
LogP: Towards a Realistic Model of Parallel Computation

David Culler, Richard IQ@ David Patterson,

Abhijit Sahay, Klaus Erik Schauser, Eunice Santos,

Ramesh Subramonian, and Thorsten von Eicken

Computer Science Division,
University of cal~ornia, Berkeley

.Abstract
A vast body of theoretical research hea focused either on overly
SimpKStiC models of parallel computation, notably the PRAM or
overly specific models that have few representatives in the real

world. Both kinds of models encourage exploitation of formal

loopholes, rather than rewarding development of techrdques that

yield performance across a range of current and future parallel

machines. This paper offers a new parallel machine model, called

lLogP, that reflects the critical technology trends underlying parallel

computers. It is intended to serve as a basis for developing fas~

portable parallel algorithms and to offer guidelines to machme

designers. Such a model must strike a balance between detail and

simplicity in order to reveal important bottlenecks without making

analysis of interesting problems intractable. The model is based on

four parameters that specify abstractly the computing bandwidth,

the communication bandwidth, the communication delay, and the

efficiency of couplimg communication and computation. Portable

parallel algorithms typically adapt to the machine configuration, in

Terms of these parameters. The utility of the model is demonstrated

through examples that are implemented on the CM-5.

Keywords: massively parallel processors, parallel models, com-

plexity analysis, parallel algorithms, PRAM

1 Introduction

(Our goal is to develop a model of parallel computation that will

serve as a basis for the design and analysis of fss~ portable parallel

algorithms, i.e., algorithms that can be implemented effectively

on a wide variety of current and future parallel machines. If we

look at the body of parallel algorithms developed under current

parallel models, many cart be classified as impractical in that they

exploit artificial factors not present in arty reasonable machine,

such as zero communication delay or infinite bandwidth. Others

can be classified as overly specialized, in that they are tailored

to the idiosyncrasies of a single machine, such as a particular

irttercomect topology. The most widely used parallel model, the

PRAM[13], is unrealistic because it assumes that all processors

work synchronously and that interprocessor communication is free.

*Also affiliated with International Computer Science Institute, Berkeley.

Permission to copy without fee all or part of this meterial is

granted provided thet the copies are not made or distributed for

direct commercial sdvantage, the ACM copyright notice snd the

title of the publication and its date sppear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy othsrwise, or to republish, requires a fee

and/or specific permission.

4th ACM PPOPP,51931CA,USA
@ 1993 ACM o-89791 -589 -5/93 /0005 /OOCIl . ..$1.50

Surprisingly fast algorithms can be developed by exploiting these

loopholes, but in many cases the algorithms perform poorly under

more realiitic assumptions [28]. Several variations on the PRAM

have attempted to identify restrictions that would make it more

practical while preserving much of its simplicity [1, 2, 14, 19,

23, 24]. The bulk-synchronous parallel model (IMP) developed

by Valiant[30] attempts to bridge theory and practice with a more

radical departure from the PRAM. It allows processors to work

asynchronously and models latency and limited bandwidth, yet

requires few machine parameters as long as a certain programming

methodology is followed. We used the BSP as a starting point

in our search for a parallel model that would be realistic, yet

simple enough to be used to design algorithms that work predictably

well over a wide range of machines. The model should allow

the algorithm designer to address key performance issues without

specifying unnecessary detail. It should allow machine designers

to give a concise performance summary of their machine against

which algorithms can be evaluated,

Historically, it has been difficult to develop a reasonable ab-

straction of parallel machmes because the machines exhibited such

a diversity of structure. However, technological factors are now

forcing a convergence towards systems formed by a collection

of essentially complete computers comected by a communication

network (Figure 1), This convergence is reflected in our ImgP

model which addresses significant common issues while suppress-

ing machine specific ones such as network topology and routing

algorithm. The LogP model characterizes a parallel machine by the

number of processors(~), the communication bandwidth(g), the

communication delay(L), and the communication overhead(o), In

our approach, a good algorithm embodies a strategy for adapting to

different machines, in terms of these parameters.

‘ MicroProcessor
.

MicroProcessor
Ow

E!EEEl
.

Figure 1: This oqanization charactenzesmost massivelyparsllel pmccssors

(MPPs). Correrrt commercial examples include the fntel iPSC,”Delts and

Paragon, ‘l%inking Machines CM-5, Ncube, CIZy T3D, and Tmsputer-

based MPPs such as the Me&o Computing Surface or the Parsytec GC ‘fhis

structurz describes essentially all of the current “research machines” as well.

1

We believe that the common hardware organization described

in Figure 1 will dominate commercial MPPs at least for the rest

of this decade, for reasons d~cussed in Section 2 of this paper.

In Section 3 we develop the LogP model, which captures the

important characteristics of this organization. Section 4 puts the

model to work, d~cussing the process of algorithm design in

the context of the model and presenting examples that show the

importance of the various communication aspects. Implementation

of these algorithms on the CM-5 provides preliminary data towards

validating the model. Section 5 presents communication networks

in more detail and examines how closely our model corresponds

to reality on current machines. Section 6 compares our model

to various existing parallel models. Finally, Section 7 addresses

several concerns that might arise regarding the utility of this model

as a basis for further study.

2 Technological Motivations

The possibility of achieving revolutionary levels of performance

has led parallel machine designers to explore a variety of exotic

machine structures and implementation technologies over the past

~ years. Generally, these machines have performed certain

operations very well and others very poorly, frustrating attempts to

formulate a simple abstxact model of their performance character-

istics. However, technological factors are forcing a convergence

towards systems with a familiar appearance; a collection of es-

sentially complete computers, each consisting of a microprocessor,

cache memory, and sizable DRAM memory, connected by a robust

communication network. This convergence is likely to accelerate

in the future as physically small computers dominate more of the

computing market.

Microprocessor performance is advancing at a rate of 50 to

100% per year[17], as indicated by Figure 2. This tremendous

evolution comes at an equally astounding cost estimates of the cost

of developing the recent MIPS R4000 are 30 engineers for three

years, requiring about $30 million to develop the chip, another $10

million to fabricate i~ and one million hours of computer time for

sintulations[15]. This cost is borne by the extremely large market

for commodity urtiprocessors. To remain viable, parallel machines

must be on the same technology growth curve, with the added degree

of freedom being the number of processors in the system. The

effort needed to reach such high levels of performance combined

with the relatively low cost of purchasing such microprocessors

led Intel, Thinking Machines, Meiko, Convex, IBM and even Cray

Research to use off-the-shelf microprocessors in their new parallel

machines[5]. The technological opportunities suggest that parallel

machines in the 1990s and beyond are much more likely to aim

at thousands of 64-bit, off-the-shelf processors than at a million

custom 1-bit processors.

Memory capacity is increasing at a rate comparable te the

increase in capacity of DRAM chips: quadrupling in size every

three years[l 6]. Today’s personal computers typically use 8 MB

of memory and workstations use about 32 MB. By the turn of

the century the same number of DRAM chips will offer 64 times

the capacity of current machines. The access time falls very

slowly with each generation of DRAMs, so sophisticated cache

structures will be required in commodity uniprocessors to bridge the

difference between processor cycle times and memory access times.

Cache-like structures may be incorporated into the memory chips

themselves, as in emerging RAM-bus and synchronous DRAM

technology[l 71. Multiprocessors will need to incorporate state-

,~() ~p

160 + /
140

120

I

/

DEC

100
alpha

80
IBM

60
‘:y/ 7y.. ‘

. ----

, /HP 9000, .

~w’’’-’””
1987 1966 1989 1990 1991 1992

I
-... m.... lntwer ~FP I

Figure 2: Performance of stste-ef-the-art microprocessors over time.

Petionnanceis approxirnatelynumberof times faster than the VAX-1 lf180.

?he floating point SPEC benchmarks improved at about 97%per year since

1987, and integerSPEC benchmarks impmved at about 54%pcr year,

of-the-art memory systems to remain competitive.

Since dte parallel machine nodes are very similar to the core

of a workstation, the cost of a node is comparable to the cost

of a workstation. As the most expensive sttpercomputer costs

less than 25 M$ for the processors and memory, and since the

price of workstations have remained at about 5-10 K$, the largest

parallel machines will have a few thousand nodes. This economic

observation is valid today, with no vendor producing a system with

more than two thousand nodes.

Summarizing, we can expect that the nodes of parallel machines

of the 1990s will be capable of computing hundreds of Mflops and

capable of storing hundreds of megabytes. The number of such

nodes will not scale into the millions, so parallel algorithms will

need to be developed under the assumption of a large number of

data elements per processor. This has significant impact on the

kinds of algorithms that are effective in practice.

Network technology is advancing as well, but it is not driven by

the same volume market forces as microprocessors and memory.

While new media offer much higher network bandwidth, their

realizable performance is limited by the interface between the

network and the node. Currently, communication bandwidth

through that interface lags far behind internal processor memory

bandwidth. The lack of attention paid to the network interface in

current microprocessors also means that substantial time is lost on

each communication operation, regardless of programming style.

Although the interface is improving, processors are improving in

performance even faster, so we must assume that high [atency

and overhead of communication, as well as limited bandwidth will

continue to be problems.

There appears to be no consensus emerging on interconnection

topology: the networks of new commercial machmes are typically

different from their predecessors and different horn each other.

Operating in the presence of network faults is becoming extremely

important as parallel machines go into production use, whtch

suggests that the physical intercomect on a single system will vary

over time to avoid broken components. Finally, adaptive routing

techniques are becoming increasingly practical. Thus, attempting

to exploit a specific network topology is likely to yield algorithms

that are not very robust in practice. An abstract view of the latency

2

and bandwidth properties of the network provides a framework for

adapting algorithms to the target machine configuration.

No single programming methodology is becoming clearly domi-

nart~ shared-memory, message-passing, and data parallel styles all

have significant popularity. Thus, the computational model should

wly regardless of programming g style. The technological factors

discussed above make this goal tractable as most recent parallel

machines support a range of programming styles using roughly

similar hardware mechanisms[3 1].

The essential message is cleac technological forces are leading

to massively parallel machines constructed from at most a few thou-

sand nodes, each containing a powerful processor and substantial

memory, intercosmected by networka with limited bandwidth and

significant latency. This renders both PRAM and network models

inappropriate as a foundation for algorithm development since they

do not accurately predict performance of programs on real com-

puters. Our conclusion is that a new model which captures the

technological reality more faithfully is needed.

3 LogP Model

Starting from the technological motivations discussed in the previ-

ous section, programming experience, and examination of popular

theoretical models, we have developed a model of a distributed-

memory multiprocessor in which processors communicate by point-

to-point messages. The model specifies the performance character-

istics of the interconnection network, but does not describe the

stmcture of the network.

The main parameters of the model are:

L,: an upper bound on the latency, or delay, incurred in commu-

nicating a message containing a word (or small number of

words) from its source module to its target module.

o: the overhead, defined as the length of time that a processor is

engaged in the transmission or reception of each message;

during this time, the processor cannot perform other opera-

tions.

g: the gap, detined as the minimum time interval between consec-

utive message transmissions or consecutive message recep-

tions at a processor. The reciprocal of g corresponds to the

available per-processor communication bandwidth.

1’: the number of processor/memory modules. We assume unit

time for local operations and call it a cycle.

Furthermore, it is assumed that the network haa ajnite capacity,

such that at most [L/gl messages can be in transit from any

processor or to any processor at any time. If a processor attempts

to transmit a message that would exceed this limig it stalls until the

message can be sent without exceeding the capacity limit.

The parameters L, o and g are measured as multiples of the

processor cycle. The model is asynchronous, i.e., processors work

asynchronously and the latency experienced by any message is

~pre~lc~ble> but is bounded above by ~ in the absence of stalls.
Because of variations in latency, the messages directed to a given

target module may not arrive in the same order as they are sent. The

basic model assumes that all messages are of a small size (a simple

extension deals with longer messages).

In analyzing an algorithm, the key metrics are the maximum time

and the maximum space used by any processor. hr order to be

considered correc~ an algorithm must produce correct results under

all interleavings of messages consistent with the upper bound of L

on latency. However, in estimating the running time of an algorithm,

we assume that each message incurs a latency of L.1

3.1 Discussion of parameters

‘Ilk particular choice of parameters represents a compromise

between faithfully capturing the execution characteristics of real

machines and providing a reasonable ffarnework for algorithm

design and analysis. No small set of parameters can describe ail

machines completely. On the other hand, analysis of interesting

algorithms is difficult with a large set of parameters. We believe

that LogP represents “the knee of the curve” in that additional detail

would seek to capture phenomena of modest impact while dropping

parameters would encourage algorithmic techniques that are not

well supported in practice.

We have resisted the temptation to provide a more detailed

model of the individual processors, such as cache size, and rely

on the existing body of knowledge in implementing fast sequential

algorithms on modem uniprocessor systems to fill the gap. An

implementation of a good parallel algorithm on a specific machine

will surely require a degree of tuning, but if the issues raised by the

level of detail embodied in L.ogP are not addressed, it would seem

that the algorithm design is incomplete.

Fortunately, the parameters are not equally important in all

situations; often it is possible to ignore one or more parameters

and work with a simpler model. For example, in algorithms

that communicate data infrequently, it is reasonable to ignore the

bandwidth and capacity limits. In some algorithms messages are

sent in long smearns which are pipeliied through the network, so

that message transmission time is dominated by the inter-message

gaps, and the latency may be disregarded. In some machmes the

overhead dominates the gap, so g can be eliminated. One convenient

approximation technique is to increase o to be as large as g, so g

can be ignored. ‘Ilk is conservative by at most a factor of two.

We hope that parallel architectures improve to a point where o

can be eliminated, but today this seems premature. More specific

rationale for the particular parameters and their role is provided in

the remainder of the paper.

3.2 Discouraged loopholes and rewarded

techniques

The LogP model eliminates a variety of loopholes that other models

permit. For example, many PRAM algorithms are excessively fine-

grained, since there is no penalty forinterprocessor communication.

Although the EREW PRAM penalizes data access contention at the

word level, it does not penalize contention at the module level.

The technique of multithreading is often suggested as a way

of masking latency. This technique assigns to each physical

processor the task of simulating several virtual processors; thus,

computation does not have to be suspended during the processing

of a remote request by one of the virtual processors. In practice,

this technique is limited by the available communication bandwidth

and by the overhead involved in context switching. We do not

model context switching overhead, but capture the other constraints

*There are certain anomalous situations in which reducing the latency of

certain messages actualty increases the running time of an algorithm. These

arise primarily when the compu~tional schedule is based on the order of

message arrival, rather lhan the information contained in the message.

3

Po ~; :./?. 1 9 1
“-... -*L,. of

‘“..,, .’ >..? .“””.-
‘s. ...

‘..,.L

%-

... .“.Q%......L
‘..

... -.’”’4
.

P5
0 , 9 1

0 ,. . . . 0 .’ ----- L

P6 “’..”’”4 “.’-”’=+

P7 P6 P4 P7 ..-
-

0 !s ‘1o ‘15 ’20 T/me

Figure 3: Optimal brvadcast tree for P = 8, L = 6, g = 4,0 = 2 (left) and the activi~ of eachprocessor overtime (right). 77senumbcrshown for each node
is the time at which it has received the datum and can begin sending it on. 7he last value is received at time 24.

realistically through the parameters o and g. Moreover the capacity

constraint allows multithreadmg to be employed only up to a limit

of L/g virtual processors. Under I..ogP, multithreadittg represents

a convenient tectilque which simplifies analysis, as long as these

constraints are me~ rather than a fundamental requirement[26, 30].

on the other hand, LogP encourages techniques that work well

in practice, such as coordinating the assignment of work with

data placement so as to reduce the communication bandwidth

requirement and the frequency of remote references. The model also

encourages the careful scheduling of computation and overlapping

of computation with communication, within the limits imposed

by network capacity. The limitation on network capacity also

encourages balanced communication patterns in which no processor

is flooded with incoming messages.

Although the model is stated in terms of primitive message

events, we do not assume that algorithms must be described in

terms of explicit message passing operations, such as send and

receive. Shared memory models are implemented on distributed

memory machines through an implicit exchange of messages[12].

Under LogP, reading a remote location requires time 2L + 40.

Prefetch operations, which initiate a read and continue, can be issued

every g cycles and cost 20 units of processing time. Some recent

machines migrate locations to local caches when they are referenced;

this would be addressed in algorithm analysis by adjusting which

references are remote.

3.3 Broadcast and Summation

As a concrete illustration of the role of various parameters of the

model, we sketch optimal algorithms for two simple problems:

broadcast and summation. The solutions are quite different from

those on the PRAM.

FirsL we consider the problem of broadcasting a single datum

from one processor to P – 1 others. The main idea is simple:

all processors that have received the datum transmit it as quickly

as possible, while ensuring that no processor receives more than

one message. The source of the broadcast begins transmitting the

datum at time O. The first datum enters the network at time o, takes

L cycles to arrive at the destination, and is received by the node at

time L +20. Meanwhile, the source will have initiated transmission

to other processors at time g, 2g, assuming g z o, each of which

acts as the root of a smaller broadcast tree. As indicated in Figure 3,

the optimal broadcast tree for p processors is unbalanced with the

fan-out at each node determined by the relative values of L, o, and

g. Observe that the processor overhead of successive transmissions

overlaps the delivery of previous messages. Nodes may experience

2A special caseof this algorithm with o = O and g = 1 appears in [4].

idle cycles at the end of the algorithm while the last few messages

are in transit.

To obtain an optimal algorithm for the summation of n input

values we fist consider how to sum as many vahres as possible

within a fixed amount of time T. This produces the communication

and computation schedule for the summation problem. The pattern

of communication among the processors again forms a Iree; in fac~

the tree has the same shape as an optimal broadcast tree[20]. Each

processor has the task of summing a set of the elements and then

(except for the root processor) transmitting the result to ita parent.

The elements to be summed by a processor consist of original inputs

stored in its memory, together with partial results received from its

children in the communication tree. To specify the algorithm, we

first determine the optimal schedule of communication eventa and

then determine the distribution of the initial inputs.

If T < L + 20, the optimal solution is to sum T + 1 vahtes
on a single processor, since there is not sufficient time to receive

data from another processor. Otherwise, the last step performed

by the root processor (at time T – 1) is to add a value it

has computed locally to a value it just received from another

processor. The remote processor must have sent the value at time

T – 1 – L – 20, and we assume recursively that it forms the

root of an optimal summation tree with this time bound. The

local value must have been produced at time T – 1 – o. Since

the root can receive a message every g cycles, ita children in the

communication tree should complete their summations at times

T–(20+L+l), T–(20+L+l+g), T–(20+L+l+2g),

The root performs g – o additions of local input values between

messages, as well as the local additions before it receives its first

message. This communication schedule must be modified by the

following consideration: since a processor invests o cycles in

receiving a partial sum from a child, all transmitted partial sums

must represent at least o additions. Based on this schedule, it

is straight-forward to determine the set of input values initially

assigned to each processor and the computation schedule. Notice

that the inputs are not equally distributed over processors. (T’he

algorithm is easily extended to handle the limitation of p processors

by pruning the cotrtmunication tree.)

The computation schedule for our summation algorithm can also

be represented as a tree with a node for each computation step.

Figure 4 shows the communication schedule for the processors and

the computational schedule for a processor and two of its children.

Each node is labeled with the time at which the step completes, the

wavy edges represent partial results transmitted between processors,

and the square boxes represent original inputs. The initial work for

each processor is represented by a linear chain of input-summing

4

Figure 4: Communication tree for optimal summing (Jeft) and computation schedulefora subset ofpmcessom (right)forT = 28, P = 8, L = 5, g = 4,0 = 2.

nodes. Unless the processor is a leaf of the communication tree,

it then repeatedly receives a value, adds it to its partial sum and

performs a chain of g – o – I input-summing nodes. Observe that

local computations overlap the delivery of incoming messages and

the processor reception overhead begins as soon as the message

arrives.

4 Algorithm Design

In the previous section, we stepped through the design of optimal

algorithms for extremely simple problems and explained the pa-

rameters of our model. We now consider more typical parallel

processing applications and show how the use of the LogP model

leads to efficient parallel algorithms in practice. In particular, we

observe that efficient parallel algorithms must pay attention to both

computational aspects (such as the total amount of work done and

load balance across processors) and communication aspects (such

as remote reference frequency and the communication schedule).

Thus, a good algorithm should co-ordinate work assignment with

data placemen~ provide a balanced communication schedule, and

overlap communication with processing.

4.1 Fast Fourier Transform

Our first example, the fast Fourier transform, illustrates these ideas

in a concrete setting. We discuss the key aspects of the algorithm

and then an implementation that achieves near peak performance

on the Thinking Machines CM-5. We focus on the “butterfly”

algorithm [8] for the discrete FIT problem, most easily described

in terms of its computation graph. The n-input (n a power of 2)

butterfly is a directed acyclic graph with n(log n + 1) nodes viewed

as n rows of (log n + 1) columns each. For O s r < n and

O s c < log n, the node (r, c) has directed edges to nodes (r, c + 1)

and (FC, c + 1) where ?. is obtained by complementing the (c + 1)-th

most significant bit in the binary representation of T. Figure 5 shows

art 8-irtput butterlly,

The nodes in column O are the problem inputs and those in

column log n represent the outputs of the computation. (T’he outputs

Columns —

o 1 2.3

go
al

I

2

3

4

5

6

7
*

remap

Figure 5: An 8-ioput butterfly with P = 2. Nodes assigned to processor O

under the hybrid layout are circled.

are in bit-reverse order, so for some applications an additional

rearrangement step is required.) Each non-input node represents

a complex operation, which we assume takes one unit of time.

Implementing the algorithm on a parallel computer corresponds to

laying out the nodes of the butterfly on its processors; the layout

determines the computational and communication schedules, much

as in the simple examples above.

4.1.1 Data placement and work assignment

There is a vast body of work on this structure as an interconnection

topology, as well as on efficient embeddmgs of the butterfly on

hypercubes, shuffle-exchange networks, etc. This has led many

researchers to feel that algorithms must be designed to match the

interconnection topology of the target machine. In real machines,

however, the n data inputs and then log n computation nodes must

be laid out across P processors and typically P << n. The nature

of this layou~ and the fact that each processor holds many data

elements has a profound effect on the communication structure, as

shown below.

A natural layout is to assign the first row of the butterfly to the

first processor, the second row to the second processor and so on.

We refer to this as the cyclic layout. Under this layou~ the first

log ~ columns of computation require only local data, whereas the

5

last log P columns require a remote reference for each node. An

alternative layout is to place the first ~ rows on the first processor,

the next # rows on the second processor, and so on. With this

blocked layou~ each of the nodes in the first log P cohumts requires

a remote datum for its computation, while the last log ~ columns

require only local data. Under either layou~ each processor spends

log n time computing and (g: + L) log P time communicating,

assuming g ~ 20.

Since the initial computation of the cyclic layout and the final

computation of the blocked layout are completely local, one is

led to consider hybrid layouts that are cyclic on the first log P

columns and blocked on the last log P. Indeed, switching from

cyclic to blocked layout at any column between the log P-th and the

log ~-th (assuming that n > Pz) leads to an algorithm which has

a single “all-to-all” communication step between two entirely local

computation phases. Figure 5 highlights the node assigmnent for

processor O for an 8-input FIT with P = 2 under the hybrid layout

remapping occurs between cohtmna 2 and 3.

The computational time for the hybrid layout is the same as that

for the simpler layouts, but the communication time is lower by a

factor of log P: each processor sends ~ messages to every other,
requiring o~y g($ — *) + L time. The total time is within a factor

of (1 + &) of optimal, showing that thk layout has the potential
for near-perfect speedup on large problem instances.

4.1.2 Communication schedule

The algorithm presented so far is incomplete because it does not

specify the communication schedule (the order in which messages

are sent and received) that achieves the stated time bound. Our

algorithm is a special case of the “layered” FIT algorithm proposed

in [24] and adapted for the BSP model[30]. These earlier models do

not emphasize the communication schedule: [24] has no bandwidth

limitations and hence no contention, whereas [30] places the

scheduling burden on the router which is assumed to be capable

of routing any balanced pattern in the desired amount of time.

A naive schedule would have each processor send data starting

with its first row and ending with its last row. Notice, that all

processors first send data to processor O, then all to processor 1,

and so on. All but L/g processors will stall on the first send and

then one will send to processor O every g cycles. A better schedule

is obtained by staggering the starting rows such that no contention
OCCUK: processor i starts with its ~ -th row, proceeds to the l~t

row, end wraps around.

4.1.3 Implementation of the FFT algorithm

To veri~ the prediction of the analysis, we implemented the

hybrid algorithm on a CM-5 multiprocessor? and measured the

performance of the three phases of the algorithm: (I) computation

with cyclic layott~ (II) data remapping, and (III) computation with

blocked layout. Figure 6 demonstrates the importance of the

communication schedule: the three curves show the computation

time and the communication times for the two communication

schedules. With the naive schedule, the remap takes more than

1.5 times as long as the computation, whereas with staggering it

sne CM-5 is a massively parsflel MIMD computer based on the Spare

processor. Each node consists of a 33 Mhz Spare RISC processor chip-set

(including FPU, MMU and 64 KByte direct-mapped write-through cache),

8 MBytes of 10CS1DRAM memory and a network interface. ‘f%e nodes

are interconnected in two identical disjoint incomplete fat trees, and a

broadcast/scan/prefix control network. The implementation does not use

the vector accelerators which are not available at the time of writing.

14

12

10

8

6

4

2

0

I /

Naive
Remap

Computation

Staggered

_+—------”Rem~

024681012 141818

FH pOilltS (Millions)

Figure 6: Execution times for IT% of vm”ous sizes on a 128 processor
CM-5. lke compute curve represents the time spent computing 10CSUY.

‘J3e bad remap curve shows the time spent remapping the data ftvm a

cyclic Jayout te a blocked layout ifa naive communication schedule is used.

‘he good remap curve shows the time for the same remapping} but with a

contcrrtion-fm communication schedule, which is en onfer of magnitude

fastrx ‘Rre X axis scale refers to the entire PPT size.

takes only ~th as long.

The two computation phases involve purely local operations

and are standard FFI’s. Figure 7 shows the computation rate

over a range of FIT sizes expressed in Mflops/processor. For

comparison, a CM-5’s Spare node achieves roughly 3.2 MFLOPS

on the Linpack benchmark. This example provides a convenient

comparison of the relative importance of cache effects, which we

have chosen to ignore, and communication balance, which other

models ignore. The drop in performance for the local FFT from

2.8 Mflops to 2.2 Mflops occurs when the size of the local FITs

exceeds cache capacity. (For large FFI’s, the cyclic phase involving

one large FIT suffers more cache interference than the blocked

phase which solves many small FFTs.) The implementation could

be refined to reduce the cache effects, but the improvement would

be small compared to the spcedup associated with improving the

communication schedule.

4.1.4 Quantitative analysis

The discussion so far suggests how the model may be used in a

qualitative sense to guide parallel algorithm design. The following

shows how the model can be used in a more quantitative manner to

3,

2.5- Phase Ill
.

!J2 Phaaa I
$,,5

a
s,

0.5

t
04 {

024661012 141616

FIT points (Millions)

Figure 7: Per processor computation rates for the two computation phases

of the PIT in Mtlops (millions of floating-point operations per second).

6

predict the execution time of an implementation of the algorithm.

From the computational performance in Figure 7 we can calibrate

the “cycle time” for the FFT as the time for the set of complex

multiply-adds of the butteriiy pritnkive. At an average of 2.2 Mflops

artd 10 floating-point operations per butterfly, a cycle corresponds to

4.5jLs, or 150 clock ticks (we use cycles to refer to the time unit in the

model and tickstorefer to the 33 Mhz hardwaxe clock). In previous

experiments on the CM-5[31] we have determined that o x 2ps

(0.44 cycles, 56 ticks) and, on an ttrdoaded network, L N 6ps

(1.3 cycles, 200 ticks). Furthermore, the bisection bandwidth4

is 5MB/s per processor for messages of 16 bytes of data and 4

bytes of address, so we take g to be 4ps(0.44 cycles, 56 ticks).

In addhion there is roughly 1ps(O.22 cycles, 28 ticks) of locaf

computation per data point to load/store values to/ffom memory.

Analysis of the staggered remap phase predicts the communication

time is ~ max(l ps + 20, g) + L. For these parameter values, the

transmission rate is limited by processing time and communication

overhead, rather than bandwidth. The remap phase is predicted to

increase rapidly to an asymptotic rate of 3 .2MB/s. The observed

performance is roughly 2MB/s for this phase, nearly half of the

available network bandwidth.

3.5

I ‘--------------------------------------

—.–––____ ––––_–_________@dided

3 ..- DoubkaNet

.. —..—.. —.._ .. —..—.. —.._ .. _.. _ .. _.. _ Naive
o I

0246810 12141616

FFT peinte (Millions)

Figure 8: Redicted and measumd communication rates expressed in

Mfsytcslsecond per processor for the staggered communication schedule.

77sestaggered schedule is thwmtically contention-free, but the asynchronous

execution of the pmceasosa causes some contention in psactice. ‘lhe

synchronized schedule pesfotms a bam’er synckmizstion periodically

(using a special hasdwam bam’er). ‘Rse double net schedule uses both data

networks, doubling the available network bandwidth.

The analysis does not predict the gradual performance drop for

large FITs. In realhy, processors execute asynchronously due

to cache effects, network collisions, etc. It appears that they

gradually drift out of sync during the remap phase, disturbing the

communication schedule. To reduce this effect we added a barrier

synchronizing all processors after every ~ messages. 5 Figure 8

shows that this eliminates the performance drop.

We can test the effect of reducing g by improving the implemen-

tation to use both fat-tree networks present in the machine, thereby

doubling the available network bandwidth. The result shown in

Figure 8 is that the performance increases by only 15% because the

network interface overhead (o) and the loop processing dominate.

4~e bisection bsndwidth is the minimum bandwidth through any cut of

the network that separates the set of processors into halves.
5For s~PlicitY, tie fiplemenmtion uses the hardware barri.r avaitable

on the CM-5. llte same effect could have been achieved using explicit

acknowledgement messages.

‘Ilk detailed quantitative analysis of the implementation shows

that the hybrid-layoutFFT algorithm is nearly optimal on the CM-5.

The computation phases are purely local and the communication

phase is overhead-limhed, thus the processors are 1009. busy all the

time (ignoring the insignificant L at the end of the communication

phase). Performance improvements in the implementation are

certainly possible, but without affecting the algorithm itself.

4.1.5 Overlapping communication with com-
putation

In future machines we expect architectural innovations in the

processor-network interface to significantly reduce the vahse of

o with respect to g. Algorithms for such machines could try

to overlap communication with computation in order to mask

communication time, as in the optimal summation example. If

o is small compared to g, each processor idles for g — 20 cycles

between successive transmissions during the remap phase. The

remap can be merged into the computation phases, as in the optimal

algorhhms[27]. The inhial portion of the remap is interleaved

with the pre-remap computation, while the final portions can be

interleaved with the post-remap computation. Unless g is extremely

large, ttds eliminates idliig of processors during remap.

4.2 LU Decomposition

We now discuss one other problem that has been carefully studied

on parallel machines and show how the LogP model motivates the

development of efficient algorithms for it. Here we provide only a

qualitative assessment of the key design issues. The long version

of this paper also contains a discussion of sorting and connected

components[9]. For details of the implementation of connected

components and analysis under the I..ogP model see [29].

Linear algebra primitives offer a dramatic example of the im-

portance of careful development of high performance parallel al-

gorithms. The widely used Linpack benchmark achieves greater

than 10 GFLOPS on recent parallel machmes. In this section we

examine LU decomposition, the core of the Linpack benchmark,

to show that the key ideas employed in high performance linear

algebra routines surface easily when the algorithm is examined in

terms of our model.

In LU decomposition using Gaussimt elimination, an n x n

non-singular matrix A is reduced in n – 1 elimination steps to

a unit-diagonal lower triangular matrix L and an upper triangular

matrix U such that PA = L U for some permutation marnx P.

Since L and U are constructed by overwriting A, we will refer only

to the matrix A, with Atk) denoting the matrix A at the start of step

k. In the k-th elimination step, the k-th row and column of A(k)

are replaced by the k-th column of L and the k-th row of U. This

involves partial pivoting to determine the pivo~ i.e., the element in

column k (below the diagonal) of largest absolute value, swapping

the k-th and pivot rows of A(k), and scaling of the k-th column by

dividing it by the pivot. Thereafter, the (n – k) x (n – k) lower

right square submarnx of A(’) is updated to A(k+l):

A(k+l)= A[f)– L;kuk,, i,j=k+l,... ,n
~1

The row permutations that result from pivoting are carried along as

part of the final result. The parallelism in thk tdgorithm is trivial:

at step k all (n — k)2 scalar updates are independent. The pivoting,

swapping and scaling steps could be parallelized with appropriate

data layout.

To obtain a fast algorithm, we first focus on the ratio of

7

communication to computation. Observe that regardless of the data

layou~ the processor responsible for updating A$) must obtain L:~
and U~J. A bad data layout might require each processor to obmin

the entire pivot row and the entire multiplier column. Thus, step

k would require 2(n – k)g + L time for communication 6 ad

2(TZ – k)2/.P time for computation.

The communication can be reduced by a factor of 2 by choosing

a cohunn layout in which n/P cohmms of A are allocated to each

processor. For thii layots~ only the multipliers need be broadcast

since pivot row elements are used only for updates of elements in the

same column. A more dramatic reduction in communication cost

can be had by a grid layout in which each processor is responsible

for updating a (n – k)/@ x (n – k)/@ submatrix of Afk). This

requires each processor to receive only 2(Ts — k)/@ values, again

of @ in the communication ratio. Some of this advantage will

be foregone due to the communication requirements of pivoting

and scaling down a column that is shared by many processors.

However, this cost is asymptotically negligible in comparison to the

communication cost for update.

Our specification of the grid layout is incomplete since there are

many ways to disrnbute A among P processors so that each receives

a submatrix of A determined by a set of nl @ rows and columns.

The two extreme cases are blocked and cyclic allocation in each

dnension. In the former case, the rows and columns assigned to a

processor are contiguous in A while in the latter they are maximally

scattered (W apart). It should be clear that blocked grid layout

leads to severe load imbalance: by the time the algorithm completes

n/@ elimination steps, 20 processors would be idle and only

one processor is active for the last n/fi elimination steps. In

contras~ the scattered layout allows all P processors to stay active

for all but the last @ steps. It is heartening to note that the

fastest Linpack benchmark programs actually employ a scattered

grid layou~ a scheme whose benefits are obvious from our model.

5 Matching the Model to Machines

The LogP model abstracts the communication network into three

parameters. When the intercomection network is operating within

its capacity, the time to transmit a small message will be 20 + L: an

overhead of o at the sender and the receiver, and a latency of L within

the network. The available bandwidth per processor is determined

by g and the network capacity by L/g. In essence, the network is

treated as a pipeline of depth L with initiation rate g and a processor

overhead of o on each end. From a purely theoretical viewpoin~ it

might seem better to define L to be a simple function of P. However,

from a hardware design viewpoin~ it might seem important to

specify the topology, routing algorithm, and other properties. In

t.hk section, we consider how well our “middle ground” model

reflects the characteristics of real machines.

5.1 Average distance

A significant segment of the parallel computing literature assumes

that the number of network links traversed by a message, or distance,

is the pritrmy component of the communication time. This suggests

that the topological smtcture of the network is critical and that an

important indicator of the quality of the network is the average

distance between nodes. The following table shows the asymptotic

6we am ~~~um~g he~ that the Z(n - k) elemertts Of tie Pivot mw

and multiplier column are distributed equally among processom and are

communicated by an efficient all-to-atl broadcast.

average distance and the evaluation of the formula for the practical

case, P = 1,024.

Network

Hypercube

Butterfly

4&a Fat Tree

3D TOrUS

3D Mesh

2D TOtUS

2D Mesh

Ave. Distance I P = 1,024

T

y 5

log p 10

4 ~O& f) – 2/3 9.33
3 1/3
ZP 7.5

P
1J3 10

For configurations of practical interest the difference between

topologies is a factor of two, except for very primitive networks,

such as a 2D mesh or toms. Even there, the difference is only

a factor of four. Moreover, this difference makes only a small

contribution to total message transmission time, as discussed below.

5.2 Unloaded communication time

In a real machine, transmission of an M-bit long message in an

unloaded or lightly loaded network has four parts. FirsG there is the

send overhead, i.e., the time that the processor is busy interfacing

to the network before the first bit of data is placed onto the network.

The message is transmitted into the network channel a few bits at a

time, determined by the channel width w. Thus, the time to get the

last bit of an M-bit message into the network is (M/ w] cycles. The

time for the last bit to cross the network to the destination node is

HT, where H is the distance of the route and r is the delay through

each intermediate node. Finally, there is the receive overhead, i.e.,

the time from the arrival of the last bit until the receiving processor

can do something useful with the message. In summary, the total

message communication time for an M bit message across H hops

is given by the following.

I!’(M, H) = T~~d + [%1 + Hr +T,c”

Table 1 indicates tha~ for current machmes, message communica-

tion time through a lightly loaded network is dominated by the send

and receive overheads, and thus is relatively insensitive to network

structure. Furthermore, networks with a larger diameter typically

have wider links (larger w), smaller routing delays (r), and a faster

cycle time because all the physical wires are short. All these factors

reduce the urmsmission time. Thus, modeling the communication

latency as an arbitrary constan~ in the absence of contention, is far

more accurate than simple rules, such as L = log P. In determining

LogP parameters for a given machine, it appears reasonable to

choose o = T,.
‘+T”’” L = Hr+ [#l, where lfis themaximttm

distance of a rou~ and M is tie fixed message size being used, and

g to be M divided by the per processor bisection bandwidth.

The send and receive overheads in Table 1 warrant some explana-

tion. The very karge overheads for the commercial message passing

machines (nCUB E/2 and CM-5) reflect the standard communication

layer from the vendor. Large overheads such as these have led many

to conclude that large messages are essential. For the nCUBEL!, the

bulk of this cost is due to buffer management and copying associ-

ated with the asynchronous send/receive communication model[3 1].

This is more properly viewed as part of the computational work of an

algorithm using that style of communication. For the CM-5, the bulk

of the cost is due to the protocol associated with the synchronous

send/receive, which involves a pair of messages before transmitting

8

Machine Network Cycle w T.nd + l’rcv avg. H T(M=160)

ns bits cycles cycle; (1024 prOC.) (1024 prOC.)

nCUBE/2 Hypercube 25 1 6400 40 5 6760

CM-5 Fat&ee 25 4 3600 8 9.3 3714

Dash[12] Torus 30 16 30 2 6.8 53

J-Machine[lO] 3d Mesh 31 8 16 2 12.1 60

Monsoon[25] Butterfly 20 16 10 2 5 30

nCUBE~ (AM) Hypercube 25 1 1000 40 5 1360

CM-5 (AM) Fattree 25 4 132 8 9.3 246

Table 1: Network timing pruametera for a one-way message without contention on severaf cummt commercial and research multipmcessors. 7%e final two

suws m.fer to the active message layer, which uses the wmmercial hardware, but reduces the interface overhead.

the first data element. This protocol is easily modeled in terms of

our parameters as 3(L + 20) + ng, where n ia the number of words

sent. The final two rows show the inherent hardware overheads of

these machines, as revealed by the Active Message layer[31].

The table also includes three research machines that have focused

on optimizing the processor network interface: Dash[12] for a

shared memory model, J-machine[l O] for a message driven model,

and Monsoon[25] for a dataflow model. Although a significant

improvement over the commercial machines, the overhead is still a

significant fraction of the communication time.

5.3 Saturation

In a real machine the latency experienced by a message tends to

increase es a fimction of the load, i.e., the rate of message initiation,

because more messages are in the network competing for resources.

Studies such es [11] show that there is typically a saturation point

at which the latency increases sharply; below the saturation point

the latency is fairly insensitive to the load. This characteristic is

captured by the capacity constraint in LogP.

5.4 Long messages

The LogP model does not give special ~eatrnent to long messages,

yet some machines have special hardware (e.g., a DMA device

connected to the network interface) to support sending long mes-

sages. The processor overhead for setting up that device is paid

once and a part of sending and receiving long messages can be

overlapped with computation. This is tantamount to providing two

processors on each node, one to handle messages and one to do the

computation. Our basic model assumes that each node consists only

of one processor that is also responsible for sending and receiving

messages. Therefore the overhead o is paid for each word (or small

number of words). Providing a separate network processor to deliver

or receive long messages can at best double the performance of each

node. This can simply be modeled as two processors at each node.

5.5 Specialized hardware support

Some machines provide special hardware to perform a broadcas~

scan, or global synchronization. In LogP, processors must explicitly

send messages to perform these operations.7 However, the hardware

versions of these operations are typically litnhed in functionality;

for example, they may only work with integers, not floating-point

numbers, They may not work for only a subset of the machine,

The most common global operation observed in developing

algorithms for the I.mgP model is a barrier, as in the FFT example

above. As discussed below, some parallel models assume this to be a

primitive operation. It is simpler to support in hardware than globaf

data operations. However, there is not yet sufficient evidence that it

will be widely available. One virtue of having barriers available as

a primitive is that analysis is simplified by assuming the processors

exit the barrier in synchrony.

5.6 Contention free communication pat-
terns

By abstracting the internal structure of the network into a few

performance parameters, the model cannot distinguish between

“good” permutations end “bad” permutations. Various network

intercomection topologies are known to have specific contention-

free routing patterns. Repeated transmissions within this pattern can

utilize essentially the full bandwidth, whereas other communication

patterns will saturate intermediate routers in the network. These pat-

tems are highly specific, often depending on the routing algorithm,

and amount of buffering in each router, es well as the intercomection

topology. We feel this is an important message to architects of

parallel computers. If the interconnection topology of a machine or

the routing algorithm performs well on only a very restricted class

of communication patterns, it will only be usable to a very specific

set of algorithms. Even so, for every network there are certain

communication patterns where performance will be degraded due

to internal contention among routing paths. The goal of the hardware

designer should be to make these the exceptional case rather than the

frequently occurring case. A possible extension of the LogP model

to reflect network performance on various communication patterns

would be to provide multiple g ‘s, where the one appropriate to the

particular communication pattern is used in the analysis.

6 Other Models

Our model was motivated by the observation of a convergence in

the hardware organization of general purpose massively parallel

computers. Parallel systems of the next decade will consist of up

to a few thousand powerful processor/memory nodes connected by

a fast communication network. In this section we briefly review

some of the existing computational models and explain why they

fail to fully capture the essential features of the coming generation

of machines,

71t is an unintended use of the model to synchronize impticitty without

sending messages, e.g. by relying on an upper bound on the communication

latency L.

9

6.1 PRAM models

The PRAM[13] is the most popular model for representing and

analyzing the complexity of parallel algorithms. The PRAM model

is simple and vexy useful for a gross classification of algorithms, but

it does not reveal important performance bottlenecks in distributed

memory machines because it assumes a single shared memory in

which each processor can access any cell in unit time. In effec~

the PRAM assumes that interprocessor communication has infinite

bandwidth, zero latency, and zero overhead (g = O, L = 0,0 = O).
Thus, the PRAM model doesnot discourage the design of algorithms

with an excessive amount of interprocessor communication. Since

the PRAM model assumes that each memory cell is independently

accessible, it also neglects the issue of contention caused by

concurrent access to different cells within the same memory module.

The EREW PRAM deals only with contention for a single memory

location. The PRAM model also assumes unrealistically that the

processors operate completely synchronously.

Although any specific parallel computer will, of course, have

a fixed number of processors, PRAM algorithms often allow the

number of concurrently executing tasks to grow as a function of the

size of the input. The rationale offered for this is that these tasks

can be assigned to the physical processors, with each processor

apportioning its time among the tasks assigned to it. However, the
PRAM model does not charge for the high level of message traffic

and context switching overhead that such simulations require, nor

does it encourage the algorithm designer to exploit the assignment.

Similar criticisms apply to the extensions of the PRAM model

considered below.

It has been suggested that the PRAM can serve as a good

model for expressing the logical structure of parallel algorithms,

and that implementation of these algorithms can be achieved by

general-purpose simulations of the PRAM on distributed-memory

machines [26]. However, these simulations require powerful inter-

connection networks, and, even then, may be unacceptably slow,

especially when network bandwidth and processor overhead for

sending and receiving messages are properly accounted.

6.2 Extensions of the PRAM model

There are many variations on the basic PRAM model which address

one or more of the problems discussed above, namely memory

contention, asynchrony, latency and bandwidth.

Memory Contention: The Module Parallel Computer [19, 23]

differs from the PRAM by assuming that the memory is divided

into modules, each of which can process one access request at a

time. This model is suitable for handling memory contention at the

module level, but does not address issues of bandwidth and network

capacity.

Asynchrony: Gibbons[14] proposed the Phase PRAM, an exten-

sion of the PRAM in which computation is divided into “phases.”

All processors run asynchronously within a phase, and synchro-

nize explicitly at the end of each phase. This model discourages

excessive interprocessor synchronization. To balance the cost of

synchronization with the time spent computing, Gibbons proposes

to have a single processor of a phase PRAM simulate several PRAM

processors. Other proposals for asynchrony include[7, 18, 21].

Latency: The delay model of Papadimitrio. and Yannakakis[24]

accounts for communication latency, i.e. it realizes there is a delay

between the time some information is produced at a processor and

the time it can be used by another. A different model that also

addresses communication latency is the Block Parallel Random

AccessMachine (BPRAM) in which block transfers are allowed[l].

Bandwidth: A model that deals with communication band-

width is the Local-Memory Parallel Random Access Machine

(LPRAM)[2]. This is a CREW PRAM in which each processor

is provided with an tmlirnhed amount of local memory and where

accesses to global memory are more expensive. h asynchronous

variant which differs in that it allows more than one outstanding

memory request has been studied in [22].

Memory Hierarchy: Whereas PRAM extends the RAM model

by allowing unit time access to any location horn any processor

and LogP essentially views each node as in the RAM, the Parallel

Memory Hierarchy model (PMH)[3] rejects the RAM as a basis and

views the memory as a hierarchy of storage modules. Each module

is characterized by its size and the time to tm.nsfer a block to the

adjoining modules. A multiprocessor is represented by a tree of

modules with processors at the leaves. This model is based on the

observation that the techniques used for tuning code for the memory

hierarchy are simk to those for developing parallel algorithms.

Other primitive parallel operations: The scan-model[6] is an
EREW PRAM model extended with unit-time scan operations (data

independent prefix operations), i.e., it assumes that certain scan

operations can be executed as fast as parallel memory references.

For integer scan operations this is approximately the case on the

CM-2 and CM-5.

The observation of the deficiencies of the PRAM led Snyder to

conclude it was unrealizable and to develop the Candidate Type

Architecture (CTA) as an altemative[28]. The CTA is a finite

set of sequential computers comected in a fixed, bounded degree

graph. The CTA is essentially a formal description of a parallel

machine; it requires the communication cost of an algorithm to

be analyzed for each intercomection network used. The BSP

model presented below abstracts the structure of the machine, so the

analysis of algorithms is based on a few performance parameters.

This facilitates the development of portable algorithms.

6.3 Bulk Synchronous Parallel Model

Valiant’s Bulk Synchronous Parallel (BSP) model is closely aligned

with our goals, as it seeks to bridge the gap between theoretical

work and practical machines [30]. In the BSP model a dfitributed-

memory multiprocessor is described in terms of three elements: (i)

processorbnemory modules, (ii) an interconnection network and

(iii) a synchronizer which performs barrier synchronization.

A computation consists of a sequence of supersteps. During a

superstep each processor performs local computation, and receives

and sends messages, subject to the following constraints: the local

computation may depend only on data present in the local memory

of the processor at the beginning of the superstep, and a processor

may send at most h messages and receive at most h messages in a

superstep. Such a communication pattern is called a h-relation.

Alshough the BSP model was one of she inspirations for our work,

we have several concerns about it at a detailed level,

The length of a superstep must be sufficient to accommodate an

arbitrary h-relation (and hence the most unfavorable one possible).

Our model enables communication to be scheduled more precisely,

permitting the exploitation of more favorable communication pat-

terns, such as those in which not all processors send or receive as

many as h messages. Valiant briefly mentions such refinements as

v~ing h dynamically or synchronizing different subsets of pro-

cessors independently, but does not describe how such refinements

might be implemented.

10

Messages sent at the beginning of a superstep can only be used in

the next superstep, even if the length of the superstep is longer than

the latency. In our model processors work asynchronously, and a

processor can use a message as soon as it arrives.

The BSP model assumes special hardware support to synchronize

all processors at the end of a superstep. The synchronization

hardware needed by the BSP may not be available on many

parallel machines, especially in the generrdity where multiple

arbitrary subsets of the machine can synchronize. In our model

all synchronization is done by messages, admittedly at higher cost

than if synchronization hardware were available.

Valiant proposes a programming environment in which algo-

rithms are designed for the PRAM model assuming an unliiited

number of processors, and then implemented by simulating a num-

ber of PRAM processors on each BSP processor. He gives a

theoretical analysis showing that the simulation will be optimal,

up to constant factors, provided that the purulfef duchess, i.e.

the number of PRAM processors per BSP processor, is sufficiently

large. However, the constant factors in this simulation maybe large,

and would be even larger if the cost of context switching were fully

counted. For example, in a real processor, switching from one

process to another would require resetting not only the registers, but

also parts of the cache.

6.4 Network models

In a network model, communication is only allowed between

directly comected processors; other communication is explicitly

forwarded through intermediate nodes. In each step the nodes can

communicate with their nearest neighbors and operate on local data.

Many algorithms have been created which are perfectly matched

to the structure of a particular network. Examples are parallel

prefix and non-commutative summing (tree), physical simulations

and numerical solvers for partial differential equations (mesh), FIT

and bitonic sorting (butterfly). However, these elegant algorithms

lack robustness, as they usually do not map with equal efficiency

onto intercomection structures different from those for which they

were designed. Most current networks allow messages to “cut

through” intermediate nodes without disturbing the processo~ this

is much faster than explicit forwarding.

The perfect correspondence between algorithm and network

usually requires a number of processors equal to the number of

data items in the input. In the more typical case where there are

many data items per processor, the pattern of communication is

less dependent on the network. Wherever problems have a local,

regular communication pattern, such as stencil calculation on a grid,

it is easy to lay the data out so that only a diminishing fraction

of the communication is external to the processor. Basically,

the interprocessor communication diminishes like the surface to

volume ratio and with large enough problem sizes, the cost of

communication becomes trivial. This is also the case for some

complex communication patterns, such as the butterfly, as illustrated

by the FFf example in Section 4.

We conclude that the design of portable algorithms can best be

carried out in a model such as LogP, in which detailed assumptions

about the interconnection network are avoided.

high-end computer industry toward massively parallel machmes

constructed from nodes containing powerful processors and sub-

stantial memory, interconnected by networks with liiited band-

width and significant latency. The models in current use do not

accurately reflect the performance characteristics of such machmes

and, thus are an incomplete framework for development of practical

algorithms.

The LogP model attempts to capture the important bottlenecks

of such parallel computers with a small number of parameters: the

latency (L), overhead (o), bandwidth (g) of communication, and

the number of processors (P). We believe the model is sufficiently

detailed to reflect the major practical issues in parallel algorithm

design, yet simple enough to support detailed algorithmic analysis.

At the same time, the model avoids specifying the programming

style or the communication protocol, being equally applicable to

shsred-memory, message passing, and data parallel paradigms.

As with any new proposal, there will naturally be concerns re-

garding its utility as a basis for further study. The model exhibits

interesting theoretical structure; our optimal algorithms for broad-

cast and summation result in a formulation that is distinct from that

obtained on the PRAM or various network models. These examples

also demonstrate how an algorithm may adapt its computation and

communication structure in response to each of the parameters of the

model. We have observed that in specific situations some parameters

become insignificant and one can work with a simplified model.

The FFT example demonstrates that the elegant communication

pattern that some algorithms exhibit on an element-by-element basis

disappears when a large number of elements is allocated to each

processor. This suggests that adjusting the data placement is an

impo~t technique for improving algorithms, much like changes

in the representation of data structures. Furthermore, this exam-

ple illustrates the importance of balanced communication, which

is scarcely addressed in other models. These observations are

borne out by implementations on the CM-5 multiprocessor. Very

similar observations apply to parallel sorting, LU decomposition,

and matrix multiplication.

We believe that the LogP model opens several avenues of re-

search. It potentially provides a concise summary of the perfor-

mance characteristics of current and future machines. This will

require refining the process of parameter determination and eval-

uating a large number of machines. Such a summary can focus

the efforts of machine designers toward architectural improvements

that can be measured in terms of these parameters. For example,

a machine with large gap g is only effective for algorithms with a

large ratio of computation to communication. In effec~ the model

defines a four dimensional parameter space of potential machines.

The product line offered by a particular vendor may be identified

with a curve in this space, characterizing the system scalability.

It will be important to evaluate the complexity of a wide variety

of algorithms in terms of the model and to evaluate the predictive

capabilities of the model. The model provides a new framework

for classifying algorithms and identifying which are most attractive

in various regions of the machine parameter space. We hope this

will stimulate the development of new parallel algorithms and the

examination of the fundamental requirements of various problems

within the LogP framework.

7 Summary

Our search for a machine-independent model for parallel compu-

tation is motivated by technological trends which are driving the

11

Acknowledgements
Several people provided helpful comments on earlier drafts of thii

paper, including Larry Carter, Dave Douglas, Jeanne Ferrante, Seth

CoPen Goldstein, Anoop Gupta, John Hennessy, Tom Leighton,

Charles Leiserson, Lesley Matheson, Rishiyur Nikhd, Abhwam

Ranade, Luigi Semenzato, Larry Snyder, Burton Smith, Guy Steele,

Robert Tarjan, Leslie Valian4 and the anonymous reviewers.

Computational support wss provided by the NSF Infrastructure

Grant number CDA-8722788. David Culler is suppotted by an NSF

Presidential Faculty Fellowship CCR-9253705 and LLNL Grant

UCB-ERL-92/172. Klaus Erik Schauser is supported by an IBM

Graduate Fellowship. Richard Karp and Abhijit Sahay are supported

by NSF/DARPA Grant CCR-9005448. Eunice Santos is supported

by a DOD-NDSEG Graduate Fellowship. Ramesh Subramonian

is suppted by Lockheed Palo Alto Research Lalmratories under

RDD 506. Thorsten von Eicken is supported by the Semiconductor

Research Corporation.

References
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

A. Aggarwal, A. K. Chandra, andM. Snir. 0ss Communication
Latency in PRAM Computation. In Proceedings of the ACM
Symposium on Parallel Algorithms and Architectures, pages
11-21. ACM, June 1989.

A. Aggarwal, A. K. Chandra, and M. Snir. Communication
Complexity of PRAMs. In Theoretical Computer Science,
pages 3–28, March 1990.

B. Alpem, L. Carter, E. Feig, and T. Selker. The Uniform
Memory Hierarchy Model of Computation. Algorithmic,
1993. (to appear).

A. Bar-Noy and S. Kipnis. Designing broadcasting algorithms
in the postal model for message-passing systems. In Pro-
ceedings of the ACM Symposium on Paraliel Algorithms and
Architectures, pages 11-22, June 1992.

G. Bell. Ultracomputers: A Teraflop Before Its Time.
Communications of the Association for Computing Machinery,
35(8):2647, August 1992.

G. E. Blelloch. Scans as Primitive Parallel Operations. In Pro-
ceedings of International Conference on Parallel Processing,
pages 355–362, 1987.

R. Cole and O. Zajicek. The APRAM: Incorporating asyn-
chrony into the PRAM model. In Proceedings of the Sym-
posium on Parallel Architectures and Algorithms, pages 169–
178,1989.

J. M. Cooley and J. W. Tukey. An algorithm for the machine
calculation of complex Fourier series. Marh. Comp, 19:297–
301, 1965.

D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T. von Eicken.
LogP: Towards a Realistic Model of Parallel Computation.
Technical Report UCB/CSD 92/713, UC Berkeley, 1992.

W. et al Dally. The J-Machine: A Fine-Grain Concurrent
Computer. In IFIP Congress, 1989.

W. J. Dally. Performance Analysis of k-my n-cube In-
terconnection Networks. IEEE Transaction on Computers,
39(6):775-785, June 1990.

Lenoski D. et al. The Stanford Dash Multiprocessor. IEEE
Computer, 25(3):63–79, March 1992.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

S. Fortune and J. Wyllie. Parallelism in Random Access
Machines. In Proceedings of the IOth Annual Symposium
on Theory of Computing, pages 114-118, 1978.

P. B. Gibbons. A More Practical PRAM Model. In Pro-
ceedings of the ACM Symposium on Parallel Algorithm and
Architectures, pages 158-168. ACM, 1989.

J. L. Hennessy. MIPS R4000 Overview. In Proc. of h
19th Int’1 Symposium on Computer Architecture, Gold CoasL
Australia, May 1992.

J. L. Hennessy and D. A. Patterson. ComputerArchitecture—
A Quantitative Approach. Morgan Kaufmsmn, 1990.

IEEE. Symposium Record-Hot Chips IV, August 1992.

P. Kanellakis and A. Shvartsman. Efficient parallel algorithms
can be made robust. In Proceedings of the 8th Symposium on
Principles of Distributed Corqwting, pages 211-221,1989.

R. M. Karp, M. Luby, and F. Meyer auf der Heide. Efficient
PRAM Simulation on a Distributed Memory Machine. In
Proceedings of the Twersty-FourthAnnual ACM Symposium of
the Theory of Computing, pages 318-326, May 1992.

[20] R. M. Karp, A. Sahay, E. Santos, and K. E. Schauser. Optimal
Broadcast and Summation in the LogP Model. Technical
Report UCB/CSD 92/721, UC Berkeley, 1992.

[21] Z. M. Kedem, K. V. Palem, and P. G. Spirakis. Efficient robust
parallel computations. In Proceedings of the 22nd Annual
Symposium on Theory of Computing, pages 138-148,1990.

[22] C. U. Martel and A. Raghunathan.Asynchronous PRAMs with
memory latency. Technical repo~ University of Califomi%
Davis, Division of Computer Science, 1991.

[23] K. Mehlhom and U. Vishkin. Randomized and deterministic
simulations of PRAMs by parallel machines with restricted
granularity of parallel memories. Acts Informatica, 21:339-
374,1984.

[24] C. H. Papadimitriou and M. Yannakakis. Towards an
Architecture-Independent Analysis of Parallel Algorithms. In
Proceedings of the Twentieth Annual ACM Symposium of the
Theory of Computing, pages 510-513. ACM, 1988.

[25] G. M. Papadopoulos and D. E. Culler. Monsoon: an Explicit
Token-Store Architecture. In Proc. of the 17th Annual Int.
Symp. on Comp. Arch., Seattle, Washington, May 1990.

[26] A. G. Ranade. How to emulate shared memory .InProceedirtgs
of the 28th IEEE Annual Symposium on Foundations of
Computer Science, pages 185-194,1987.

[27] A. Sahay. Hiding Communication Costs in Bandwidth-
Limited Parallel FFT Computation. Technical Report
UCB/CSD 92/722, UC Berkeley, 1992.

[28] L. Snyder. Type Architectures, Shared Memory, and the
Corollary of Modest Potential. In Anrs. Rev. CornPut. Sci.,
pages 289-317. Annual Reviews Inc., 1986.

[29] R. Subramonian. The influence of limited bandwidth on
algorithm design and implementation. In Dartmouth Insti-
tute for Advanced Graduate Studies in Parallel Computation
(DAGSIPC), June 1992.

[30] L. G. Valiant. A Bridging Model for Parallel Computation.
Communications of the Association for Computing Machinery,
33(8): 103-11, August 1990.

[31] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. Active Messages: a Mechanism for Integrated
Communication and Computation. In Proc. of the 19th Irst’1
Symposium on Computer Architecture, Gold CoasL Australia,
May 1992.

12

