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ABSTRACT

Many interesting large-scale systems are distributed systems of
multiple communicating components. Such systems can be very
hard to debug, especially when they exhibit poor performance.
The problem becomes much harder when systems are composed
of “black-box” components: software from many different (per-
haps competing) vendors, usually without source code available.
Typical solutions-provider employees are not always skilled or ex-
perienced enough to debug these systems efficiently. Our goal is
to design tools that enable modestly-skilled programmers (and ex-
perts, too) to isolate performance bottlenecks in distributed systems
composed of black-box nodes.

‘We approach this problem by obtaining message-level traces of
system activity, as passively as possible and without any knowledge
of node internals or message semantics. We have developed two
very different algorithms for inferring the dominant causal paths
through a distributed system from these traces. One uses tim-
ing information from RPC messages to infer inter-call causality;
the other uses signal-processing techniques. Our algorithms can
ascribe delay to specific nodes on specific causal paths. Unlike
previous approaches to similar problems, our approach requires no
modifications to applications, middleware, or messages.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—distrib-
uted debugging, testing tools
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1. INTRODUCTION

Many commercially-important systems, especially Web-based
applications, are composed of a number of communicating com-
ponents. These are often structured as distributed systems, with
components running on different processors or in different pro-
cesses. For example, a multi-tiered system might start with requests
from Web clients that flow through a Web-server front-end and then
to a Web “application server,” which in turn makes calls to a data-
base server, and perhaps additional services (authentication, name
service, credit-card authorization, customer relationship manage-
ment, etc.).

Such systems can be very hard to debug, especially when they
exhibit poor performance. Distributed systems are already hard to
debug, but the problem becomes much harder when they are com-
posed of “black-box” components: software from many different
(perhaps competing) vendors, usually without source code avail-
able.

Enterprises often buy complex systems as complete, customized
packages from a “solutions vendor.” Solutions vendors must de-
liver complex component-based systems without the expense of
highly-skilled, experienced programmers. While modestly-skilled
programmers can design and construct such systems, they may lack
the expertise to solve performance problems efficiently. Vendors
of individual components provide training and support for solv-
ing performance problems within the components, but not neces-
sarily among multi-vendor components. Therefore, whole-system
performance debugging can require either an inordinate amount of
time, or the services of expensive and hard-to-find systems integra-
tion experts. Both problems cut into profits for solutions vendors.

We contend that performance-oriented operating systems re-
search must focus on performance-in-the-large, rather than merely
delivering incremental improvements for low-level component per-
formance. Complex systems exhibit performance problems that of-
ten grow out of the system complexity, and while these can some-
times be solved by improving the performance (or selection) of
low-level components, they cannot be diagnosed by focusing on
the components.

Our goal is to design tools that help programmers isolate per-
formance bottlenecks in black-box distributed systems. These tools
should not require much (or any) direct support from the compon-
ents themselves, because we do not want to assume that software
vendors will make any effort to support a particular methodology.
The tools will not themselves solve any performance problems, but
by isolating problems efficiently and (we hope) accurately, they
should increase the efficiency both of modestly-skilled program-
mers and of experts at systems integration.



In this paper, we describe a specific approach to this goal,
based on application-independent passive tracing of communica-
tion between the nodes in a distributed system, combined with off-
line analysis of these traces. We show that traces gathered with
little or no knowledge of application design or message semantics
are sufficient to make useful attributions of the sources of system
latency. Our insistence on passive tracing with no application modi-
fication makes our approach applicable to almost any distributed
system, and differentiates our work from other approaches that
either require application or middleware modifications, or make
stronger assumptions about applications or messages.

2. PROBLEM STATEMENT, GOALS, AND
NON-GOALS

We model a distributed system as a graph of communicating
nodes. Nodes might be computers, in which case the edges are
the network connections between communicating pairs of nodes.
(Our approach handles other node granularities, as we will discuss
in Section 6.) An external request to the system causes activities
in the graph along a causal path: a series of node traversals where
each traversal is caused by some message from a prior node on the
path. (Spontaneous system operations can also generate activities
on causal paths.)
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Figure 1: Example multi-tier application showing a causal path

Figure 1 shows an example of a typical distributed system (a
multi-tier Web application), with one possible causal path superim-
posed as a thick line. (The thinner arrows show potential one-hop
message paths.) Note that this path flows several times through
most of the nodes it touches, since this application is RPC-based
and both calls and returns cause node operations.

‘We assume that all latencies in such a system can be ascribed to
the node traversals. (In a system with significant network delays,
we can model each long-delay network connection as a pair of zero-
delay connections and a virtual delay node. Our initial target envir-
onments are LAN-based systems, where network propagation and
switching delays are normally negligible.)

Note that the same node may impose different delays for dif-
ferent traversals. For example, the “authentication server” node in
Figure 1 is traversed twice in the path shown: once between its
invocation and its call to the database, and once between the data-
base's response and its own response to the Web server. Because
these are, most probably, different code paths, they could easily
have different latencies.

While the example in Figure 1 is an RPC-style system, our ap-
proach also covers message-based systems, in which messages may
flow arbitrarily from node to node, without explicit call-return se-
mantics. For example, viewed at the level of an email message,

the Internet mail system is message-based, not RPC-style. Simple
distance-vector routing protocols are also message-based.

The aim of our project is to create tools and methodologies that
enable programmers to understand the sources of latency in a dis-
tributed system. In the context of our model, we want these tools
to:

e find the high-impact causal path patterns—the repeatedly
executed causal paths that account for a significant fraction
of the system's latency as observed by its users. These are
the patterns that are executed frequently and with high mean
latency relative to any other frequently-executed patterns.

o identify those nodes on high-impact patterns that, as parti-
cipants on these patterns, add significant latency to the pat-
terns. For example, an authentication server that caches its
results might be used by several nodes in a Web applica-
tion, but might only cause high latency when invoked from a
login-server node, and not when invoked from deeper in the
application.

To illustrate the importance of the second point, we use an ana-
logy: a flat procedure profiler can tell you that a function is con-
suming lots of time, but only a hierarchical profiler (e.g., gprof[9])
can tell you that the problem is not that the function is slow, but
that it is being called from a place that doesn't need to call it so
often. The context in which a component is used may be of critical
importance in diagnosis.

The requirements above define what makes the tools useful. We
also impose some requirements to make the tools broadly applic-
able to systems of black-box components. Our tools should:

e require minimal knowledge (on the part of the tool or the
user) of the semantics of the application, the implementation
of nodes, the semantics of messages, or a priori information
about communication paths.

e require no modifications to applications, middleware, mes-
sages, or workloads.

e not significantly perturb system performance.

‘We believe that a tool that requires application-specific knowledge,
or application modifications, is much less likely to be used. We
especially wish to avoid the need to deploy new infrastructure or
promulgate new standards before our tools could be useful. We
would like to approximate the ideal of a tool that takes no effort to
use. Therefore, one meta-goal for our research is to test how close
we can get to the zero-knowledge ideal.
We also have some non-goals:

e We are not developing tools to replace the need for program-
mers. Performance diagnosis is hard, and our goal is to make
it easier for humans, not to automate it.

e Our tools are not meant to verify correct system behavior, or
diagnose the causes of faulty behavior.

e Our tools are not aimed at characterizing or benchmarking
system performance.

e Because our tools are aimed at the debugging phase, we do
not require real-time results; we are willing to use offline
analysis (as with a procedure profiler).

2.1 Hypotheses
We are attempting to validate two hypotheses:

1. Our black-box approach is sufficient to identify high-latency
causal path patterns with useful precision, and to ascribe the
sources of such latency to specific nodes in the context of
specific patterns.



2. Given that our black-box approach does identify the sources
of latency, this information is useful to a programmer who is
debugging the performance of a distributed system.

The first hypothesis can be evaluated using traditional metrics of
computer system evaluation. The second hypothesis, however, is
an assertion about what humans find useful in carrying out a messy,
intellectually challenging task. In this paper, we concentrate on the
first hypothesis, and leave the validity of the second to the reader's
intuition.

3. RELATED WORK

Before describing our approach, we review several categories of
related work.

3.1 Similar approaches to similar problems

Several research projects have attacked the problem of perform-
ance debugging in distributed systems, but have taken less radical
approaches to the problem of black-box components. In particular,
they all require either a homogeneous implementation environment
or more intrusive instrumentation. None of these systems rely on
passive message tracing.

Hrischuk et al. [11] obtain causal traces of distributed compu-
tations, including various resource demands (not just latency), by
labelling each end-to-end activity using an object-oriented proto-
typing language (Mlog). Although this did not require modification
of the prototype application, their approach is not applicable out-
side this prototyping system, and in particular would not be useful
for systems built from legacy components.

Probably the work closest to ours is Magpie [13], which is also
aimed at performance analysis of distributed systems. Magpie, too,
treats components as black boxes. However, Magpie specifically
associates traced messages with incoming requests, by “tagging in-
coming requests with a unique identifier and associating resource
usage throughout the system with that identifier.” This implies a
more sophisticated tracing infrastructure than in our approach, but
perhaps less need for complex post-processing. Magpie also con-
centrates more than we do on detecting relatively rare anomalies.

A much earlier project, the Distributed Programs Monitor
(DPM) [18], also reports paths of causality through distributed sys-
tems. It uses kernel instrumentation to track the causal information
between pairs of messages, rather than trying to infer causality from
message timestamps. DPM reports an edge between a pair of nodes
if any causal path includes that edge. Therefore, the existence of a
path in the resulting graph does not necessarily mean that any real
causal path followed all of those edges in that sequence.

3.1.1 Commercial products

Several companies already sell software to isolate performance
problems using causal tracing. For good commercial reasons, these
products aim at a robust solution for a narrow version of the prob-
lem we are addressing; our approach is both broader and riskier.

The products that we are aware of concentrate mostly on instru-
menting Java applications, since this is a commercially viable mar-
ket and because the Java Virtual Machine (JVM) provides a con-
venient locus for non-intrusive instrumentation. (Some systems
focus on .Net instead of Java.) They usually also instrument one
or more popular non-Java HTTP servers, of necessity, but lack the
ability to deal with a broader range of “legacy” nodes.

For example, AppAssure [1] can automatically create compon-
ent dependency models, using “adapters” that poll components
through existing APIs and by instrumenting J2EE method calls.
PerformaSure [23] reconstructs execution paths by tagging end-to-
end activities (user transactions) as they flow through a J2EE-based

system. OptiBench [22] collects traces by instrumenting J2EE and
Java interfaces, and apparently can provide fine-grained timing for
steps on causal paths. OptiBench also supports transaction replay,
providing problem re-creation to aid in debugging.

3.2 Different approaches to similar problems

Tierney et al. [26] describe NetLogger, a system for real-time
diagnosis of performance problems in distributed systems. Their
approach requires programmers to add event logging to carefully-
chosen points in the application, and generates “lifelines” that cor-
respond to our causal paths. NetLogger provides tools for man-
aging and visualizing logs, but the tools appear unable to aggregate
information from many executions of the same causal path.

Hellerstein et al. [10] described ETE, an approach for measur-
ing both end-to-end response times and the contributing compon-
ent latencies. Their approach requires programmers to instrument
applications to reveal significant events and to describe interesting
transactions ahead of time, so it is not a black-box technique.

3.3 Similar approaches to different problems

Chen et al. [5, 6] describe Pinpoint, a system for locating the
components in a distributed system most likely to be the cause
of a fault. Pinpoint differs from our work in that they focus on
faults rather than performance problems. Their approach involves
collecting end-to-end traces of client requests travelling through a
distributed system by tagging J2EE calls with a request-ID; this re-
quires no direct application modification, but is currently limited to
single-machine tracing. They then use data-mining techniques to
correlate low-level faults with high-level problems.

Brown et al. [3] also describe a technique aimed at problem
(fault) determination based on characterizing dynamic dependen-
cies between components. However, rather than using traces (as in
Pinpoint), they perturb system components (for example, by tem-
porarily locking a database table to prevent a component from mak-
ing progress). Bagchi et al. [2] describe a similar approach based
on fault injection. Note that the resulting pair-wise dependencies
are less specific than end-to-end causal paths would be, and the per-
turbation approach, which is definitely not passive, requires consid-
erable knowledge of the system design.

In Section 5.2 we describe an algorithm for discovering caus-
ality from traces based on statistical correlation. Zhang and Pax-
son [27] also use statistical techniques, correlating traffic to de-
tect intruders who subvert hosts for use as “stepping stones” (i.e.,
intruders who telnet into a host and then out of it, intending to
cover their tracks). Huang et al. use analysis of passively-obtained
network traces to detect performance problems in wide-area net-
works [12]. However, they are interested in network-scale phe-
nomena (delay or congestion) rather than causality.

4. OVERVIEW OF OUR APPROACH

How might a tool that understands nothing about the semantics
or implementation of the individual components locate perform-
ance problems in a distributed system? Our approach relies on
tracing the messages between the nodes, and using one of several
offline algorithms to infer causality from these traces. In particular,
our algorithms infer multi-hop causal path patterns, and provide
statistics about latency, both of each pattern and of each node tra-
versal as it occurs in a particular pattern.

The upper part of Figure 2 gives an example of one activation
of a simple system. Node A is the “client” that initiates a causal
path, which consists of three RPCs (A calls B, B calls C, then calls
D, then returns to A). The path includes eleven steps: six RPC
messages (odd-numbered arrows) and five intra-node delays (even-



Figure 2: Example causal path in detail

numbered arrows). The lower part of the figure is an abstraction of
the causal path showing that the eleven steps are causally related.
Since our message traces include only the six odd-numbered steps,
our task is to infer the even-numbered steps and the causal connec-
tions. We also want to know latencies for the even-numbered steps,
which would allow us to report that the latency of the causal path
is dominated, for example, by step 6 (internal to node B). A key
feature of our approach is that we can separately report the delays
of steps 2, 6, and 10 in this example.

This task is difficult because a real trace contains interleaved
messages from many separate causal paths. Also, a user of our
tool wants to see a statistical summary for each of the most import-
ant causal path patterns in the system, not a list of every causal path
seen in the trace.

Our approach involves three phases:

1. Exposing and tracing communication: In this online
phase, we gather a complete trace of all inter-node messages
for an operational system, under real or synthetic load. De-
pending on the means of communication, we might obtain
a single global trace, or a set of per-edge traces for each
pair of communicating nodes. This phase creates several lo-
gistical problems, including how we obtain individual mes-
sages without perturbing the system, how we convert the
messages to a concise trace, and how we manage and store
large amounts of trace data. Section 6 discusses this phase.

2. Inferring causal paths and patterns: In this offline phase,
we post-process a trace using one of several algorithms. The
algorithms must cope with traces that are potentially quite
large and noisy (e.g., with missing entries, extraneous calls,
timeouts and retries, unsynchronized clocks, etc.). Although
this phase need not meet real-time performance goals, our
algorithms must be reasonably efficient in time and space.
However, the algorithms need not be fool-proof, because
our tools are meant to help humans debug systems, not for
automatic control. They should be robust enough that they
seldom fail with false negatives (i.e., failing to detect the
most important causal path patterns) or false positives (over-
whelming the user with extraneous information). Section 5
describes our algorithms.

3. Visualization: A full system should also provide appropriate
ways to visualize the results. However, our research so far
has only partially addressed this issue.

An abstract trace format forms the connection between the first and
second phases, which allows us to use several different techniques
to gather traces, and several different offline algorithms. The trace
contains, at a minimum, a (timestamp, sender, receiver) tuple for
each message, but might include some additional information. Be-
cause the information we need depends on which algorithm is used,
we will describe the algorithms before describing the specifics of
gathering traces.

S. ALGORITHMS

Our key technical, as opposed to logistical, challenge is to infer
causal path patterns and latencies from relatively simple message
traces. We have developed two distinctly different algorithms. One
depends on the use of RPC-style communication, and operates on
individual messages in the trace. The other is able to handle free-
form message-based communication, and uses signal-processing
techniques to extract causal information from traces.

5.1 The “nesting algorithm”

The first algorithm combines all of the per-edge traces into a
single global trace and explicitly examines the individual trace
entries to infer how calls are “nested.” That is, if node A calls node
B and then B calls C before returning to A, the B-to-C call is nested
within the A-to-B call. We call this the “nesting algorithm.” It is
roughly linear (in time and space) in the size of the trace. However,
it requires RPC-style communication (in which the messages are
calls and returns) to make its inferences.

node A node B node C node D
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2
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Figure 3: Timelines for example of Figure 2

Figure 3 illustrates the nesting property for the example causal
path from Figure 2. This figure shows the causal connections
between the timelines for each of the four nodes. In this example,
the call from B to C (messages 3 and 5) is nested in the call from
A to B (messages 1 and 11). The algorithm infers nesting relation-
ships by examining the timestamps of the messages in the trace.

While any given pair of calls might appear to be nested purely
by accident, if the same nesting relationship appears repeatedly in
a lengthy trace then we can infer with high probability that the
nesting represents a causal relationship between these calls. The
processing latencies in nodes B, C, and D may be calculated dir-
ectly from the message timestamps. We build multi-node call paths
based on apparent causal relationships, then apply simple statistical
methods to infer which paths are both non-accidental and signific-
ant contributors to overall system latency.

5.1.1 Details of the nesting algorithm

A call pair is a tuple describing a single call from one node to
another and its matching return. It contains the timestamps of the
two messages and the names of the nodes. The nesting algorithm
consists of four steps:

1. Find call pairs in the trace.

2. Find all possible nestings of one call pair in another, and es-
timate the likelihood of each candidate nesting.

3. Pick the most likely candidate for the causing call for each
call pair.

4. Derive call paths from the causal relationships.



We first illustrate the algorithm using the example in Figure 3.
Step (1) groups trace entries 1 and 11—the call A — B and the
return B — A—into call pair (4, B, 1,11); entries 3 and 5 into call
pair (B, C, 3, 5); and entries 7 and 9 into call pair (B, D, 7,9). (For
ease of explanation, in this example we use the message numbers
as the timestamp values.)

Step (2) examines each call pair to determine the set of calls that
might have caused it. Here, (B, C, 3,5) and (B, D, 7,9) both oc-
cur between the beginning and end of (4, B, 1,11). (4, B,1,11)is
the only call that encloses (B, C, 3,5) and (B, D,7,9). In a more
complex example, a call pair might be nested within several differ-
ent “parent” calls, which would have to be ranked by likelihood.

Step (3) chooses the most likely parent call for each call pair in
the trace as its causal parent, based on aggregate information from
all other call pairs between the same nodes. Step (4) again exam-
ines each call pair and creates a call path starting from each call pair
that was not nested in any other call pair. Since (4, B, 1,11) is the
parent for two call pairs, it creates the path A — B — C; D. The
call pairs (B, C, 3,5) and (B, C, 7, 9) do not initiate paths because
they are nested in (4, B, 1,11).

We store all path patterns in a table. If a new path matches a
path pattern already in the table, then the existing pattern is updated
with the latencies for the new path. Otherwise, a new path pattern is
initialized with the path's latencies. At the end of the algorithm, the
path patterns can be sorted by their frequency and all path patterns
can be displayed with average latencies or latency distributions for
each node.

Figure 4 shows pseudo-code for the four steps of the nesting al-
gorithm, which we now explain in more detail.

5.1.1.1 Identifying call pairs.

This part of the algorithm (procedure FindCallPairs in Figure 4)
matches call and return trace entries into call pairs using a hash
table Topencatts Which is indexed by (sender, receiver, callid)
tuples. Call identifiers are based on packet header information
and are used only to match calls with returns; they need not be
end-to-end request identifiers as used in Magpie or Pinpoint. Mes-
sages that do not have a matching call or return message are dis-
carded during this step; noise in the trace—extraneous and dropped
messages—does not impact the rest of the algorithm.

When call identifiers are not provided or are not unique (for
example, when RPC packets are retransmitted), the entries for a
given (sender, receiver, callid) are sorted by timestamp. If mul-
tiple calls occur from A — B before any returns from B — A
then each return is matched with the earliest unmatched call. This
heuristic works when no call path progresses faster than its pre-
decessors, but fails otherwise. For example, given the correct
call pairs (4, B,1,7) and (A4, B,k,l), if ¢ < k but j > [ then
the algorithm will incorrectly create the call pairs (4, B,1,l) and
(4, B,k, 7). More importantly, this heuristic cannot handle ex-
traneous or dropped messages. However, we believe that we can
find usable call identifiers in message headers in most cases, and so
we have ignored the problem so far.

This step also identifies all possible parents for each call pair.
At the time the return message of the call pair (B, C) is pro-
cessed, we find all call pairs (—, B) in Topencarrs With an earlier
call timestamp. (B, C) is nested inside all of them.

5.1.1.2 Scoring potentially-causal nestings.

A call pair (B,C,k,l) might be nested in many (A4, B,1,7)
call pairs, but it is only directly caused by one such parent. The
ScoreNestings procedure estimates the likelihood that each nesting
relationship is really a causal relationship. We do this using a score-
board that records the prevalence, in the entire trace, of the delays

1.  procedure FindCallPairs

2. for each trace entry (¢, CALL/RET, sender A, receiver B, callid id)
3. case CALL:

4. store (¢1,CALL,A,B id) in Typencaits

5. case RETURN:

6. find matching entry (¢z, CALL, B, A, id) in Topencalls
7. if match is found then

8. remove entry from Topencatis

9. update entry with return message timestamp o

10. add entry to Teatipairs

11. entry.parents := {all callpairs (t3, CALL, X, A, idz)
12. in Topencalls with t3 < tz}

13.  procedure ScoreNestings

14.  for each child (B, C, tz,t3) in Teanipairs

15. for each parent (A, B, 1, t4) in child.parents

16. scoreboard[A, B, C,tz — t1] 4+ = (1/|child.parents|)

17. procedure FindNestedPairs
18. for each child (B, C, tz,t3) in call pairs

19. maxscore := 0

20. for each p (4, B, t1, t4) in child.parents

21. penalty = /* see Section 5.1.1.3 */

22. score[p] := scoreboard[4, B, C, tz — t;]-penalty
23. if (score[p] > maxscore) then

24. maxscore := score[p]

25. parent :=p

26. parent.children := parent.children U { child }

27. procedure FindCallPaths

28. initialize hash table Tpqens
29. for each callpair (4, B, t1,t2)
30. if callpair.parents = @ then

31. root := new path starting at A

32. root.edges := { CreatePathNode(callpair, £1) }
33. if root is in Tpq¢ps then update its latencies
34, else add root to Tpaths

35. function CreatePathNode(callpair (4, B, t1,t4), tp)
36. node := new node with name B

37. node.latency := tg —

38. node.call_delay :=t; — ¢,

39. for each child in callpair.children

40. node.edges := node.edges U { CreatePathNode(child, ;) }
41. return node

Figure 4: Pseudo-code for the nesting algorithm

between the two call messages in a potentially-causal nesting.

The scoreboard represents the set of all nesting-delay tuples
(4, B, C,delta), where delta is the time difference between the
call from A to B and the subsequent call from B to C; each tuple
has an associated value. The scoreboard entries for a given nest-
ing thus form a histogram of these delay values. However, each
increment to a histogram count is weighted by the number of pos-
sible parent calls: if there are N possible parent calls for a given
child call, then the scoreboard value for each of these N tuples is
incremented by 1/N.

We actually store each histogram as a set of exponentially-sized
bins, efficiently representing the large range of delay values that
might appear in real traces. We find that 340 bins (indexing the
histogram by log, s delta) gives reasonably accurate results for
intervals between 1 msec. and 2 hours. The number of histograms
is equal to the number of (4, B, C) triples such thata call B —» C
is nested in a call A — B at least once. This number, which is
independent of trace length, is at most n®, for n nodes; in practice
it should be significantly lower.

After scoring all of the call pairs, we optionally smooth the histo-
grams by convolving them with a Gaussian normal curve. Smooth-



ing helps accuracy when there is skew in the message timestamps,
as shown in Section 7.5.6; it has little effect in traces without skew.
node C

node A node B

y y y

Figure 5: Example of parallel calls

Figure 5 shows an example in which two B — C calls are each
nested in two A — B calls, creating four possible sets of parent-
child pairings. However, the “medium-length” delay (¢t3 — ¢1 and
ts — t2) occurs twice as often as the “long” delay (¢4 — ¢1) or the
“short” delay (¢3 — t2). Thus, the histogram for (4, B,C) has a
peak at the medium-length delay.

5.1.1.3 Choosing unique parents.

The FindNestedPairs procedure chooses the most likely causal
parent for each call pair. The inference that any given nesting is
a causal relationship is based on the scoreboard generated in the
previous step, combined with simple heuristics about the parent's
calls to other possible children. For each call pair (B, C,ta,ts)
in the trace, we consider each possible parent (4, B, t1,ts) and
generate a score for the relationship. The raw score is simply the
value of (A4, B, C, tz — t1) in the scoreboard. The raw score is then
scaled using three penallties:

e Overlapping-child penalty: We count the number of children
Coverlap already assigned to the given parent that overlap in
time with the current call pair, and multiply the score by
Cov erlap_

e Same-child penalty: We count the number of children ¢same
already assigned to the given parent that have the same des-
tination as the current call pair, and multiply the score by
CS ame -

o Generic-child penalty: We count the number of children cany
already assigned to the given parent, and multiply the score
by cany” *.

The parameters z, y, and z are configurable. In our experiments,
we get the most predictable, near-optimal performance across all
workloads with £ ~ 2 and y = z = 0. However, there are indi-
vidual workloads for which different values perform better.

In Figure 5, each B — C child call has two possible A — B
parents, but each child has one parent for which the scoreboard
includes a peak at the medium-length delay (t3 — ¢; and t4 — t2).
Based on this inference, FindNestedPairs assigns each B — C
child call pair to one of the A — B parent call pairs, as shown
with the solid and dashed lines in the figure. The overlapping-child
penalty encourages FindNestedPairs to assign the two children to
different parents. Tie scores when considering parents for a given
child are broken by assigning the child to the earliest tied parent.

5.1.1.4 Creating and aggregating call paths.
The final step, FindCallPaths, coalesces the causal relationships
found in step (3) into call paths, and keeps aggregate latency stat-

istics for each path pattern. We use hash table Tpatns to find path
patterns quickly.

The latency of a node is the total time spent in processing at
that node, including at any nodes that it calls. The call_delay of a
node is computed as the time between the call to its parent and the
inferred causally-related call to this node.

5.1.2  Time and space complexity

Finding call pairs is linear in both time and space in the size of
the trace: each trace entry is examined once and put into one call
pair. Finding nested call pairs is linear in both time and space in the
total number of nesting relationships. This number is the product of
the number of trace entries and the mean per-node parallelism dur-
ing the trace. We define per-node parallelism as the average number
of candidate parents for each child (see Section 5.1.1.3). Creating
and aggregating call paths is linear in the number of messages in
the trace: each message either begins a new call path or belongs to
exactly one existing call path. Overall, the algorithm is linear in the
number of messages times the mean per-node parallelism.

5.2 The “convolution algorithm”

Unlike the nesting algorithm, our second algorithm finds causal
relationships by considering the aggregation of multiple messages,
rather than by examining messages individually. The algorithm
separates a whole-system trace into a set of per-edge traces, and
treats each of the per-edge traces as a time signal. The central idea
of the algorithm is to convert traces into time signals and then use
signal processing techniques to find the cross correlations between
signals. It considers the trace of messages from A to B separately
from the trace of messages from B to A, so this algorithm can be
used on traces of free-form message-based communication, not just
RPC-style traces.

The results of this algorithm are directed graphs, in which a node
might appear several times (e.g., A -+ B - A — C). To avoid
confusion between the graph of the distributed system itself and the
output graph, we use the term vertex for the graph vertices and node
for the components of the system.

Figure 6 summarizes the algorithm using pseudo-code. Given
a root node % and a message trace T, the algorithm first creates a
vertex z; in the output graph. Then it considers the messages with
source ¢: for each different destination node 7 in those messages,
there is a causal relationship between % and 7, so the algorithm cre-
ates a vertex z; and adds an edge from z; to z;.

The algorithm then continues the path from j by calling Process-
Node. Procedure ProcessNode calls FindCausedMessages to find
the sets of messages with source j that appear to be caused by the
messages from z to 3. Each set contains messages with a single
destination node k and a common delay d: the set indicates that a
message from j to k was sent exactly d time units after a message
from 2 to j. For each set, it adds a vertex zx with label k& and edge
(z;, ) with label d to the graph, and recursively continues along
the path from & (i.e., it creates the graph in depth-first order).

Function FindCausedMessages is the heart of the algorithm. It
computes the causal delays d, which are time shifts between the
messages arriving at § and the messages leaving 5. To find these
time shifts, it converts the messages V' from i to j into an indicator
function s4 (¢). This function is defined to be

s1(t) = 1ifV has a message in time interval [t — €, t + €]
0 otherwise
where € is a small fixed constant and [t — €, ¢t + €] is a short closed
interval. It similarly converts all messages sent from node j into
an indicator function sz(t). It then computes the cross correlation
C(t) of s2(t) and s1(t). C(t) is defined to be the convolution



1.  procedure FindPathsFromRoot(%)

2. T; := trace of messages with source ¢

3. output_graph := graph with one vertex z; labeled i

4. for each destination node 7 in T; do

5. V := messages in T; with destination 5

6. add vertex ; labeled j and edge (z;, z;)

7. to output_graph

8. ProcessNode(j, zj, V')

9. procedure ProcessNode(j, z;, V)

10. T; := trace of messages with source j

11. 04, ..., O, = FindCausedMessages(V, T} )

12. for n := 1 tom do

13. k := Op.node; W := O,,.messages

14. d := Oy .delay

15. add vertex zy labeled k and edge (z;, zx)
labeled (|W|, d) to output_graph

16. ProcessNode(k, zx, W)

17. function FindCausedMessages(V, Z)

18. m:=0

19. C := FindCorrelation(V, Z)

20. find positions of spikes of C(t)

21. for each spike position d found do

22. Z = messages in Z with a timestamp equal
to some timestamp in V shifted by d + v

23. for each destination node k in Z' do

24. m:=m-+1

25. Om.node := k; Op,.delay :=d

26. Oy, .messages :=messages to k in z

27. return O1,0s,... ,0n,

28. function FindCorrelation(V, Z)

29. 3, := indicator function for V'

30. s2 := indicator function for Z

31. return cross_correlation(sz, s1)

Figure 6: Pseudo-code for the convolution algorithm

of s and the time inverse of s;', which is why we call this the
“convolution algorithm.” Roughly speaking, C(t) has a spike at
position d if and only if s2(¢) contains a copy of s1 (t) time-shifted
by d. Figure 7 shows the convolution for an example s1(¢) and
8o (t) .

To detect the spikes, if any, in C(t), we compute the mean and
standard deviations of C. We consider a point to be a “spike” if it
is a local maximum N standard deviations above the mean, where
the parameter N is a small number (e.g., 4). There may be many
such local maxima close together. Rather than consider each one to
be a separate spike, we require at least one point that is less than S
standard deviations above the mean between spikes, where § < N
is another small number (e.g., 3). Among the candidate points for
a given spike, we choose the largest to represent the spike.

5.2.1 Discretization of the indicator function

The definition for s1 (£) assumes that £ is a continuous time para-
meter. In practice, we need to discretize time. To do so, we choose

'The convolution of two functions f(t) and g(t) is another func-
tion, denoted f ® g(t), defined by f ® g(t) = ¥ f(u)g(t —
u)du. The discrete version of this definition is (f ® g)i =

+ oo
jm—oo Jigi—i-
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Figure 7: Example of convolution output, showing two spikes with
bold lines. The x-axis represents the time shift; the y-axis roughly es-
timates the number of messages matching a given shift.

a time quantum g and then treat ¢ as an integer multiple of . The
definition of sy (¢) is then modified as follows:
s1(t) = square root of number of messages in V' during
time interval [tu, (t + 1)u), where ¢ is an integer.

Several discretizations are possible but the above definition pro-
duces the most accurate results and is what we implemented. Note
that s1 (¢) can be represented by an array. When there are time
quanta with lots of messages, if s1(t) = z and s2(t +d) = z
then the (discrete) convolution of s2(t) and s; (—¢) at position d
includes an z* term. The square root in the definition compensates
for this square. We similarly change the definition of sz (¢).

5.2.2  Dealing with delay variances

The algorithm described so far performs best when the node
delays have little variance. For example, for each message from
A to B, B sends another message to C after the same fixed delay.
When the variance is significant, we can get better results by in-
creasing the parameter v in line 22 of the algorithm, to allow delay
variations of that magnitude.

5.2.3 Dealing with undesirable paths

Further improvements to the convolution algorithm remove
“noise” (low-frequency paths), suppress the detection of accident-
ally short paths and of cycles, and suppress edges with negative
apparent delay. Space limitations prevent us from describing them
here.

5.2.4  Other improvements

Our implementation of the convolution algorithm includes nu-
merous other features to improve accuracy. For lack of space we do
not describe these improvements, but the measurements we present
in Section 7 reflect their effects.

5.2.5 Time and space complexity

The convolution algorithm must store the m messages in the
trace, and the vectors containing discretized indicator functions. At
any time, there is a constant number of such vectors. The size of
each vector is bounded by S = T/, where T is the duration of the
longest trace and g is the time quantum. Hence, the overall space
complexity is O(m + §).

The time complexity of the algorithm is proportional to the time
to traverse the trace and the time to compute convolutions of dis-
cretized indicator functions. Convolutions of vectors of size S can
be computed in time O(S log S) using fast fourier transforms. The
number of times the trace is traversed and a convolution is com-
puted is proportional to the number e of edges in the output graph



G. Hence, the overall time complexity is O(em + eSlog S). In
practice, we find that the second factor, .S log S, tends to dominate
the first.

5.3 Comparison of the two algorithms

Our two algorithms have different strengths and weaknesses. Of-
ten these strengths are complementary: sometimes one algorithm
works better, sometimes the other. Here we contrast the algorithms
in terms of their utility.

5.3.1 RPC vs. free-form messages

The nesting algorithm explicitly works only with systems that
use RPC-style communication. The convolution algorithm can find
causal relationships in any form of message-based system. The
limited applicability of the nesting algorithm is not without bene-
fits, though: because it “knows” that a system is RPC-based, it
provides a more concise representation of such systems than could
the convolution algorithm.

Some common forms of RPC-based systems pose a problem for
the nesting algorithm as we have implemented it, and currently can
only be analyzed with the convolution algorithm. If a system for-
wards RPC calls or returns asymmetrically (e.g., A calls B, B for-
wards the call to C, and C replies directly to A) then we fail to
detect this as a single RPC call. Also, if a called node replies to a
call before issuing a causally-related subsequent call, there is no ob-
vious nesting relationship between the two calls. (This can happen,
for example, when an intermediate node uses delayed write-back
caching.) We believe that the nesting algorithm can be expanded to
deal with these cases, but doing so is future work.

On the other hand, the convolution algorithm has some draw-
backs with RPC-style path patterns. Given a path pattern 4 —
B —» C - B — A, the algorithm will not only report this path,
but also A —+ B — A. This is because there is a causal relation
between A — B and B — A. If a node appears many times on
a path, the algorithm will report a large number of derived paths
that are not very interesting. We believe it is possible to automat-
ically filter out such paths, while preserving legitimate paths, by
using frequency counts; this is future work. The nesting algorithm
correctly finds the right number of instances of each pattern, as we
show in Section 7.5.2.

5.3.2 Rare events

The convolution algorithm looks for spikes in the cross correla-
tion of two signals. Therefore, it cannot be used to search for rare
events, especially those with high delay variance.

The nesting algorithm explicitly analyzes every RPC message
for its relationship with other messages, and therefore can find rare
events. However, distinguishing the rare events of interest from the
more frequent but uninteresting events is still an unsolved problem.
Also, the scoreboard mechanism described in Section 5.1 currently
biases the algorithm away from rare events: they will be found most
easily when there are few overlapping calls among the same nodes.

5.3.3 Detail required in traces

Our tools would ideally require no information about message
formats. In practice, this goal means that the algorithms should
use only information available from widely deployed standards
with self-describing formats. The convolution algorithm effect-
ively meets this ideal; it requires only timestamps and sender and
receiver identifiers.

The nesting algorithm further requires that trace entries be
marked as either RPC calls or returns. (In a few cases, this in-
formation can be inferred based on a priori knowledge of address

formats, such as UDP's “well-known” port numbers.) The al-
gorithm also performs much better if the trace system can extract
call identifiers from the RPC messages.

5.3.4 Time and space complexity

As discussed in Section 5.1.2, the nesting algorithm runs in time
and space linear in the number of traced messages times the amount
of parallelism in the trace. Generally, the trace length (in mes-
sages) dominates. As we will show in Section 7.6, practical running
times are quite low—much lower than the duration of the traces
themselves—and the space overhead is more likely to be the limit-
ing factor.

The convolution algorithm, as discussed in Section 5.2.5, has
space complexity linear in the length of the trace (measured either
by message count or total number of time quanta, whichever is lar-
ger), with a modest constant factor. Running time is the dominant
cost for the convolution algorithm; as we show in Section 7.6, it can
be much slower than the nesting algorithm. In practice, there is a
tradeoff between increased precision of the delay results (decreased
1) and longer running time.

5.3.5 Visualization

The two algorithms provide different visualizations, even when
applied to the same trace. For RPC-based systems, the nesting al-
gorithm provides a more compact output, because the convolution
algorithm does not combine calls and returns into one graph edge.

5.4 Visualization of results

The visualizations we show in this paper are rather primitive, in
the form of graphs produced by the “dot” program [8]. We use
similar but not identical formats for the output of both the nesting
and convolution algorithms.

Root
Mean latency for entire path pattern

Total count
Total latency

B
Mean latency in B and all children

Mean latency between
entry to B and entry to C

D
Mean latency in D

Figure 8: Output format for nesting algorithm

Mean latency between
entry to B and entry to D

The output of the nesting algorithm, as depicted in Figure 8, is
a graph showing the procedure call hierarchy for a specific causal
path pattern. The total number of instances for the pattern, and the
total latency for this pattern, are shown next to the first edge in the
graph. A node's ellipse includes its name and the mean latency for
all activity in the node and its children. An arrow representing the
direction of a call is labeled with the mean latency between entry
into the parent node and entry into the child node.

The nesting algorithm actually computes the full distribution for
each latency, rather than just the mean. We show only the mean
in our “dot” visualizations, to avoid cluttering the output. We have
started developing an interactive visualization tool that provides a
richer display, including delay distributions. This tool also allows
the user to sort paths by frequency or total latency, and highlights
the individual nodes that contribute the most latency.



C->B count
delay_1, ..., delay_n

B->C count

B->D count
delay_1, ..., delay_n

D->B count B->A count

delay_1, ..., delay_n

delay_1, ..., delay_n

delay_1, ..., del
elay _ elay_n @

Figure 9: Output format for convolution algorithm

With the representation of Figure 8, internal delays as shown in
Figure 2 may be calculated from the node and edge labels. Our in-
teractive tool simultaneously displays both the tree-structured view
of a path and a timeline view, which makes the internal delays ex-
plicit and clearly shows the parallelism between calls.

The nesting algorithm inherently generates trees whenever a
node calls more than one child. The convolution algorithm views
every path as a linear sequence of nodes, sometimes with multiple
visits to a node. Figure 9 shows the output format for the con-
volution algorithm given the same RPC-style system depicted in
Figure 8. Each directed edge is labeled with a set of delays, repres-
enting the time(s) that the preceding node spends before sending a
message to the next node (i.e., the shift(s) found for the spike(s)).
The delays are ordered by declining frequency. Each edge is also
labeled with the total count of messages with those delays.

6. OBTAINING TRACES

Our approach depends on tracing all (or nearly all) of the mes-
sages between nodes in the distributed system. This requirement
leads to numerous challenges. This section describes the tech-
niques we are developing to obtain traces; we discuss specific trace
sets in Section 7.1.

6.1 General concerns

Our black-box assumptions simplify the tracing problem, be-
cause we need relatively little information about each message.
The convolution algorithm needs just the timestamp, sender, and
receiver. The nesting algorithm also needs to know whether mes-
sages are calls or returns, and can benefit from call identifier in-
formation (e.g., from RPC headers), which improves the accuracy
of call-pair matching. Therefore, we need not parse the messages
too deeply into the protocol stack.

‘We might need rather large trace sets to analyze certain distrib-
uted systems. The message rate might be quite high and the trace
duration necessary for revealing interesting call path patterns might
be long. While handling large trace sets creates logistical chal-
lenges, the problem remains feasible because large traces stress
aspects of computer systems that scale well: local area network
bandwidth, and storage bandwidth and capacity.

While a suitable trace collection and analysis system might rep-
resent a significant capital cost above that of the system under test,
we intend this hardware for use during debugging. It is appropriate
to invest in debugging equipment that can be re-used for various
systems under development, especially if this investment increases
programmer productivity.

The term “black box” can be applied with more or less rigor,
depending on the granularity of the nodes of interest and on how
hard it is to extract the minimal message information that we need.
For example, the developers of the systems listed in Section 3.1
use “black box” to mean “application-code generic.” We aspire to
a more rigorous black-box ideal, a tool that requires absolutely no
support from the nodes of the system, requires no message-specific
knowledge beyond widely-deployed standards, and does not per-
turb system performance at all.

Passive network tracing can approximate this ideal, but cannot
always expose the nodes at the appropriate levels of granularity.
If the nodes of interest are, for example, processes or J2EE ob-

jects, we must obtain traces more intrusively. Non-passive tracing
compromises our zero-knowledge, zero-instrumentation, and zero-
perturbation goals, but if the costs can be minimized then our tools
are still useful. Our approach also has the advantage, over systems
(such as in Section 3.1) requiring infrastructural changes, that we
can merge traces from both passive monitoring and more intrusive
monitoring to get a unified view of a complex system built from
“legacy” components.

We are developing techniques to obtain traces at various layers
of a system, and with varying levels of intrusiveness. These include
passive network monitoring, middleware instrumentation, kernel
instrumentation, and (in certain cases) application instrumentation.
‘We describe our specific approaches in the following sections.

6.2 Passive network tracing

When the nodes communicate via a network, we can obtain mes-
sage traces through passive network tracing (or “packet sniffing”).
Passive tracing, at least in principle, does not perturb the system
under test, and requires no software changes to the system. This
enables its use in risk-averse production environments and on leg-
acy systems. Passive tracing is therefore our preferred mode.

However, while we have successfully collected and analyzed
passive traces, none of the experiments reported in this paper are
based on passive traces, so (given space constraints) we will only
briefly discuss the issues associated with passive tracing.

A packet trace requires some processing to be useful for our ana-
lysis tools. Problems include identifying nodes based on addresses
at various protocol levels; finding message boundaries when mes-
sages span packets or start in the middle of packets; and identifying
calls and returns, and extracting call identifiers for RPC protocols.
These are not novel challenges; many researchers and commercial
products have done elaborate analysis based recovering or inferring
high-level information from raw packet traces [7, 21].

6.2.1 Mechanics of passive tracing

With older broadcast-bus LANSs, it was easy to passively capture
all packets from one monitoring point. Modern switched LANs
make the problem harder. We see two possible approaches:

Port mirroring , which is supported by many switch vendors, al-
lows a switch to be configured to copy (“mirror”) some or
all packets to a dedicated monitoring port. It allows us to
treat application hosts entirely as black boxes (we need not
install any software on those hosts) and should not perturb
the system under test.

Packet sniffing at each participant host applies when the hosts
support programs such as tcpdump [14]. After trace capture,
the traces are merged in post-processing (see Section 6.5).

High packet rates can overload a sniffing system or its incoming
link, because we cannot flow-control the messages to avoid this.
The scalability of our approach depends somewhat on this issue, al-
though our algorithms tolerate some packet loss (see Section 7.5.5).

Researchers at the University of Waikato and Endace Techno-
logy [17] have achieved a capture rate of close to 20M packets/sec.
using a commodity dual-CPU server and special-purpose network
capture cards. We experimented with a relatively small server
(AlphaServer DS10, 618 MHz, Tru64 UNIX V5.1A) running tcp-



dump, and found that it could capture slightly over 25,000 packets
per second (albeit with some losses).

6.3 Tracing in a J2EE system

Many modern distributed systems are built on J2EE [25], using
Enterprise Java Beans (EJBs) to represent components. Members
of the Pinpoint project (see Section 3.3) have tools to trace inter-
EJB calls and returns, and they graciously shared their code with
us. Their tracing system [16] tags all messages on a call path with
a single end-to-end request-ID, but we can ignore the end-to-end
information, to test our algorithms as if we only had simpler traces.

J2EE-level tracing imposes runtime costs and perturbs system
performance. The Pinpoint tools are not optimized for our pur-
poses, and might never be cheap enough to run full-time in a pro-
duction environment. However, our tools are meant for perform-
ance debugging, not system management, so tracing need not be
enabled full-time. A system owner can enable tracing only during
a debugging phase, exactly the time when the owner is willing to
pay the price of some extra short-term overhead in the interest of
solving a long-term problem.

6.4 Application-level tracing

Our black-box approach does not normally involve modifying
applications to generate message traces directly, but we are not too
proud to use such traces when available. Some applications already
generate, in normal operation, sufficient tracing or logging inform-
ation for our purposes (perhaps with some post-processing).

6.5 Merging traces

We might need to merge traces collected at different points in
the distributed system (e.g., packet sniffers at multiple hosts) or at
different layers (e.g., both packet sniffing and J2EE tracing).

We simplify the trace-merging process by adopting a uniform
representation for traces, for example:

timestamp operation sender rcvr 1D

1047680084.482205 CALL_SENT nodeA nodeB id37

1047680084.483575 RET_SENT  nodeB nodeA id37

‘We then merge the individual trace entries in timestamp order. Both
algorithms described in Section 5 can handle minor clock skews,
although synchronized clocks improve our accuracy. Mills [20]
has shown that the widely-deployed NTP protocol can synchronize
clocks on the same LAN with an RMS error of under 1 msec., and
over the global Internet “usually less than 5 ms.” This accuracy
is usually more than sufficient, because trace timestamp resolution
seldom is as low as 1 msec.

This leaves several problems, such as duplicate entries (e.g.,
from sniffing packets at both ends of a link) and node-naming in-
consistencies between traces made at different levels. We have de-
veloped techniques to solve several such problems, but we have not
yet tested them adequately.

7. EXPERIMENTS AND RESULTS

In this section, we describe several experiments that show how
our tools might be used in practice. We also describe experiments
to validate the accuracy of our tools.

7.1 Trace sets

We would like to test our tools on traces from a heavily-used
“real-world” application, such as a multi-tier Web server. However,
access to such systems is tightly controlled, and we have not yet
succeeded in obtaining the necessary traces.

Therefore, in order to debug and test our algorithms and trace-
collection techniques, we have obtained several traces of varying

degrees of realism. Here we describe the trace sets and how they
were obtained; subsequent sections describe what we learned from
each trace set.

Note that these traces were not collected using purely black-box
techniques. Rather, we have chosen traces that can demonstrate
the accuracy of our algorithms: by starting with “white box” traces
and then converting them to a “black box” form (i.e., by remov-
ing information) we are able to explicitly evaluate how well the
algorithms work (see Section 7.5).

7.1.1 Trace generator

In order to test our algorithms on specific cases, including trace
scenarios we expect to be challenging, we wrote “maketrace,” a
tracelet-based trace generator. A tracelet is a template for an
ordered sequence of messages between nodes, with parameterized
Gaussian delay between messages. A tracelet can represent a spe-
cific causal path pattern through a distributed system; it can also
represent an explicit interleaving of several causal paths, if we want
to test how well our algorithms disentangle such an interleaving.

Maketrace takes a configuration file that specifies a set of trace-
lets, and for each tracelet a parameterized uniformly random
delay between sequential invocations (representing a client's “think
time”). The configuration also specifies how many instances of
each tracelet sequence run in parallel. Maketrace thus directly con-
structs arbitrarily long traces by instantiating tracelets, rather than
by generating traces as a side-effect of simulating a distributed sys-
tem.

7.1.2 J2EE traces

Our J2EE traces consist of inter-EJB calls in the PetStore v.1.3.1
example application [24], running on a single-node JBoss v.3.0.6
server [15], on a 2-CPU 1GHz Pentium III with Linux 2.4.9. A load
generator ran on the same host, emulating 24 clients with several
workload profiles and a mean inter-request think time of 7 seconds.

‘We obtained two traces, each about three hours long and includ-
ing about 1.3 million messages. (Each inter-component call results
in two messages.) In one trial, we artificially increased the delay in
one leaf component, and were able to find the added delay easily
using both of our algorithms. However, for most of the experiments
reported in this section, we used a 2000-second prefix of each trace;
this avoids excessive run times for the convolution algorithm (see
Section 7.6).

7.1.3 Received-header trace

While searching for a large, real-world application that is not
primarily RPC-based, we realized that email transit service is
ideally suited to testing the convolution algorithm. Because most
email messages pass through several servers, and almost all servers
add “Received” headers (with source, destination, and timestamp)
to each message, we can extract these Received headers and treat
them individually as entries in a trace of inter-node message trans-
missions.

(We emphasize that this is not the best way to use Received head-
ers for causal-path analysis of an email system. By treating the Re-
ceived headers of a given message as separate trace entries, rather
than directly extracting the path the message had followed, one cre-
ates an unnecessarily hard problem. However, this problem is ex-
actly the one that the convolution algorithm is meant to solve, so it
is a good test of our approach.)

One of the authors logged all of his incoming message head-
ers for this experiment. He gets lots of email (partly because he has
several email addresses that resolve to the same mailbox, and lots of
spam targets more than one of these addresses). Over two months,



he received 11,683 email messages including a total of 81,044 us-
able Received headers. A small number of Received headers were
excluded because of unparseable timestamps, or because they were
from generic hostnames, such as “localhost” or “unknown,” that
would have created false connections between many paths. We also
excluded all forwarding hops outside the corporate email system, to
avoid an explosion in the number of paths.

7.1.4 Other traces

In addition to the traces described above, we have applied our
algorithms to several other traces from real systems. These include
one gathered from a distributed file system, and another from in-
strumented inter-method communication in an embedded system.
We were able to find the correct causal paths in these traces. We
do not describe these further, both for space considerations and be-
cause the results do not illustrate any novel issues other than those
revealed by the traces described above.

7.2 Results: Tracelet-based multi-tier traces

Wi server Wi server
|ws1 eb serve | ws2 eb server |

authentication

application

server server
AP1 AP2 AUTH

S~/

database database
DB1 Server DB2 Server

application
PP server

Figure 10: Multi-tier configuration (simplified version of Figure 1)

‘We used maketrace to generate a variety of traces simulating the
multi-tier configuration shown in Figure 10. Some of these traces
have an additional 200 msec. delay inserted at node WS2, between
the serial calls to AUTH and to either AP] or AP2, so that we can
test if our algorithms correctly measure such delays. We refer to
these as added-delay traces.

To test the nesting algorithm, we generated normal and added-
delay traces including about 200,000 messages each. Figure 11
shows the results for the normal case, with the most frequent causal
path patterns ranked left to right in order of declining total latency.
While this figure is too dense to depict the particulars of any spe-
cific pattern, it shows how a load-balancing configuration, such as
in Figure 10, can generate an exponential increase in the set of
paths. In effect, there are only a few abstract paths in this figure,
and a good visualization tool (future work) would cluster together
isomorphic graphs with similar counts and delays.

‘We then ran the nesting algorithm on the added-delay trace. Fig-
ure 12 shows the “normal” and “added-delay” output for one spe-
cific causal path pattern that includes the WS2 node. One can eas-
ily infer from the delays on the graph edges (especially the edge
between WS2 and API) that there is approximately 200 msec. of
added delay in Figure 12(b), albeit slightly underestimated by the
algorithm.

We analyzed the same traces with the convolution algorithm
(e = 0.1). Figure 13 shows the results, for the same causal path
pattern as in Figure 12. This algorithm generates long paths for
RPC-style call patterns, because it looks at the call and return mes-
sages independently, rather than as unified RPCs. However, it is

(a) Normal trace

(b) Added-delay trace

Figure 12: Multi-tier results from the nesting algorithm

quite good at assigning the blame to the correct node (marked on
the edge between WS2 and AP/, in bold), and at correctly measur-
ing the extra delay.

7.3 Results: J2EE traces

We ran two traces of the PetStore system: one with no added
delay, the other with a constant 50 msec. delay added in each call
of the /mylist.jsp node.
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Figure 14: PetStore results, normal configuration (nesting algorithm)
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Figure 14 shows one frequently-invoked causal path pattern
found by the nesting algorithm, although not the most frequent
one. (The convolution algorithm produces similar results.) Fig-
ure 15 shows the same path when excess delay is inserted in node
/mylist.jsp, shown in gray. One can clearly see the excess, when
comparing this diagram to Figure 14, not only at the slow node, but
also in its parents and in the totals for the entire path. (The excess
appears to be slightly larger than the nominal 50 msec. delay ad-
ded; this might be an artifact of Linux's 10 msec clock granularity.)

7.4 Results: Received-header trace

We ran the convolution algorithm for the Received-header
(email-header) trace. With a quantum of 30 sec., the algorithm
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Figure 13: Multi-tier results from convolution algorithm
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Figure 15: PetStore results, constant-delay config. (nesting algorithm)
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reports all delays as zero, implying real delays between zero and
29 secs. As the quantum is decreased to 5 sec., the algorithm re-
ports some secondary spikes above zero secs.; Figure 16 shows the
most frequent paths from this trial. Node “names” in this figure
are arbitrary integers. Note that the primary spikes on all paths are
at zero, because most of the time messages are forwarded imme-
diately. However, some paths show secondary spikes at 10 or 15
seconds. We verified from the original trace that these spikes are
accurate.

7.5 Results: Validation of accuracy

So far we have discussed our results primarily in qualitative
terms. Here we attempt to quantify the accuracy of our algorithms.

7.5.1 Metrics for evaluating accuracy

To evaluate the accuracy of our algorithms, we developed a set of
simple metrics that quantify the discrepancies between the “ground
truth” of a trace (the actual call paths traversed during the trace)
and the call paths inferred by one of our algorithms. These discrep-
ancies are either false negatives (the algorithm failed to find a path)
or false positives (the algorithm inferred a path that wasn't there).

523 512
@~ @)
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Tpetstore/category.screen?category_id=FISH
766 3154311
) 489 478
JspServlet 0,15 0
0000 738 299+295

Summed edge-counts represent the combination of paths for accidentally
duplicated message deliveries due to a mail server configuration error at
node 38.

Figure 16: Received-header trace results (convolution algorithm)

‘We can compute false positive or negative ratios based on counts
of path patterns, path instances, or messages. For example, if the
actual system executed the path A — B — C — D twice, but the
algorithm found one instance of A —+ B — C — D, one instance
of A — B, and one instance of C — D, then:

e Counting path patterns, the algorithm had no false negatives
and two false positives.

e Counting path instances, the algorithm had one false negative
and two false positives.

e Counting messages, the algorithm failed to ascribe 3 of 6
messages to the correct path (false positives = false negat-
ives, in this case).

Of course, to compute these ratios we need a representation of
the ground truth. Fortunately, the nesting algorithm is able to pro-
duce guaranteed correct paths if we “cheat” and tag each trace mes-
sage with a path-instance-ID value. We can do this for our synthetic
traces (from Maketrace) and our PetStore traces, so we can run the
algorithm once with path-IDs and once without, and compare the
results. We can also extract exact paths from the Received-header
trace, using Message-ID email headers, and compare those paths to
the output of the convolution algorithm. We cannot, unfortunately,
evaluate false positive or negative ratios for other kinds of traces
(e.g., those obtained by packet sniffing).

Our algorithms tend to fail by generating a large variety of false



positive path patterns with low instance counts, among a set of ac-
curate patterns with high counts. Recall that our primary goal is to
identify the most frequently executed paths in the distributed sys-
tem, so a useful tool will rank-order the inferred path patterns by
count and then prune away most of the low-frequency path patterns.
Therefore, we examine whether the top IV patterns that remain after
pruning match the top N ground-truth patterns, or whether pruning
causes some of those top N ground-truth patterns to be omitted.
For a given algorithm and trace, we can plot the number of omitted
ground-truth patterns as a function of N.
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Figure 17: False negative path pattern rate vs. pattern pruning

Figure 17 plots the results for the nesting algorithm over a
maketrace-generated trace for the multi-tier configuration. (This
trace included 202,498 messages with a mean parallelism of 42.)
The false-negative rate in the figure is bounded in most cases by
1/N, indicating that most false negatives are the result of near-ties
in the ranking. (Our belief that these are really near-ties is con-
firmed by the points plotted for “2% tolerance,” where we ignored
false negatives whose instance count was within 2% of making the
top V. At 6% tolerance, almost all false negatives disappear.) Sev-
eral true false positives (at ranks 27 and 28) cause additional false
negatives for high values of N, by displacing true positives. We
ran the same tests for simpler synthetic traces and found no false
negatives except in the case of a few near ties.

‘We ran similar experiments for the convolution algorithm. It also
found the top N paths, with similar errors in the case of ties.

Our goals also include accurate measurement of path-specific
latencies internal to nodes. Accurate path inferences are obviously
a prerequisite, so we have placed more emphasis on quantifying
path inference accuracy. However, we have found that even with
relatively high error rates in inferring paths, the latencies we find
for correctly-inferred paths are within a few percent of the correct
values.

7.5.2 Testing using pathological cases

Certain special combinations of causal paths can cause our al-
gorithms to make false inferences, especially when many paths are
being executed in parallel. We devised a number of pathological
cases, depicted in Figure 18, on which we could test the accuracy
of our algorithms:

Children-parallel has B calling C twice in parallel. This breaks
all three of the nesting algorithm's child-penalty heuristics.
In most situations, it is our worst case, but it becomes one of
our best cases when delay deviations are low, or when call
parallelism is high.

Children-0/2 has node B calling node C twice in series in one
pattern, while the other pattern has no calls to C. This was a
hard case for a simpler version of the nesting algorithm that

lacked a scoreboard, and so could not assign both C calls to
the same pattern.

Children-d/cc has node B calling node C' twice in series in one
pattern, and B calling D once in the other. This is a hard
case for the nesting algorithm, especially with high paral-
lelism, because the child-penalty heuristics wrongly lead the
algorithm to assume that B is calling C and D in series.

Penalty-breaker includes two paths with multiple calls to the
same child, and one with no such call. Also, the delays on
the two longer paths are identical, causing lots of confused
assignments. This breaks two of three child-penalty heurist-
ics, and inspired the third one. It demonstrates the tradeoffs
required when selecting default values for the three penalties.

We use these test cases, as well as synthetic multi-tier traces,
in the next few experiments evaluating the accuracy of the nesting
algorithm.

7.5.3 Testing the effects of parallelism

As parallel activity increases in a trace, the nesting algorithm
has a harder time correctly assigning calls to paths. The result is
an increase in the number of false-positive path instances inferred
(which can push true paths out of the top N). We ran a series
of experiments with increasing parallelism to see how this affects
the false-positive rate; Figure 19 shows the results. The X axis in
this figure is a dependent variable, roughly linear with the average
amount of parallelism used by the trace generator.
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Figure 19: Effect of trace parallelism on nesting algorithm accuracy

Generally the algorithm's performance is moderately worsened
by increasing parallelism. The effect on the multi-tier case is some-
what more pronounced. For the Children-parallel case, increasing
parallelism actually improves performance, perhaps because the al-
gorithm has more opportunity to infer that the child calls are in
parallel.

7.5.4 Testing the effects of delay variation

Maketrace generates random delays at each node in a call, us-
ing a Gaussian distribution. We can vary the standard deviation of
these distributions to see how increasing delay variation affects the
false-positive rate for path instances; Figure 20 shows the results
for the nesting algorithm. Generally, performance worsens with in-
creasing variation. The Children-parallel and Children-d/cc cases
are especially vulnerable to variation. Note that in a real system,
one would not expect all of the node delays to have the same vari-
ance.

7.5.5 Testing the effects of message loss
We expect our tools to be used with traces collected by passive
network sniffing, which is often lossy. We can quantify the effects
of message loss on the accuracy on our algorithms, by comparing



(a) Children-parallel

(b) Children-0/2
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Figure 18: Causal path pattern combinations for pathological cases
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Figure 20: Effect of delay variation on nesting algorithm accuracy

the results of an algorithm on a loss-free trace and on a similar trace
with randomly deleted messages.

The maketrace generator allows us to model the bursty losses
typical of network sniffing. The program models a sniffer with
a peak capture rate and a finite queue, and discards packets that
would overflow this queue.
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Figure 21: Effect of message drop rate on nesting algorithm accuracy

We tested the effect of message drops on the performance of the
nesting algorithm, using several synthetic traces. Figure 21 shows
the results of numerous trials. Performance is expressed as the frac-
tion of false negative path instances. We fixed the maximum queue
length at 64 packets, and increased the peak capture rate in each
trial until the drop rate reached zero. The necessary capture rates
ranged from 115 to 605 packets/sec. (Note that the message rates in
our simulations are arbitrary and relatively low.) Each point in the
figure corresponds to a specific capture rate; thus, both the false-
negative rate and the drop rate are dependent variables.

The results show that for low drop rates (below about 1%), al-
gorithm performance is unaffected. For higher rates, but below
about 10%, performance is reduced but not unacceptable. At higher
drop rates, it is not surprising that the results are bad. A real tracing
system, therefore, must be sufficient to capture most packets, but
need not be perfect.

7.5.6  Testing the effects of clock skew

To test the effects of clock skew on traces collected at more than
one point in the network, we wrote a simple program, “skewer,” to
add per-node clock skew to an existing trace. We can then perturb
an unskewed trace by varying amounts to test how our tools cope
with skew. (Skewer is also useful to de-skew a real-world trace;
we use additional information, such as that obtained from NTP, to
remove the mean per-node skews from a multi-point trace.)
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Figure 22: Effect of clock skew on nesting algorithm accuracy

The nesting algorithm includes two features for compensating
for skew. First, it supports a configurable skew window tolerance,
which loosens comparisons between timestamps where they are
used to establish nesting relationships. Second, it allows smoothing
of each scoreboard entry, which widens peaks to make the parent-
selection step more tolerant. Figure 22 shows the multi-tier trace
with varying skew added at the WS2 node (i.e., WS2's clock runs
0 to 60 msec. fast), and a fix skew window of 30 msec. The
“no comp” curve shows inaccuracy (false-negative rate) without
skew compensation. The “comp” curve shows inaccuracy with only
the skew window enabled; this actually decreases accuracy. The
“comp+smooth” curve shows the combination of skew windows
and smoothing, which performs best for most reasonable levels of
skew. The “rev, comp+smooth” curve shows what happens if WS2's
clock instead runs slow, rather than fast, by the value on the x-axis.
The vertical marks indicate 50 msec. and 10 msec.; these are the
mean call and return delays, respectively, in the trace. The nest-



ing algorithm results in few false negatives when skews are smaller
than the sum of the skew window (i.e., one's estimate of worst-case
skew) and the actual delays, but performs badly for larger skews.

7.5.7 Accuracy of the convolution algorithm

We ran trials of the convolution algorithm on the Received-
header trace, varying the time quantum (i) from 5 secs. to 720
secs. We compared the output to a ground-truth graph extracted
directly from the email messages. Over all of the time quanta we
tried, the false-positive rate varied between 21% and 29%, with
only minor dependence on the quantum (setting p > 360 yielded
the worst results). However, if we ignore paths that are reported
with fewer than 100 messages, the false-positive rate drops to zero,
except for u = 720. (Note that such large u values are useless,
in any case, for finding non-zero delays in this trace.) In no case
did the algorithm miss any frequent real paths in this trace (i.e., the
false-negative rate for frequent paths is zero).

7.6 Results: Execution costs

We measured run time and memory costs for the experiments
in the previous sections. Note that neither program has been fully
optimized, and the convolution algorithm presents several tradeoffs
between accuracy and speed that may require some trial and error.

Table 1 shows the costs. Length gives the trace length in mes-
sages; Duration gives the elapsed time of the trace; MBytes gives
the amount of data space allocated (not counting stack or code);
CPU secs. gives the user-mode CPU time (kernel mode is negli-
gible in all cases). The table also shows the (computed) mean per-
node parallelism for the nesting algorithm, and the time quantum
() for the convolution algorithm. We ran the nesting algorithm on
a 1.7 GHz Pentium 4 running Linux 2.4.20, and the convolution
algorithm on a 667 MHz AlphaServer running Tru64 UNIX V5.1.

We ran experiments to verify the scaling properties described
in Sections 5.1.2 and 5.2.5. The nesting algorithm's run-time and
space requirements should be O(mp), where m is the trace length
in messages and p is the mean per-node parallelism. Table 1 in-
cludes rows for several different trace lengths for each of two sys-
tems, and several p values for one system, to illustrate these effects.
Costs are not quite linear in p, probably due to certain constant
space overheads for small p, and poor locality for large p.

The convolution algorithm's run-time is mostly dependent on the
trace duration and time quantum, and not much on the trace length.
Figure 23 shows CPU time measurements for the Received-header
trace, at various time quanta. The figure shows that these measure-
ments fit the S'log S curve, where S is the trace duration T divided
by the time quantum. We did not run the convolution algorithm
on the longest traces in Table 1; with our current resources, the
algorithm's run-time becomes prohibitive if the trace duration is
more than about 100,000 times the desired time precision (i.e., the
time quantum).

8. FUTURE WORK

The most important remaining work is to trace and analyze full-
scale, real-world applications with our tools. We are negotiating
with owners of several such applications for access to their sys-
tems, but privacy issues and concerns for both proprietary data and
system stability have slowed progress. We expect experiments with
these traces will force us to improve the competence and efficiency
of our algorithms, and to automate or settle the choice of free para-
meters. Each new trace we have received so far has led to improve-
ments in our algorithms.

We are extending our tools to add several significant capabilities,
including techniques for locating the causes of low-frequency high-
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Figure 23: Convolution run time vs. time quantum (Received-header
trace)

latency end-to-end behaviors. We would also like to extend our
techniques to handle lock-based interactions between nodes; we
want to know not only that node A on call path P1 often waits for
lock L, but also that L is usually being held in these cases by node
B on path P2.

We plan to develop a sliding window version of the nesting al-
gorithm that processes all messages within a time window into path
pattern instances, before processing messages in the next (overlap-
ping) time window. This modification would solve two problems:
(1) If the system demonstrates phased behavior, where some pat-
tern is frequent only in a short time interval but infrequent over the
whole trace, that pattern may be hard for the user to notice among
all of the other low-frequency patterns. However, if the pattern
is relatively frequent in one time window, then it could be much
easier to spot. (2) The algorithm scales linearly in memory usage
with the number of messages, but it cannot currently handle traces
with greater than a few million messages and a lot of parallelism.
Windowing would allow processing of much more complex traces.

The nesting algorithm produces a set of distinct causal paths.
One might want to merge similar paths to form a single visualiz-
ation of the system as a graph, where an edge between two nodes
shows the probability of a corresponding call pair. Carrasco and
Oncina [4] describe an algorithm that might work to merge paths.

So far, we have only partially addressed the visualization prob-
lem, but any truly useful tool will require clever rendering of the
outputs of our algorithms. Both Magpie [13] and NetLogger [26]
provide simple visualizations, but it is not clear if these are right
for our purposes. The Critical Path Analysis technique of Yang and
Miller [19] might also prove useful when applied to the outputs of
our algorithms.

9. SUMMARY

‘We proposed an approach to performance debugging for distrib-
uted systems. It differs from prior approaches by adopting as strict
a “black-box” model as possible, and through the use of low-level
traces, little semantic knowledge, passive monitoring, and offline
processing. We have developed two distinctly different algorithms,
each with their own strengths and weaknesses. Preliminary results,
based on several different kinds of traces, suggest that the tools do
produce useful and accurate results, and we are now working on
testing them with more real traces.
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