by just the
amount of time required to cope with

20

the most likely worst-case head- or
track-switch times. This means that
data can be read or written at nearly
full media speed. Each zone has its own
track and cylinder skew factors.

* Sparing. It is prohibitively expen-
sive to manufacture perfect surfaces, so
disks invariably have some flawed sec-
tors that cannot be used. Flaws are
found through extensive testing during
manufacturing, and a list is built and
recorded on the disk for the con-
troller’s use.

So that flawed sectors are not used,
references to them are remapped to
other portions of the disk. This process,
known as sparing, is done at the granu-
larity of single sectors or whole tracks.
The simplest technique is to remap a

By far the most
important feature to
model is the data-

caching characteristics
of the disk.

bad sector or track to an alternate loca-
tion. Alternatively, slip sparing can be
used, in which the logical block that
would map to the bad sector and the
ones after it are “slipped” by one sector
or by a whole track. Many combina-
tions of techniques are possible, so disk
drive designers must make a complex
trade-off involving performance,
expected bad-sector rate, and space uti-
lization. A concrete example is the HP
C2240 disk drive, which uses both
forms of track-level sparing: slip-track
sparing at disk format time and single-
track remapping for defects discovered
during operation.

The disk controller. The disk con-
troller mediates access to the mecha-
nism, runs the track-following system,
transfers data between the disk drive
and its client, and, in many cases, man-
ages an embedded cache. Controllers
are built around specially designed
microprocessors, which often have digi-
tal signal processing capability and spe-
cial interfaces that let them control

hardware directly. The trend is toward
more powerful controllers for handling
increasingly sophisticated interfaces
and for reducing costs by replacing pre-
viously dedicated electronic compo-
nents with firmware.

Interpreting the SCSI requests and
performing the appropriate computa-
tions takes time. Controller micropro-
cessor speed is increasing just about
fast enough to stay ahead of the addi-
tional functions the controller is being
asked to perform, so controller over-
head is slowly declining. It is typically
in the range 0.3-1.0 ms.

Bus interface. The most important
aspects of a disk drive’s host channel
are its topology, its transfer rate, and its
overhead. SCSI is currently defined as
a bus, although alternative versions are
being discussed, as are encapsulations
of the higher levels of the SCSI proto-
col across other transmission media,
such as Fibre Channel.

Most disk drives use the SCSI bus
operation’s synchronous mode, which
can run at the maximum bus speed.
This was 5 MBps with early SCSI
buses; differential drivers and the “fast
SCSI” specification increased this to 10
MBps a couple of years ago. Disks are
now appearing that can drive the bus at
20 MBps (“fast, wide”), and the stan-
dard is defined up to 40 MBps. The
maximum bus transfer rate is negoti-
ated between the host computer SCSI
interface and the disk drive. It appears
likely that some serial channel such as
Fibre Channel will become a more pop-
ular transmission medium at the higher
speeds, partly because it would have
fewer wires and require a smaller con-
nector.

Because SCSI is a bus, more than
one device can be attached to it. SCSI
initially supported up to eight
addresses, a figure recently doubled
with the use of wide SCSI. As the num-
ber of devices on the bus increases,
contention for the bus can occur, lead-
ing to delays in executing data trans-
fers. This matters more if the disk
drives are doing large transfers or if
their controller overheads are high.

In addition to the time attributed to
the transfer rate, the SCSI bus inter-
faces at the host and disk also require
time to establish connections and deci-
pher commands. On SCSI, the cost of
the low-level protocol for acquiring
control of the bus is on the order of a

COMPUTER

few microseconds if the bus is idle. The
SCSI protocol also allows a disk drive
to disconnect from the bus and recon-
nect later once it has data to transfer.
This cycle may take 200 ps but allows
other devices to access the bus while the
disconnected device processes data,
resulting in a higher overall throughput.

In older channel architectures, there
was no buffering in the disk drive itself.
As a result, if the disk was ready to
transfer data to a host whose interface
was not ready, then the disk had to wait
an entire revolution for the same data
to come under the head again before it
could retry the transfer. In SCSI, the
disk drive is expected to have a speed-
matching buffer to avoid this delay,
masking the asynchrony between the
bus and the mechanism.

Since most SCSI drives take data off
the media more slowly than they can
send it over the bus, the drive partially
fills its buffer before attempting to
commence the bus data transfer. The
amount of data read into the buffer
before the transfer is initiated is called
the fence; its size is a property of the
disk controller, although it can be spec-
ified on modern SCSI disk drives by a
control command. Write requests can
cause the data transfer to the disk’s
buffer to overlap the head reposition-

ing, up to the limit permitted by the
buffer’s size. These interactions are
illustrated in Figure 2.

Caching of requests. The functions of
the speed-matching buffer in the disk
drive can be readily extended to
include some form of caching for both
reads and writes. Caches in disk drives
tend to be relatively small (currently 64
kilobytes to 1 megabyte) because of
space limitations and the relatively high
cost of the dual-ported static RAM
needed to keep up with both the disk
mechanism and the bus interface.

® Read-ahead. A read that hits in the
cache can be satisfied “immediately,”
that is, in just the time needed for the
controller to detect the hit and send the
data back across the bus. This is usually
much quicker than seeking to the data
and reading it off the disk, so most mod-
ern SCSI disks provide some form of
read caching. The most common form is
read-ahead — actively retrieving and
caching data that the disk expects the
host to request momentarily.

As we will show, read caching turns
out to be very important when it comes
to modeling a disk drive, but it is one of
the least well specified areas of disk
system behavior. For example, a read

that partially hits in the cache may be
partially serviced by the cache (with
only the noncached portion being read
from disk), or it may simply bypass the
cache altogether. Very large read
requests may always bypass the cache.
Once a block has been read from the
cache, some controllers discard it; oth-
ers keep it in case a subsequent read is
directed to the same block.

Some early disk drives with caches
did on-arrival read-ahead to minimize
rotation latency for whole-track trans-
fers; as soon as the head arrived at the
relevant track, the drive started reading
into its cache. At the end of one revolu-
tion, the full track’s worth of data had
been read, and this could then be sent
to the host without waiting for the data
after the logical start point to be
reread. (This is sometimes — rather
unfortunately — called a “zero-latency
read” and is also why disk cache mem-
ory is often called a track buffer.) As
tracks get longer but request sizes do
not, on-arrival caching brings less bene-
fit; for example, with 8-Kbyte accesses
to a disk with 32-Kbyte tracks, the max-
imum benefit is only 25 percent of a
rotation time.

On-arrival caching has been largely
supplanted by simple read-ahead in
which the disk continues to read where

Figure 2. Overlap of bus phases and mechanism activity. The low-level details of bus arbitration and selection have been
omitted for simplicity.

March 1994

21

the last host request left off. This
proves to be optimal for sequential
reads and allows them to proceed at the
full disk bandwidth. (Without read-
ahead, two back-to-back reads would
be delayed by almost a full revolution
because the disk and host processing
time for initiating the second read
request would be larger than the inter-
sector gap.) Even here there is a policy
choice: Should the read-ahead be
aggressive, crossing track and cylinder
boundaries, or should it stop when the
end of the track is reached? Aggressive
read-ahead is optimal for sequential
access, but it degrades random accesses
because head and track switches typi-
cally cannot be aborted once initiated,
so an unrelated request that arrives
while the switch is in progress can be
delayed.

A single read-ahead cache can pro-
vide effective support for only a single
sequential read stream. If two or more
sequential read streams are interleaved,
the result is no benefit at all. This can
be remedied by segmenting the cache
so that several unrelated data items can
be cached. For example, a 256-Kbyte
cache might be split into eight separate
32-Kbyte cache segments by appropri-
ate configuration commands to the disk
controller.

® Write caching. In most disk drives,
the cache is volatile, losing its contents
if power to the drive is lost. To perform
write caching and prevent data loss, this
kind of cache must be managed care-
fully. One technique is immediate
reporting, which the HP-UX file system
uses to allow back-to-back writes for
user data. It allows selected writes to
the disk to be reported as complete as
soon as they are written into the disk’s
cache. Individual writes can be flagged
“must not be immediate-reported”;
otherwise, a write is immediately
reported if it is the first write since a
read or a sequential extension of the
last write. This technique optimizes a
particularly common case — large
writes that the file system has split into
consecutive blocks. To protect itself
from power failures, the file system dis-
ables immediate reporting on writes to
metadata describing the disk layout.
Combining immediate reporting with
read-ahead means that sequential data
can be written and read from adjacent
disk blocks at the disk’s full throughput.

Volatile write-cache problems go

22

away if the disk’s cache memory can be
made nonvolatile. One technique is
battery-backed RAM, since a lithium
cell can provide 10-year retention. Thus
equipped, the disk drive is free to
accept all the write requests that will fit
in its buffer and acknowledge them all
immediately. In addition to the reduced
latency for write requests, two through-
put benefits also result: (1) Data in a
write buffer are often overwritten in
place, reducing the amount of data that
must be written to the mechanism, and
(2) the large number of stored writes
makes it possible for the controller to
schedule them in near-optimal fashion,
so that each takes less time to perform.
These issues are discussed in more
detail elsewhere.?

Simulation is used
because disk drives
cannot be
accurately modeled
analytically.

As with read caching, there are sev-
eral possible policies for handling write
requests that hit data previously written
into the disk’s cache. Without non-
volatile memory, the safest solution is
to delay such writes until the first copy
has been written to disk. Data in the
write cache must also be scanned for
read hits; in this case, the buffered copy
must be treated as primary, since the
disk may not yet have been written to.

® Command queuing. With SCSI,
support for multiple outstanding
requests at a time is provided through a
mechanism called command queuing.
This allows the host to give the disk
controller several requests and let the
controller determine the best execution
order — subject to additional con-
straints provided by the host, such as
“do this one before any of the others
you already have.” Letting the disk
drive perform the sequencing gives it
the potential to do a better job by using
its detailed knowledge of the disk’s
rotation position.*>

Modeling disk
drives

With this understanding of the vari-
ous disk drive performance factors, we
are ready to model the behavior of the
drives we have just described. We
describe our models in sufficient detail
to quantify the relative importance of
the different components. That way a
conscious choice can be made as to how
much detail a disk drive performance
model needs for a particular applica-
tion. By selectively enabling various
features, we arrive at a model that
accurately imitates the behavior of a
real drive.

Related work. Disk drive models
have been used ever since disk drives
became available as storage devices.
Because of their nonlinear, state-
dependent behavior, disk drives cannot
be modeled analytically with any accu-
racy, so most work in this area uses
simulation. Nonetheless, the simplest
models merely assume a fixed time for
an /O, or they select times from a uni-
form distribution. The more elaborate
models acknowledge that a disk I/O has
separate seek, rotation, and transfer
times, but most fail to model these
components carefully. Consider, for
example, that

eseek times are often modeled as a
linear function of seek distance,
producing poor results for smaller
seeks, which are the most common;

¢ uniform distributions are used for
the rotational latency, although
they are inappropriate for noninde-
pendent requests, which are fre-
quent;

* media transfer times are ignored or
modeled as a fixed constant depen-
dent on transfer size; and

*bus contention is often ignored
when multiple devices are con-
nected to the same bus.

Some previously described work?9-8
used more detailed models that
avoided many of the limitations
described above. These models simu-
lated axial and rotational head posi-
tions, allowing the seek, rotation, and
transfer times to be computed instead
of drawn from a distribution. This arti-
cle is an extension of simulation work
described earlier.?

COMPUTER

Table 1. Characteristics of the two disk drives analyzed in this article.

Formatted Rotational Average Host Interconnect
Disk Type Capacity Cylinders Size Speed 8KB access Type Max Speed
HP C2200A 335MB 1,449 5.25" 4,002 rpm 33.6ms HP-IB 1.2 MBps
HP 97560 1.3 GB 1,935 5.25" 4,002 rpm 22.8 ms SCSI-2 10 MBps

The simulator. We built our event-
based simulator in C++ using a version
of the AT&T tasking library’ modified
locally to support time as a double
type rather than a long type. The task-
ing library provides a simple but effec-
tive simulation environment. In it,
tasks represent independent units of
activity; when they call delay(time),
the simulated time advances. A task
can also wait for certain low-level
events; it is easy to construct a variety
of synchronization mechanisms on top
of these primitives. The basic ideas are
readily applicable to other simulation
environments.

We model a disk drive as two tasks
and some additional control structures
(Figure 3). One task models the mecha-
nism, including the head and platter
(rotation) positions. This task accepts
requests of the form “read this much
from here” and “seek to there” and
executes them one at a time. It also
handles the data layout mapping
between logical blocks and physical
sectors. A second task, the direct mem-
ory access engine (DMA engine), mod-
els the SCSI bus interface and its trans-
fer engine. This task accepts requests of
the form “transfer this request between
the host and the disk” and handles
them one at a time. A cache object
buffers requests between the two tasks
and is used in a classic producer-con-
sumer style to manage the asyn-
chronous interactions between the bus
interface and the disk mechanism tasks.

The disk drive model fits into a
larger system that has items for repre-
senting the SCSI bus itself (a
semaphore, so that only one device can
use the bus at a time), the host inter-
face, synthetic and trace-driven work-
load generator tasks, and a range of
statistics-gathering and -reporting tools.

The disk-related portions of our sim-
ulation system consist of about 5,800
lines of commented C++ code. There
are also around 7,000 lines of other
infrastructure. The simulator can pro-

March 1994

Disk

mechanism

task

Disk
controlier
data
structures
and code

"State-of-the-disk"
data structures _J

Figure 3. Simulation model structure for a single disk drive.

cess about 2,000 I/Os per second on an
HP9000 Series 800 Model H50 system,
which has a 96-MHz PA-RISC 7100
processor. This allows about 1 million
requests to be serviced in approxi-
mately 10 minutes.

Traces. For this study, we selected
representative week-long samples
from a longer trace series of HP-UX
(Unix) computer systems. The systems
and the traces have been described in
much greater detail elsewhere.?

For each request, the traces
included data such as start and finish
times with a granularity of 1 microsec-
ond, disk address and transfer length,
flags such as read/write, and whether
the request was marked synchronous
or not by the file system. The start
time corresponds to the moment when

the disk driver gives the request to the
disk, and the finish time corresponds
to when the “request completed”
interrupt fires. The results we present
here do not include time spent queued
in the disk driver.

Table 1 describes the disks we sin-
gled out for analysis. Since our pur-
pose is to show how the different com-
ponents of a disk drive model
contribute to its accuracy, we selected
a noncaching disk drive (the HP
C2200A19) as our first example so that
the cache would not interfere with our
analysis of the disk mechanism itself.
Later we use the HP 97560 disk drive'l
to show the effects of adding caching.
The HP C2200A has an HP-IB (IEEE-
488) bus instead of a SCSI interface.
From a modeling perspective, the only
major difference is that the HP-IB bus

23

08

06 | =' /

04

Fraction of I/Os

02 | /

s

.
Real

Model ---- |

L " . : L L s

0 5 10 15 20 25 30
Time (ms)

(a) Trivial model: constant, fixed time for each I/O.

09 |
< 08 |
07
0
4 o 06t
5
5 05
5
1 L 04 r
03
Real -----
Fixed 20ms ---- 1 02 +
Fixed mean o1
Fixed 30ms T
i 1 i o 1 —"/
3 40 45 50 0 5 10

15 20 25 30 35 40 45 50
Time (ms)

(b) Transfer time proportional to I/O size; seek time linear in
distance; random rotation time in interval [0, rotation time).

Mean Demerit Mean Demerit
Fixed 20 ms 20.00 ms 103 ms 41% Simulation 22.08 + 0.08 ms 37 ms 15%
Fixed 30 ms 30.00 ms 10.2 ms 40%
Mean 2535ms 8.9 ms 35%

Figure 4. /O time distributions for four models of the C2200A. The real disk drive has 3 mean I/O time of 25.36 = 0.09 ms.

is slower than the disk drive mecha-
nism; SCSI buses are usually faster.
This tends to emphasize the importance
of bus-related effects, as we will see.

Evaluation. For comparison. we need
a metric to evaluate the models. A sim-
ple mean execution time for a request is
of some value in calibrating a model to
the real world, though it provides little
differentiation between models. Instead,
we plot the time distribution curves for
the real drive and the model output and
use the root mean square of the horizon-
tal distance between these two curves as
our metric. We call this the demerit fig-
ure of the model and present it in both
absolute terms (as a difference in mil-
liseconds) and relative terms (as a per-
centage of the mean I/O time). The real
trace has a demertit figure of zero — that
is, it matches itself exactly.

We encourage other researchers
using disk drive models to publish their
demerit figures (and preferably the cal-
ibration curves). It is important to use a
test workload similar to the kind of
data one wishes to analyze. For exam-
ple, a synthetic random I/O load is of
little use in calibrating a model that is

24

being used for workloads with a great
many sequential data accesses.

We obtained the parameters for our
models from the manufacturer’s speci-
fications, by performing curve fitting
against the traces, and by direct mea-
surement on the disk drives them-
selves.

No modeling. The simplest possible
“mode]” uses a constant, fixed time for
each 1/0. Figure 4a plots two typical
values from the literature (20 ms and 30
ms). together with the actual mean /O
time for the week's traced data. This
model is not good. Even using the
mean l/O time rather than a fixed esti-
mate results in a demerit factor that is
35 percent of the average 1/O time.

A simple model. To do better
requires remembering state informa-
tion between requests and modeling
the effect of an I/O’s length. A straight-
forward model that does this has the
following combination of features:

*a seek time that is linear with the
distance, using the single-cylinder
and full-stroke seek times pub-

lished in the disk drive specification
(see Figure 5).

*no head-settle effects or head-
switching costs,

*a rotational delay drawn from a
uniform distribution over the inter-
val [0, rotation time),

* a fixed controller overhead. and

ea transfer time linear with the
length of the request. (There is an
asymmetry in transfer rates across
the HP-IB bus: Reads run at 1
MBps, writes at 1.2 MBps. On the
C2200A, the media transfer rate of
1.9 MBps is faster than the HP-IB
bus, so bus speed dominates.)

Figure 4b shows how this new model
fares. We are now at a demerit of only
15 percent of a mean I/O time. This is
better, but the demerit itself is still two
to three times larger than many of the
effects that I/O system designers wish
to investigate.

Modeling head-positioning effects. The
previous model used a seek time that was
a linear function of distance. However,
this is not a particularly good match, as
Figure 5 shows. The mean difference

COMPUTER

09 .- .
08 Ry B

07 +

06 A7 d
05 | S/ 1

04 | 7 q

Fraction of I/Os

03) /
02 | 2 4
/ Real — — |
a Model ----
o 1 A 1 1 1 1 1 L 1
0 5 10 15 20 25 30 35 40 45 50
Time (ms)

01

(c) Adds measured seek-time profile; includes head-switch
time,

Demerit

1.6 ms 6.2%

Mean

24.31 + 0.08 ms

Simulation

09

08

07 |

06

05

Fraction of I/Os

04
03

02 |

Real

Model ----

0 e L " L . L

0 5 10 15 20 25 30 35 40 45 50
Time (ms)

(d) Final model; includes rotational position modeling and
detailed disk data layout.

Demerit

066ms 2.6%

Mean

25.49 + 0.09 ms

Simulation

Seek time (milliseconds)

200 400 600 800 1000 1200
Seek distance (cylinders)

1400

Seek distance Seek time (ms)

3.45 + 0.597Vd
108 +0.012d

<616 cylinders
2616 cylinders

Figure 5. The graph displays the measured-seek-time-versus-
distance curve for the C2200A and a linear interpolation
between the manufacturer’s published single-cylinder and
full-stroke seek times. The accompanying table shows the
formula we used to model the real curve.

March 1994

between the linear seek model and the real one is 2.66 ms.
which is a 9 percent error by itself. The table in Figure 5
describes the model we used to approximate the measured
seek-time profile for this disk drive. Computing the better
model is trivial — a six-line rather than a single-line calculation.

Since we were improving our positioning calculations, we
also took the opportunity to model the costs of head and track
switching. This was achieved by determining which track and
cylinder the request started on and where it ended, and then
adding a fixed cost of 2.5 ms for each head and track switch
needed to get from the start of the request to its end. Figure
4c¢ shows that the demerit figure has more than halved to 6.2
percent of a mean I/O time.

Modeling rotation position. Only two important perfor-
mance components are left to model on the C2200A:
detailed rotational latency and spare-sector placement. By
keeping track of the rotational position of the disk, we can
explicitly calculate the rotational latency rather than just
drawing it from a uniform distribution. This is done by calcu-
lating how many times the disk would have revolved since
the start of the simulation. assuming it was spinning at
exactly its nominally rated speed. The C2200A uses track
and cylinder skewing and sector-based sparing with one
spare sector per track. This needs to be accounted for in
mapping logical blocks to the physical sectors.

Adding all these factors results in the data shown in
Figure 4d. This is a good match. with the model fitting the
real disk drive to within 2.6 percent. Table 2 lists all the
parameters used in this final model.

R
w

Table 2. Final model parameters for the HP C2200A and the HP 97560.

Parameter HP C2200A HP 97560
Sector size 256 bytes 512 bytes
Cylinders 1,449 1,962
Tracks per cylinder 8 19
Data sectors per track 113 7 *The HP C2200A also does track sparing, but the
Numb £ 1 1 spare regions are at the beginning and end of the
umber of zones data region, so they have no effect on simulation
Track skew 34 sectors 8 sectors performance. The HP C2200A has one spare sector
Cylinder skew 43 sectors 18 sectors at the end of each track (giving it 114 sectors per
Revolution speed 4,002 RPM 4,002 RPM track).
Controller interface HP-1B SCSLII **The HP 97560 does track sparing and has dedi-
1.1 2.2 ms cated sparing regions embedded in the data area.
gom;ollzr reids 1 ms 29 The table below shows where the three data regions
verhead writes -1 m§ -£ M are located physically on the HP 97560 disk, using
the format “cylinder/track” to indicate boundaries
_ short(ms) 3.45+0.597Vd 324+ 0.400Vd in the physical sector space of the disk. This disk
Seek time long (ms) 10.8 +0.0124 8.00 + 0.0084 has 1,962 physical cylinders, but only 1,935 of these
boundary d=616 d =383 are used to store data; the rest are spares.
Track switch time 2.5 ms 1.6 ms Region 0 1 2
Read fence size 8 KB 64 KB
Sparing type sector” track™ Start 1/4 654/0 1,308/0
Disk buffer cache size 32KB 128 KB End 646/3 1,298/18 1,952/18

Modeling data caching. In the discus-
sion so far we have used the C2200A
disk drive because it has no buffer
cache. When a cache is added to a disk
drive, however, complications can arise.
This is shown in Figure 6a, where a
model incorporating all the features
described so far is used to simulate an
HP 97560 SCSI disk drive that uses
both read-ahead and immediate report-
ing. The large disparity at small com-
pletion times is due to the caching,
since about 50 percent of the requests
are completed in 3 ms or less. Clearly,
caching needs to be modeled if we are
to get results closely matching the real
disk drive. A demerit of 112 percent is
not acceptable!

We added aggressive read-ahead and
immediate reporting to the model, as
described in the section “Caching of
requests.” This gave the results shown
in Figure 6b. We consider this quite a
good match, since the demerit is now
only 5.7 percent of the mean I/O time;
and since this mean is only half that of
the C2200A, the absolute value of the
error is comparable.

Two major remaining components
can be modeled more accurately: (1)
the actual bus speeds achieved in a par-

26

ticular system (these may be less than
the drive’s rated speed if the host 1/O
controller imposes a lower rate), and
(2) the detailed disk drive controller
overheads, which are frequently a com-
bination of interactions between the
previous request and the current one;
these overheads also depend on the
size of the request. Modeling at this
level of detail requires heroic efforts,
such as applying logic analyzers to
SCSI buses. Bruce Worthington and
Greg Ganger at the University of
Michigan took this approach and man-
aged to fine-tune the controller-over-
head and bus-transfer components of a
model similar to ours. They achieved
demerit figures of 0.4 to 1.9 percent for
an HP C2247 disk drive.!?

Model summary. Table 3 summa-
rizes the different models and how well
they did; at the bottom we include a
line for the University of Michigan
model also. Clearly, the full model is
necessary if a good match is required.
Since it is not particularly onerous to
implement, we encourage others to
adopt it. Our full model includes the
following details (parameters are pro-
vided in Table 2):

*The host I/O device driver: the
CPU costs for executing it, and its
queuing strategy.

* The SCSI bus, including bus con-
tention effects.

* Disk controller effects: fixed con-
troller overhead, SCSI bus discon-
nects during mechanism delays, and
overlapped bus transfers and mech-
anism activity.

* Disk buffer cache, including read-
ahead, write-behind (immediate
reporting), and producer-consumer
interlocks between the mechanism
and bus transfers.

*Data layout model: reserved
sparing areas, including both
sector- and track-based models,
zoning, and track and cylinder
skew.

*Head movement effects: a seek-
time curve derived from measure-
ments on the real disks; settle time,
with different values for read and
write; head-switch time; and rota-
tion latency.

As with any model, we chose to
ignore some things. For example, we do
not believe it worthwhile to try to
model soft-error retries and the effects

COMPUTER

Fraction of 1/0s

04 + |

oz | | p

! s i 1 1 1 1

s

09

07

06

05 [

Fraction of I/Os

04 | R(

03 |

Real
Model ----

L n 0 A

01 - g

Real
Model

" L " L L L L

25 30
Time (ms)

C2200A model.

Mean

35

(a) Basic model: includes all of the features in the best

40 45 50] 5

Demerit

(b) Adding caching: read-ahead and immediate reporting.

Mean

15 20 25 30 35 40 45 5
Time {ms)

Demerit

Simulation 17.51 + 0.02 ms

11.7 ms

112% Simulation

10.92 + 0.03 ms

0.60 ms 5.7%

Figure 6. Models for the HP 97560. The real disk had a mean /O time of 10.47 = 0.03 ms.

of individual spared sectors or tracks.
Likewise, other features (such as a disk
drive’s sparing policy) are not in them-
selves very important, although an
accurate understanding of the layout
effects of sparing is necessary to model
rotational positioning effects well.
A drive is essential for obtaining

good simulation results from
/O studies. Failure to model disk drive
behavior can result in quantitative —
and in extreme cases, qualitative —
errors in an analysis. Careful modeling
is neither too difficult nor too costly.
We have provided data that enables
designers to quantitatively determine
the benefits to be gained from investing
effort in a disk drive model.

By far the most important feature to
model is the data-caching characteris-
tics of the disk (112 percent relative
demerit if this is ignored). The next most
important features to get right are the
data transfer model, including overlaps
between mechanism activity and the bus
transfers (20 percent demerit), and the
seek-time and head-switching costs (9

percent demerit). Although in our eval-
uation of the C2200A the transfer model

n accurate model of a disk

March 1994

Table 3. Performance figures for the models of three disk drives show greater
accuracy as features are added to the model.

Feature Demerit Disk Type
Constant mean time 8.9 ms 35%

Basic model 3.7 ms 15% HP C2200A
Add head positioning 1.3 ms 6%

Add rotation position 0.5 ms 3%

No caching 11.7 ms 112% HP 97560
Add caching 0.6 ms 6%

Controller costs ~0.2 ms 1% HP C2247

had a greater effect than the positioning
model, the relative importance will
probably be reversed for SCSI drives
because there the bus is generally faster
than the disk mechanism.

Finally, modeling the rotational posi-
tion and detailed data layout improved
model accuracy by a further factor of
nearly two. Modeling rotational posi-
tion accurately is important for systems
that emphasize sequential transfers,
which modern file systems are becom-
ing increasingly adept at doing.

Even a good model needs careful cali-
bration and tuning. For example, some of
the vatues we used to get a good fit in our
models differ from the manufacturer’s
published specifications. In addition, we
did not have space here to present the
quantitative effects of modeling zoning
(although our model handles it). These
features and others may become particu-
larly important when a workload has
large data transfers.

We plan to use our refined disk drive
simulation model to explore a variety

27

of different I/0 designs and policy
choies at host and disk drive levels. We
hope to make the source code of our
model available to interested
researchers later this year, together
with calibrated model parameters for a
longer list of disk drive types than we
have space to describe here. B

Acknowledgments

Pei Cao contributed greatly to the simula-
tor of which our disk model is a part, and
Marvin Keshner provided information on
several of the underlying storage technology
trends. Tim Sullivan and Patricia Jacobson
provided helpful feedback on earlier drafts
of this article. This work was performed as
part of the DataMesh research project at
Hewlett-Packard Laboratories.

References

1. D.A. Patterson and J.L. Hennessy,
Computer Architecture: A Quantitative
Approach, Morgan Kaufmann, San
Mateo, Calif., 1990.

2. C. Ruemmler and J. Wilkes, “Unix Disk
Access Patterns,” Proc. Winter 1993
Usenix Conf., Usenix, Sunset Beach,
Calif., Jan. 1993, pp. 405-420.

Hewlett-Packard Co., Boise, Idaho, HP
C2240 Series 3.5-Inch SCSI-2 Disk
Drive: Technical Reference Manual, part
number 5960-8346, 2nd ed., Apr. 1992.

M. Seltzer, P. Chen, and J. Ousterhout,
“Disk Scheduling Revisited,” Proc.
Winter 1990 Usenix Conf., Usenix, Sunset
Beach, Calif., Jan. 1990, pp. 313-323.

D.M. Jacobson and J. Wilkes, “Disk-
Scheduling Algorithms Based on
Rotational Position,” Tech. Report HPL-
CSP-91-7, Hewlett-Packard Laboratories,
Palo Alto, Calif., Feb. 1991.

C.A. Thekkath, J. Wilkes, and E.D.
Lazowska, “Techniques for File System
Simulation,” published simultaneously
as Tech. Reports HPL-92-131 and 92-09-
08, Hewlett-Packard Laboratories, Palo
Alto, Calif., and Dept. of Computer
Science and Eng., Univ. of Washington,
Seattle, Wash., Oct. 1992.

C. Ruemmler and J. Wilkes, “Disk
Shuffling,” Tech. Report HPL-91-156,
Hewlett-Packard Laboratories, Palo
Alto, Calif., Oct. 1991.

M. Holland and G.A. Gibson, “Parity
Declustering for Continuous Operation
in Redundant Disk Arrays,” Proc. Fifth
Int’l Conf. Architectural Support for
Programming Languages and Operating
Systems, published as a special issue of
Computer Architecutre News, Vol. 20,
1992, pp. 23-35.

COMPUTER SCIENCE
FACULTY POSITIONS AVAILABLE

Salem State College is seeking to diversify its Computer Science facuity by filling two potential
tenure track positions for the fall of 1994. For both positions, we prefer a person who enjoys men-
toring students and who has experience in and commitment to working in a multicultural, muiti-
ethnic environment with students of diverse backgrounds and learning styles. Contractual faculty
workload is twelve hours with three hours advising. Salaries are competitive, and commensurate
with education and experience.

Position A: Required qualifications include a terminal degree (Ph.D. or equivalent, ABD considered)
in Computer Science, or in a closely related area with substantial graduate-level coursework in
Computer Science; knowledge of Ada, C and UNIX; expertise in at least two of the following areas:
artificial intelligence, distributed computing, and communications; and experience teaching for-
mal Computer Science courses. Preferred qualifications include research and industrial experience
in the areas of system analysis, network design, computer organization and architecture, object-
oriented methodology.

Position B: Required qualifications include a terminal degree (Ph.D. or equivalent, ABD considered)
in Computer Science or a related area; knowledge of Ada and current programming methodology;
expertise in the areas of networks, data communication and system analysis; experience in develop-
ing and teaching computer iiteracy and introductory level Computer Science courses. Preferred
qualifications include experience in formal system design and specification; advanced study in
M.L.S. and/or related areas; extensive knowledge of current software, communication, C.A.D. and
graphics packages.

To apply, send letter of application specifying position for which you are applying, resume,
and names, addresses and telephone numbers of three references to: Office of Affirmative
Action, Salem State College, 352 Lafayette St., Salem, MA 01970.

It applying for more than one position at Salem State College, it separate p g
for each. Single applications for more than one position will not be considered.
Application review will begin immediately and continue until the position is filled. Position
is offered pending funding.

SALEM STATE COLLEGE IS AN EQUAL OPPORTUNITY/AFFIRMATIVE ACTION EMPLOYER.
PERSONS OF COLOR, WOMEN AND PERSONS WITH DISABILITIES ARE STRONGLY URGED
TO APPLY.

Salem State Coliege

9. Unix System V AT&T C++ Language

System Release 2.0, Selected Readings,
AT&T select code 307-144, 1989.

10. Hewlett-Packard Co., Boise, Idaho, HP
Series 6000 Disk Storage Systems
Owner’s Manual for Models 335H,
670H, and 670XP, part number C2200-
90901, Feb. 1990.

11. Hewlett-Packard Co., Boise, Idaho, HP
97556, 97558, and 97560 5.25-Inch SCSI
Disk Drives: Technical Reference
Manual, part number 5960-0115, June
1991.

12. B. Worthington, G. Ganger, and Y. Patt,
“Scheduling Algorithms for Modern
Disk Drives,” to be published in Proc.
ACM SIGMetrics Conf., May 1994.

Chris Ruemmler is a software engineer at
Hewlett-Packard, where he works in the
area of performance analysis. His technical
interests include architectural design, system
performance, and operating systems. He
graduated with BA and MS degrees in com-
puter science (1991 and 1993, respectively)
from the University of California at
Berkeley.

John Wilkes has worked since 1982 as a
researcher and project manager at Hewlett-
Packard Laboratories. His current research
interest is high-performance, high-availabil-
ity storage systems. He is also interested in
performance modeling, and interconnects
and resource management for scalable sys-
tems. He enjoys interacting with the aca-
demic research community. Wilkes gradu-
ated from the University of Cambridge with
BA and MA degrees in physics (1978 and
1980, respectively) and a Diploma and PhD
in computer science (1979 and 1984, respec-
tively).

Wilkes can be contacted at Hewlett-
Packard Laboratories, MS 1U13, 1501 Page
Mill Rd., Palo Alto, CA 94304-1126; e-mail,
wilkes@hpl.hp.com. Ruemmler’s address is
Hewlett-Packard Co., 19111 Pruneridge
Ave., MS 44UG, Cupertino, CA 95014;
e-mail, ruemmler@cup.hp.com.

COMPUTER

of different I/0 designs and policy
choies at host and disk drive levels. We
hope to make the source code of our
model available to interested
researchers later this year, together
with calibrated model parameters for a
longer list of disk drive types than we
have space to describe here. B

Acknowledgments

Pei Cao contributed greatly to the simula-
tor of which our disk model is a part, and
Marvin Keshner provided information on
several of the underlying storage technology
trends. Tim Sullivan and Patricia Jacobson
provided helpful feedback on earlier drafts
of this article. This work was performed as
part of the DataMesh research project at
Hewlett-Packard Laboratories.

References

1. D.A. Patterson and J.L. Hennessy,
Computer Architecture: A Quantitative
Approach, Morgan Kaufmann, San
Mateo, Calif., 1990.

2. C. Ruemmler and J. Wilkes, “Unix Disk
Access Patterns,” Proc. Winter 1993
Usenix Conf., Usenix, Sunset Beach,
Calif., Jan. 1993, pp. 405-420.

Hewlett-Packard Co., Boise, Idaho, HP
C2240 Series 3.5-Inch SCSI-2 Disk
Drive: Technical Reference Manual, part
number 5960-8346, 2nd ed., Apr. 1992.

M. Seltzer, P. Chen, and J. Ousterhout,
“Disk Scheduling Revisited,” Proc.
Winter 1990 Usenix Conf., Usenix, Sunset
Beach, Calif., Jan. 1990, pp. 313-323.

D.M. Jacobson and J. Wilkes, “Disk-
Scheduling Algorithms Based on
Rotational Position,” Tech. Report HPL-
CSP-91-7, Hewlett-Packard Laboratories,
Palo Alto, Calif., Feb. 1991.

C.A. Thekkath, J. Wilkes, and E.D.
Lazowska, “Techniques for File System
Simulation,” published simultaneously
as Tech. Reports HPL-92-131 and 92-09-
08, Hewlett-Packard Laboratories, Palo
Alto, Calif., and Dept. of Computer
Science and Eng., Univ. of Washington,
Seattle, Wash., Oct. 1992.

C. Ruemmler and J. Wilkes, “Disk
Shuffling,” Tech. Report HPL-91-156,
Hewlett-Packard Laboratories, Palo
Alto, Calif., Oct. 1991.

M. Holland and G.A. Gibson, “Parity
Declustering for Continuous Operation
in Redundant Disk Arrays,” Proc. Fifth
Int’l Conf. Architectural Support for
Programming Languages and Operating
Systems, published as a special issue of
Computer Architecutre News, Vol. 20,
1992, pp. 23-35.

COMPUTER SCIENCE
FACULTY POSITIONS AVAILABLE

Salem State College is seeking to diversify its Computer Science facuity by filling two potential
tenure track positions for the fall of 1994. For both positions, we prefer a person who enjoys men-
toring students and who has experience in and commitment to working in a multicultural, muiti-
ethnic environment with students of diverse backgrounds and learning styles. Contractual faculty
workload is twelve hours with three hours advising. Salaries are competitive, and commensurate
with education and experience.

Position A: Required qualifications include a terminal degree (Ph.D. or equivalent, ABD considered)
in Computer Science, or in a closely related area with substantial graduate-level coursework in
Computer Science; knowledge of Ada, C and UNIX; expertise in at least two of the following areas:
artificial intelligence, distributed computing, and communications; and experience teaching for-
mal Computer Science courses. Preferred qualifications include research and industrial experience
in the areas of system analysis, network design, computer organization and architecture, object-
oriented methodology.

Position B: Required qualifications include a terminal degree (Ph.D. or equivalent, ABD considered)
in Computer Science or a related area; knowledge of Ada and current programming methodology;
expertise in the areas of networks, data communication and system analysis; experience in develop-
ing and teaching computer iiteracy and introductory level Computer Science courses. Preferred
qualifications include experience in formal system design and specification; advanced study in
M.L.S. and/or related areas; extensive knowledge of current software, communication, C.A.D. and
graphics packages.

To apply, send letter of application specifying position for which you are applying, resume,
and names, addresses and telephone numbers of three references to: Office of Affirmative
Action, Salem State College, 352 Lafayette St., Salem, MA 01970.

It applying for more than one position at Salem State College, it separate p g
for each. Single applications for more than one position will not be considered.
Application review will begin immediately and continue until the position is filled. Position
is offered pending funding.

SALEM STATE COLLEGE IS AN EQUAL OPPORTUNITY/AFFIRMATIVE ACTION EMPLOYER.
PERSONS OF COLOR, WOMEN AND PERSONS WITH DISABILITIES ARE STRONGLY URGED
TO APPLY.

Salem State Coliege

9. Unix System V AT&T C++ Language

System Release 2.0, Selected Readings,
AT&T select code 307-144, 1989.

10. Hewlett-Packard Co., Boise, Idaho, HP
Series 6000 Disk Storage Systems
Owner’s Manual for Models 335H,
670H, and 670XP, part number C2200-
90901, Feb. 1990.

11. Hewlett-Packard Co., Boise, Idaho, HP
97556, 97558, and 97560 5.25-Inch SCSI
Disk Drives: Technical Reference
Manual, part number 5960-0115, June
1991.

12. B. Worthington, G. Ganger, and Y. Patt,
“Scheduling Algorithms for Modern
Disk Drives,” to be published in Proc.
ACM SIGMetrics Conf., May 1994.

Chris Ruemmler is a software engineer at
Hewlett-Packard, where he works in the
area of performance analysis. His technical
interests include architectural design, system
performance, and operating systems. He
graduated with BA and MS degrees in com-
puter science (1991 and 1993, respectively)
from the University of California at
Berkeley.

John Wilkes has worked since 1982 as a
researcher and project manager at Hewlett-
Packard Laboratories. His current research
interest is high-performance, high-availabil-
ity storage systems. He is also interested in
performance modeling, and interconnects
and resource management for scalable sys-
tems. He enjoys interacting with the aca-
demic research community. Wilkes gradu-
ated from the University of Cambridge with
BA and MA degrees in physics (1978 and
1980, respectively) and a Diploma and PhD
in computer science (1979 and 1984, respec-
tively).

Wilkes can be contacted at Hewlett-
Packard Laboratories, MS 1U13, 1501 Page
Mill Rd., Palo Alto, CA 94304-1126; e-mail,
wilkes@hpl.hp.com. Ruemmler’s address is
Hewlett-Packard Co., 19111 Pruneridge
Ave., MS 44UG, Cupertino, CA 95014;
e-mail, ruemmler@cup.hp.com.

COMPUTER

