Life, Death, and the Critical Transition:
Finding Liveness Bugs in Systems Code

Charles Killian, James W. Anderson, Ranijit Jhala, and Anahdat
University of California, San Diego
{ckillian, jwanderson, jhala, vahda@cs.ucsd.edu

Abstract assert () statements and unhandled program excep-
tions. For our target systems however, specifying global
Modern software model checkers fisafetyviolations: breaches livenessproperties—conditions that should alwaggen-
where the system enters some bad state. However, we arguetifiglly be true—proved to be more desirable. In the above
checkinglivenessproperties offers both a richer and more natysxample, we wished to verify that eventually al Ry
ral way to search for errors, particularly in complex coment ,+4es would form a ring. Somewhat paradoxically, spec-
and distributed systems. Liveness properties specifyralgsi . : :
. . . ifying the appropriate safety property requires knowledge
system behaviors which must be satisfe@ntually but are not fying pprop Y property .q. g_
of the nature of the bug, whereas specifying the appropri-

alwayssatisfied, perhaps as a result of failure or during system . . .
initialization ate liveness property only requires knowledge of desirable

Existing software model checkers cannot verify liveness blalgh-level sys_te_m prc_)pertles. Itis gcceptgble foranode to
cause doing so requires finding an infinite execution thas dd&€ unable to join a ring temporarily, but in our case, the
not satisfy a liveness property. We present heuristics t din bug made it impossible for a node to ever join the ring,
large class of liveness violations and ttwitical transition of ~ thus violating liveness.
the execution. The critical transition is the step in an ekea Existing software model checkers focus on safety prop-
that moves the system from a state that does not currently gaties because verifying liveness poses a far greater chal-
isfy some liveness property—but where recovery is possiblelenge: the model checker cannot knewaenthe proper-
the future—to a dead state that can never achieve the lisengss should be satisfied. Identifying a liveness violatien r
property. Our software model checkerAMEMC, isolates com- jires finding arinfinite execution that will not ever sat-
pIex_hveness errors in our implementations aS?RY, CHORD, isfy the liveness property, making it impractical to find
a reliable transport protocol, and an overlay tree. - P

such violating infinite executions in real implementations
Thus, we set out to develop practical heuristics that enable
. software model checkers to determine whether a system
1 Introduction satisfies a set of liveness properties.
_) We present MCEMC, the first software model checker
Hard-to-find, non-reproducible bugs have long been theyt helps programmers find liveness violations in com-

bane of systems programmers. Such errors prove espgx systems implementations. We built our solution upon
cially challenging in unreliable distributed environmengp ee key insights:

with failures and asynchronous communication. For ex-]] o

ample, we have run our MCE implementation of the Life: To find subtle, compllcateq bugs in Q|str|_buteq sys-
PASTRY [28] overlay on the Internet and emulated en- (€MS, we should search for liveness violations in ad-
vironments for three years with occasional unexplainecdition to safety violations. Liveness properties free us
erroneous behavior: some nodes are unable to rejoin thEOmM only specifying what ought not happen—that is,
overlay after restarting. Unable to recreate the behavioreTor conditions and invariants, which may be hope-
we never succeeded in tracking down the cause of the efessly complicated or simply unknown—and instead let
ror. us specify what ought to happen.

Motivated by this and similarly subtle bugs, we turneDeath: Instead of searching for general liveness viola-
to model checking to assist us in building robust dis-tions, which require finding violating infinite execu-
tributed systems. Unfortunately, existing model check-tions, we focus on a large subset: those that esead
ers able to run on systems implementations (rathestates from which liveness can never be achieved re-
than specifications) can only findafety violations— gardless of any subsequent actions. We thereby reduce
counterexamples of a specified condition that should althe problem of determining liveness to searching for vi-
ways be true. Simple examples of safety properties ar@lations of previously unknown safety properties. We

present a novel heuristic to identify dead states and tbe classical definitions). We then discuss the relatignshi
cate executions leading to them by combining exhadmetween liveness and safety properties.

tive search with long random executions. Distributed Systems as Program&Ve model-check dis-

Critical Transition: To understand and fix a liveness eitributed systems by composing every node and a simu-

ror, the developer must painstakingly analyze the telaged network environment in a single program (@f.1

of thousands of steps of the non-live execution to firfar the details of preparing unmodified systems for model

where and how the system became dead. We show hevecking). A progranstateis an assignment of values to

to extend our random execution technique to automs@riables. Atransition maps an input state to an output

ically search for theritical transition, the step that ir- State. Aprogramcomprises a set of variables, a set of ini-

recoverably cuts off all possibility of ever reaching al states, and a set of transitions.pfogram execution

live state in the future. is an infinite sequence of states, beginning in an initial

rogram state, with every subsequent state resulting from

To further help the programmerund_erstand the cause okg8 application of some transition (an atomic set of ma-
error, we developed B, an interactive debugger providchine instructions) to its predecessor. Intuitively, tie¢ s
ing forward and backward stepping through global evengg.yariables corresponds to those of every node together
per-node state inspection, and event graph visualizatigf the distributed environment, such as the messages in
In our experience, M8, together with the critical transi-the network. Thus, a state encodes a snapshot of the entire
tion automatically found by MCEMC, reduced the typi- gistributed system at a given instant in time.
cal human time required to find and fix liveness violations Conceptually, each node maintains a set of pending
from a few hours to less than 20 minutes. events. At each step in the execution, the model checker

Using MACEMC and Mps, we found our RSTRY selects one of the nodes and an event pending at that node.
bug: under certain circumstances, a node attemptingTi9e model checker then runs the appropriate event han-
rejoin a RSTRY ring using the same identifier was ungjer to transition the system to a new state. The handler
able to join because its join messages were forwardedyigy send messages that get added to event queues of des-
unjoined nodes. This error was both sufficiently obscufifation nodes or schedule timers to add more events to its
and difficult to fix that we decided to check howIEEP- pending set. Upon completing an event handler, control
ASTRY [1], the reference implementation, dealt with thifeturns to the model checker and we repeat the process.
problem. The following log entry in a recent version of theach program execution corresponds to a scheduling of
code (1.4.3) suggests thak EEPASTRY likely observed a nterleaved events and a sequence of transitions.

similar problem: “Dropped JoinRequest on rapid rejoi'g . L . .

. . roperties A state predicatas a logical predicate over
problem — There was a problem with nodes not being a Iee rogram variables. Each state predicate evaluates to
to quickly rejoin if they used the same Nodeld. Didn’t fin brog ' b

RUE or FALSE in any given state. We say that a state

the cause of this bug, but can no longer reproduce.” e
We have found 52 b NGABEMC thus f satisfieqresp.,violateg a state predicate if the predicate
€ have foun Ugs usINgAJE thus aracross oyaluates ta RUE (resp.,FALSE) in the state.
a variety of complex systems. While our experience is re-

stricted to MACEMC, we believe our random executiorafety Propertya statement of the forralwaysp where
algorithms for finding liveness violations and the criti- p is asafety (state) predicaté\n executionsatisfiesa
cal transition generalize to any state-exploration modefafety property ifeverystate in the execution satisfies
checker capable of replaying executions. It should therep. Conversely, an executionolatesa safety property if
fore be possible to use this technique with systems presomestate in the execution violates

pared for other model checkers by defining liveness prqRyeness Propertya statement of the foraways eventu-
erties for those systems. Although our approach to findingy|ly ,, wherep is aliveness (state) predicatiéve define
|iveneSS Violations iS necessarily a heuristic—a pI‘OOf Ofprogram states to be in exact|y one of three Categories
a liveness violation requires finding an infinite execution yith respect to a liveness propertive, dead or tran-
that never satisfies liveness—we have not had any falsgjent A live state satisfies. A transient state does not
positives among the set of identified violations to date. satisfyp, but some execution through the state leads to a
live state. A dead state does not satigfiand no execu-
tion through the state leads to a live state. An execution
2 System Model satisfiesa liveness property if every suffix of the execu-
tion contains a live state. In other words, an execution
Software model checkers find errors by exploring thesatisfies the liveness property if the system enters a live
space of possible executions for systems implementationstate infinitely often during the execution. Conversely,
We establish the MceEMC system model with our sim- an executiorviolatesa liveness property if the execu-
plified definitions of programs and properties (see [19] fortion has a suffix without any live states.

System Name Property
Pastry | AllNodes | Eventually Vn € nodes: n.(successor)* = nodes

Test that all nodes are reached by following successor gmifitom each node|

SizeMatch Always Vn € nodes: n.myright.size() + n.myleft.size() = n.myleafset.size()

Test the sanity of the leafset size compared to left and sghsizes.

Chord | AllNodes | Eventually Vn € nodes: n.(successor)” = nodes

Test that all nodes are reached by following successor gmsifitom each node}

SuccPred Always Vn € nodes: {n.predecessor = n.me <= n.successor = n.me}

Test that a node’s predecessor is itself if and only if itxegsor is itself.

RandTree| OneRoot | Eventually for exactlyl n € nodes: n.isRoot

Test that exactly one node believes itself to be the root node

Timers Always Vn € nodes: {(n.state = init)||(n.recovery.nextScheduled () # 0)}

Test that either the node stateist, or the recovery timer is scheduled.

MaceTransport| AllAcked | Eventually Vn € nodes: n.inflightSize() =0

Test that no messages are in-flight (i.e., not acknowledged)

No corresponding safety property identified.

Table 1:Example predicates from systems tested usingcEMC. Eventuallyrefers here td\lways Eventuallgorresponding to
Liveness properties, andwayscorresponds to Safety properties. The syntax allows aaegwpression expansion *’, used in the
AlINodes property.

It is important to stress that liveness properties, unlifiest dead state. For example, when checking an overlay
safety properties, apply over entire program executiotnse (cf.56), we found a violating execution of the “One-
rather than individual states. Classically, states cahaotRoot” liveness state predicate in Table 1, in which two
called live (only executions)—we use the term live stateees formed independently and never merged. The criti-
for clarity. The intuition behind the definition of livenesal transition incorrectly left theecovery timer of a node
properties is that any violation of a liveness state pradical unscheduled in the presence of disjoint trees. Because
should only be temporary: in any live execution, regardnly A had knowledge of members in the other tree, the
less of some violating states, there must be a future statetocol had no means to recover.

in the execution satisfying the liveness predicate. Our work focuses on finding DS liveness violations. We
Table 1 shows example predicates from systems wsuld have found these violations by using safety prop-
have tested in MCEMC. We use the same liveness precrties specifying that the system never enters the corre-
icate for RSTRY and GHORD, as both form rings with sponding dead states. Unfortunately, these safety proper-
successor pointers. ties are often impossible to identiéypriori. For instance,
Liveness/Safety DualityWe divide executions violating consider the liveness property “AllNodes” forHORD
liveness into two categories: Transient-state and De&#own in Table 1: eventually, all nodes should be reach-
state.Transient-state (TS) liveness violatiorsrrespond able by following successor pointers. We found a viola-
to executions with a suffix containing only transient stateon of this property caused by our failure to maintain
For example, consider a system comprising two servéf§ invariant that in a one-node ring, a node’s predeces-
and a randomized job scheduling process. The liven&8§ and successor should be itself. Upon finding this error,
property is that eventually, the cumulative load should Mé added the corresponding safety property feio&D.
balanced between the servers. In one TS liveness vidfdhile we now see this as an “obvious” safety property, we
tion, the job scheduling process repeatedly prefers cigue that exhaustively listing all such safety properties
server over the other. Along a resulting infinite executiof,priori is much more difficult than specifying desirable
the cumulative load is never balanced. However, at evdiggness properties.
point along this execution, it is possible for the system to Moreover, liveness properties can identify errors that in
recover, e.g., the scheduler could have balanced the |paaktice are infeasible to find using safety properties-Con
by giving enough jobs to the underutilized server. Thusider the “AllAcked” property for our implementation of
all violating states are transient and the system never antransport protocol, shown in Table 1. The property is
ters a dead state. for the test application, which sends a configurable total
Dead-state (DS) liveness violatiomsrrespond to an number of messages to a destination. It states that all sent
execution with any dead state (by definition all states fahessages should eventually be acknowledged by the des-
lowing a dead state must also be dead because recovi@ation (assuming no permanent failures): the transport
is impossible). Here, the violating execution takesrie adds a message to thieflight queue upon sending and
ical transitionfrom the last transient (or live) state to theemoves it when it is acknowledged. The corresponding

safety property would have to capture the following: “Al-
ways, for each message in theflight queue or retrans-)
mission timer queue, either the message is in flight (in th: transient
network), or in the destination’s receive socket buffer, ot

the receiver’s correspondin.comingConnection.next
is less than the message sequence number, or an {
knowledgment is in flight from the destination to the
sender with a sequence number greater than or equal s
the message sequence number, or the same acknowle
ment is in the sender’s receive socket buffer, or a re
set message is in flight between the sender and receive

(in either direction), or...” Thus, attempting to Spe‘C'Figure 1:State Exploration We perform bounded depth-first

ify certain conditions with safety properties quickly bes'earch (BDFS) from the initial state (or search prefix): npest

comes overwhelming and hopelessly complicated, €SHBhery states are indeterminate, i.e., not live, and thesher
cially when contrasted with the simplicity and succinCttead or transient. We execute random walks from the pegipher
ness of the liveness property: “Eventually, for allin states and flag walks not reaching live states as suspectadtvi
nodes,n.inflightSize() = 0, i.e., that eventually there ing executions.

should be no packets in flight.

Thus, we recommend the following iterative processfaor =~) . .
finding subtle protocol errors in complex concurrent enyjalization typically takes many more transitions (cf. +ig

ronments. A developer begins by writing desirable high!€ 2). the vast majority of states reached at the periphery
level liveness properties. As these liveness properties t)(?f the exhaustlve search are notlllve. We call these states
ically define the correct system behavior in steady-stigdeterminatebecause at this point we do not yet know
operation, they are relatively easy to specify. Developd¥gether they are dead or transient.
can then leverage insight from DS liveness violations fep 2: Random WalksWhile the exhaustive search is
add new safety properties. In Table 1, we show safetgsential to finding a candidate set of liveness violations,
properties that became apparent while analyzing the ctorprune the false positives, we must distinguish the dead
responding DS liveness violations. While safety propdrom the transient states. To do so, we perform long ran-
ties are often less intuitive, the errors they catch are tygm walks to give the system sufficient time to enter a
ically easier to understand—the bugs usually do not ilive state. If the system still fails to reach a live state by
volve complex global state and lie close to the operatioiie end of the walk, we flag the execution as a suspected
that trigger the violations. liveness violation. Our random walks typically span tens
or hundreds of thousands of transitions to minimize the
)) likelihood of false positives.
3 Model CheCkmg with MACEMC Step 3: Isolating the Critical Transition The model
checker presents the execution exhibiting a suspected live
This section presents our algorithms for finding liveneggss violation to the developer to assist in locating the
and safety violations in systems implementations. We figdtual error. The programmer cannot understand the bug
potential liveness violations via a three-step state expg?mmy by examining the first states that are not live, as
ration process. While our techniques do not present progfgse are almost always transient states, i.e., there exist
for the existence of a liveness violation, we have thus fgtecutions that would transition these initial indetermi-
observed no false positives. In practice, all flagged violgate states to live states. Thus, we developed an algo-
tions must be human-verified, which is reasonable sing@&m to automatically isolate theritical transition that

they point to bugs which must be fixed. As shown in Figrreversibly moves the system from a transient state to a
ure 1, our process isolates executions leading the sysiggad state.

to dead states where recovery to a configuration satisfying
the liveness state predicate becomes impossible.

Step 1: Bounded depth-first search (BDFS)Ve begin
by searching from an initial state with a bounded depti¥e now describe the details of our algorithms. Suppose
first search. We exhaustively explore all executions uptttat MACEMC is given a system, a safety propeatyays
some fixed depth in a depth-first manner and then repgatand a liveness propergrventuallyp;.

with an increased depth bound. Due to state explosion, weur algorithmMaceMC_Search (Algorithm 1) system-

can only exhaustively explore up to a relatively shalloatically explores the space of possible executions. Each
depth of transitions (on the order of 25-30); as system imixecution is characterized by the sequence of choices

live

critical
transition

unsafe

3.1 Finding Violating Executions

Algorithm 1 MaceMC_Search transitions (cf.§4.4 for settingd,,..). At the it" step,

Input: Depthincrement MaceMC_Simulator calls the procedur@oss with i, the
depth =0 sequence, and the number of ready events to determine
repeat pending node event pairs to execute, and then executes the

if Sequences(depth) is empty then handler for the chosen event on the chosen node to obtain
depth = depth + increment the state reached aftértransitions. If this state violates
Reset system the given safety predicate, théthaceMC_Simulator re-
seq = next sequence ifequences(depth) ports the safety violation. If this state is beyond the dearc
MaceMC_Simulator(seq) depth and satisfies the given liveness predicate, then the
until STOPPING CONDITION execution has not violated the liveness property and the

algorithm returns. Only considering liveness for states be
yond the search depth is important because otherwise a
made to determine the node-event pair to be executediva state within the periphery would prevent us from find-
each step. We iterate over all the sequences of choiceingfliveness bugs that enter the dead state beyond the pe-
some fixed length and explore the states visited in the eiphery. If the loop terminates aftet,,., steps, then we
ecution resulting from the sequence of choices. Consideturn the execution as a suspected liveness violation.

the set of all executions bounded to a given defipih.
These executions form a tree by branching whenever
execution makes a different choice from another. To det)
mine the order of executions, we simply perform a dept .-aceMC‘S'mUIator together have the effect of exhaus-

first traversal over the tree formed by this depth bount(l.}{ely segrching all executions of bounc_ied depths and then
Sequences(depth) returns a sequence of integers indica erforming random walks from the periphery of the states

ing which child to follow in the tree during the executionr.eaqgled in the exhaustive searghss(s, seg, k) retums
i*™ element of the sequeneey if 7 is less tharseq|

It starts by returning a sequence of 0’s, and each timégf lenath of th q ber b
is called it increases the sequence, searching all possE & egg (;)k (;:'hseqlljenc_erilor s?m?hrar}. Ot';n nu.'t“ erbe-
sequences. For each sequendeceMC_Search initial- ween0 andk otherwise. Thus, for the firgeg| iter-

; : th

izes the system by resetting the values of all nodes’ va?E?t?s’MicefMC‘Sc;_m”mo; selectst thgseq[[ﬂ %Iement .

ables to their initial values and then calls the procedu € Set of pending node event pairs, therey ensuring
at we exhaustively search the space of all executions

%mbining Exhaustive Search and Random Walks
e procedureloss ensures thaMaceMC_Search and

MaceMC_Simulator to explore the states visited along th . .
execution corresponding to the sequence. After searchﬂ epth |seg|. Upon rgachlng the end of the supplied
all sequences of lengtiiepth, we repeat with sequence§e uence, the execution corresponds to a rgndom walk
of increasing depth. We cannot search extreme syst8hi€ndt dmas — |seq| performed from the periphery of
depths due to the exponential growth in state space. W exhaustive search. By ensuru_ﬁ),gar Is large enoggh
they have not been necessary to date, optimizations s ndreds of thousands of transitions), we can give the

as multiple random walks or best-first search may enhar?é@tt?m enough otpportulr_uty t(t) rteaé:h a .It|vetﬁ_tate. I ﬂle ei(
coverage over initial system states. ecution never enters a live state despite this opportunity,

we flag the execution as a suspected liveness violation.

Algorithm 2 MaceMC_Simulator
Input: Sequenceaegq of integers
for : = 010 d,,,4, dO
readyEvents = set of pendingnode, event) pairs
eventnum = Toss(i, seq, |readyFvents|)
(node, event) = readyFvents|[eventnum)
Simulateevent on node

3.2 Finding the Critical Transition

If M ACEMC reaches the maximum random walk depth
dmae Without entering a live state, we have a suspected
liveness violation. The execution meets one of two condi-

. o tions:
if ps is violated then
signal SAFETY VIOLATION Condition 1 C1): The execution is a DS liveness viola-
if ¢ > depth and p; is satisfiedhen tion, meaning the system will never recover. The execu-
return tion should be brought to the attention of the program-
signal SUSPECTEDLIVENESSVIOLATION mer to locate and fix the error.

Condition 2 C2): The execution does not reach any live
Algorithm 2, MaceMC_Simulator, takes a sequence of states, but might still in the future. The execution should
integers as input and simulates the resulting execution usse brought to the attention of the programmer to deter-
ing the sequence of choices corresponding to the integersnine whether to proceed by increasitg,, or by in-
MaceMC_Simulator simulates an execution of up &, .. specting the execution for a bug.

Before discussing how we distinguish between the twdore takeg) (K - dyq0 - log derit) time (Note thatd,,;; <
cases, consider an execution that does enter a dead siatg).

(meets condition C1). The programmer now faces theln addition to the full execution that left the system
daunting and time consuming task of wading through teimsa dead state and the critical transitidp.;;, we also

of thousands of events to isolate the protocol or implgresent to the programmer the event sequence that shares
mentation error that transitioned the system to a det@ longest common prefix with the DS liveness violation
state. Recall that while the system may enter a transi@mt ended in a live state. In our experience, the combina-
state early, typically a much later critical transition flga tion of knowing the critical transition and comparing it to
pushes the system into a dead state. After attemptingatgimilar execution that achieves liveness is invaluable in
find liveness errors manually when only the violating eXinding the actual error.

ecution was available, we set out to develop an algorithmTwo interesting corner cases arise in the
to automatically locate the critical transition. Impotl§n FindCritical Transition algorithm. The first case oc-
this same procedure also heuristically identifies whethgirs when Phase 1 cannot locate a dead state (indicated

an execution meets C1 or C2. BY dewrr > dimaz/2 in line 7). In this case, we conclude
_ _ — — that as the critical transition does not appear early
Algorithm 3 FindCriticalTransition enough, the system was not given enough opportunity to
Input: ExecutionE non-live from stepd;,i t0 dinas recover during the random walk. Thus, case C2 holds.
Input: Number of Random Walks The developer should raisé,.., and repeat. If raising
Output: (Critical Transitiond.;;, Condition C1 or C2) 4 does not resolve the problem, the developer should
1. {Phase 1: Exponential Seasch consider the possibility that this execution is a TS livenes
2: if not Recovers(E, dinit, K) thenreturn (dini+,C2) violation. To help this analysis, McEMC provides the
3 deurr = dinit set of live executions similar to the violating execution,
4: repeat but the developer must isolate the problem. In the second
5 dprev = deurr case, we find no live executions even when in the initial
6: deurr =2 X deury state (line 2); either the critical transition is @t.;; (the
7 i dewrr > dinao /2 thenreturn (deyrr,C2) initial state), or, more likely, we did not set,., high
8: until not Recovers(E, deurr, k) enough. The programmer can typically determine with
o: {Phase 2: Binary Sear¢th ease whether the system conditioniat, contains a bug.
10: {dprev is highest known recoveraldle If not, once again we conclude that case C2 holds and
11: {deurr is lowest believed irrecoverajle raised, ., and repeat Algorithm 1.
12: loop
13: if (dprev = dewrr — 1) thenreturn (deyrr,C1)
14: dmid = (dprev + dcur?")/2 i i
1o if Recovers(b domr) then vy — duu 4 Implementation Details

=
S

else deurr = dmid This section describes several subtle details in our

MACEMC implementation. While we believe the tech-

Algorithm 3 shows our two-phase method for locatingiques described in Section 3 could be applied to any
the critical transition. It takes as input the executibn state-exploration model checker capable of replaying ex-
from the initial random walk, which from steg,,;; on- ecutions, M\CEMC operates on systems implemented
wards never reached a live state even after executinguging the MACE compiler and C++ language exten-
the maximum deptld,,,.... The functionRecovers(E,i,k) sions[18]. MACE introduces syntax to structure each node
performs up tck random walks starting from thé" state as a state machine with atomic handlers corresponding
on the executiork to the depthd,,,, and returnsSTRUE to events such as message reception, timers firing, etc.
if any of these walks hit a live state, indicating that thil ACE implementations consist of C++ code in appropri-
ith state should be marked transient; aR8LSE oth- ately identified code blocks describing system state vari-
erwise, indicating that th&" state is dead. In the firstables and event handler methods; and theck com-
phase, MCEMC doublesd..,,.,- until Recovers indicates piler outputs C++ code ready to run across the Internet
thatd.,.. is dead.d,,., and the resultingl....- place an by generating classes and methods to handle event dis-
upper bound on the critical transition, and the known liyeatch, serialization, timers, callbacks, etcad& imple-
stated,., serves as a lower bound. In the second phaseentations perform comparably or better than hand-tuned
MACEMC performs a binary search usiifecovers to implementations. Leveraging ME code frees us from
find the critical transition as thiérst dead statel...;; be- the laborious task of modifying source code to isolate the
tween dpre, and deyrr. If we performk random walks execution of the system, e.g., to control network com-
from each state along the execution, then the above protemication events, time, and other sources of potential

input. Thus, using McE-implemented systems dramatin practice. For example, a system may branch based on
ically improves the accessibility of model checking to thie relative value of timestamps (e.g., for message time-

typical programmer. out). But if the model checker were to use actual val-
ues of time returned bget t i meof day(), this com-
4.1 Preparing the System parison might always be forced along one branch as

the simulator fires events faster than a live execution.
To model check a system, the user writes a driver a@paus, MACEMC must represent time abstractly enough
plication suitable for model checking that should initiako permit exhaustive exploration, yet concretely enough to
ize the system, perform desired system input events, amdy explore feasible executions. In addition AWMEMC
check high-level system progress with liveness propeequires that executions be deterministically replayable
ties. For example, to look for bugs in a file distributioiby supplying an identical sequence of chosen numbers
protocol, the test driver could have one node supply tier all non-deterministic operations, including calls to
file, and the remaining nodes request the file. The livget t i neof day.
ness property would then require that all nodes have rewwe observed that systems tend to use time to: (i) man-
ceived the file and the file contents match. Or for a coage the passage of real time, e.g., to compare two times-
sensus protocol, a simulated driver could propose a ddémps when deciding whether a timeout should occur,
ferent value from each node, and the liveness propesty (ii) export the equivalent of monotonically increas-
would be that each node eventually chooses a value angl sequence numbers, e.g., to uniquely order a sin-
that all chosen values match. TheAWEMC application gle node’s messages. Therefore, we address the prob-
links with the simulated driver, the user’s compiled\VE |em of managing time by introducing two new AdE
object files, and McE libraries. MACEMC simulates a object primitives—MaceTi ne and Monot oneTi me—
distributed environment to execute the system—Iloading obtain and compare time values. When running
different simulator-specific libraries for random numbercross a real network, both objects are wrappers around
generation, timer scheduling, and message transport-g#a t i meof day. However, VACEMC treats every com-
explore a variety of event orderings for a particular syparison betweeNaceTi me objects as a call tdoss and
tem state and input condition. implementsvbnot oneTi me objects with counters. De-
Non-determinism To exhaustively and correctly ex-velopers concerned with negative clock adjustments (and
plore different event orderings of the system, we mu&ore generally non-monotoridnot oneTi ne imple-
ensure that the model checker controls all sourcesnaentations) can strictly uskaceTi ne to avoid miss-
non-determinism. So far, we have assumed that thg bugs, at the cost of extra states to explore. Com-
scheduling of pendingnode, event pairs accounts for pared to state of the art model checkers, this approach
all non-determinism, but real systems often exhibit noffees developers from manually replacing time-based non-
determinisnwithin the event handlers themselves, due tgeterminism with calls tdoss, while limiting the amount
e.g., randomized algorithms and comparing timestamgéneedless non-determinism.
When being model checked, ME systems automati-
cally use thg deterministic simulated random numb_er 9802 Mitigating State Explosion
erator provided by MCEMC and the support for simu-
lated time, which we discuss below. Furthermore, we u€#e stumbling block for model-checking systems is the
special implementations of the ACE libraries that inter- exponential explosion of the state space as the search
nally call Toss at every non-deterministic choice pointdepth increases. NCcEMC mitigates this problem using
For example, the TCP transport service u3ess to four techniques to find bugs deep in the search space.
decide whether to break a socket connection, the URP siryctured Transitions The event-driven, non-

transport service use®ss to determine which messagey|ocking nature of McE code significantly simplifies the

to deliver (allowing out-of-order messages) and when {gsk of model-checking McE implementations and im-
drop messages, and the application simulator 088s proves its effectiveness. In the worst case, a model checker
to determine whether to reset a node. Thus, by systemguyid have to check all possible orderings of the assem-
ically exploring thesequencesf return values ofloss per instructions across nodes with pending events, which
(as described iMlaceMC Search in the previous sec- would make itimpractical to explore more than a few hun-
tion), MACEMC analyzes all different sequences of ingred lines of code across a small number of nodes. Model
ternal non-deterministic choices. Additionally, thisoa¥s checkers must develop techniques for identifying larger
MACEMC to deterministically replay executions for &tomic steps. Some use manual marking, while others in-
given sequence of choices. terpose communication primitives. Non-blocking, atomic
Time Time introduces non-determinism, resulting in exevent handlers in McEe allow us to use event-handler
ecutions that may not be replayable or, worse, impossiblede blocks as the fundamental unit of execution. Once

a given code block runs to completion, we return controlimber of live executions of sufficient length, i.e., exe-
to MACEMC. At this point, MACEMC checks for viola- cutions where all liveness conditions have been satisfied,
tions of any safety or liveness conditions based on glotzdll nodes have joined, and the system has entered steady-
system state. state operation. We then proceed as normal from one of
ghese live prefixes with exhaustive searches for safety vi-
Rlations followed by random walks from the perimeter to
&%olate and verify liveness violations. We found thesP

}Y bug described in the introduction using a prefix-based
rch.

2. State Hashing When the code associated with
particular event handler completes without a violatio
MACEMC calculates a hash of the resulting system sta
This state consists of the concatenation of the values'&f.
all per-node state variables and the contents of all per?g-a
ing, system-wide events. The programmer may option-
ally annotate McCE code to ignore the value of state
variables believed to not contribute meaningfully to the L
uniqueness of global system state, or to format the striftgd Biasing Random Walks

representation into a canonical form to avoid unneeded

state explosion (such as the order of elements in a s¥¢ found that choosing among the set of all possible ac-
MaceMC_Simulator checks the hash of a newly-enteretions with equal probability had two undesirable conse-
state against all previous state hashes. When it finds a gquences. First, the returned error paths had unlikely event
plicate hash, MCEMC breaks out of the current execusequences that obfuscated the real cause of the violation.
tion and begins the next sequence. In our experience, fhig example, the system generated a sequence where the
allows MACEMC to avoid long random walks for 50-90same timer fired seven times in a row with no interven-
percent of all executions, yielding speedups of 2-10. ing events, which would be unlikely in reality. Second,
these unlikely sequences slowed system progress, requir-

3. Stateless SearchMACEMC performs b"JletraCk'wing longer random walks to reach a live state. Setting

by re-executing the system with the sequence of choic
. - » large enough to ensure that we had allowed enough

used to reach an earlier state, similar to the approach takéti

. ime to reach live states slowé&thdCritical Transition by
by Verisoft [11]. For example, to backtrack from the sys-

. at least a factor of ten.

tem state characterized by the sequefticd, 0) to a sub- - _
sequent system state characterized by choosing the séVe therefore modifiedioss to take a set of weights cor-
quence0, 4, 1), MACEMC reruns the system from its ini-responding to the rough likelihood of each event occurring
tial state, re-executing the event handlers that corresspdh Practice.Toss returns an event chosen randomly with
to choosing event8 and4 before moving to a different the corresponding probabilities. For example, we may pri-
portion of the state space by choosing the event associgifize application events higher than message arrivals,
with value 1. This approach is simple to implement an8nd message arrivals higher than timers firing. In this way,
does not require storing all of the necessary state (sta#R biasthe system to search event sequences in the ran-
heap, registers) to restore the program to an intermedi@@n walk with the hope of reaching a live state sooner, if
state. However, it incurs additional CPU overhead to raossible, and making the error paths easier to understand.
execute system states previously explored. We have foungiasing the random walks to common sequences may
trading additional CPU for memory in this manner to bgin counter to the intuition that model checkers should
reasonable because CPU time has not proven to be a lipiish the system into corner conditions difficult to pre-
tation in isolating bugs for MCEMC. However, the state- dict or reason about. However, recall that we run random
less approach Is not fundamental tOMVEMC.—WG are walks only after performing exhaustive searches to a cer-
presently exploring hybrid approaches that involve stagin depth. Thus, the states reached by the periphery of the
ing some state such as sequences for best-first searcBitigaustive search encompass many of these tricky corner
or state for checkpointing and restoring system statesctses, and the system has already started on a path leading
save CPU time. to—or has even entered—a dead state.

4. Prefix-based SearcltSearching from an initial global One downside to this approach is that the programmer
state suffers the drawback of not reaching significantiyust set the relative weights for different types of events.
past initialization for the distributed systems we considén our experience, however, every event has had a straight-
Further, failures during the initial join phase do not haverward rough relative probability weighting. Furthereth
the opportunity to exercise code paths dealing with faileductions in average depth before transitioning to a live
ures in normal operation because they simply look lilstate and the ease of understanding the violating execu-
an aborted join attempt (e.g., resulting from dropped mé®ns returned by MCEMC have been worthwhile. If set-
sages) followed by a retry. To find violations in steadying the weights proves challenging for a particular sys-
state system operation, we runAREMC to output a tem, MACEMC can be run with unbiased random walks.

initially reach a live state are much greater than what

can be found with exhaustive searchaMC found

0.8 . only 60% of executions reached a live state fond#-
P TRANSPORTafter considering 50 steps (the edge of what
S o6l i can be exhaustively searched using state-of-the-art model
5 checkers), less than 1% of executions f@em® TREE and
2 o4l 4 CHORD, and none of the executions foA®TRY.
s i

oz | [el

~ Chord ———- 5 MACEMC Debugger
/:/,‘/I - ' 1 PaStry .
%10 100 1000 10000

Although MACEMC flags violating executions and iden-
tifies the critical transition that likely led the system to
Figure 2:CDF of simulator steps to a live state at a search depﬁ‘hdead state, the develope_r must still understand the se-
of 15. guence of events to determine the root cause of the error.
This process typically involves manually inspecting the
log files and hand-drawing sketches of evolving system
4.4 Tuning MACEMC state. To simplify this process, we builtdé, our debug-
ging tool with support for interactive execution, replay,
In addition to event weights discussed above\dMC |og analysis, and visualization of system state across in-
may be tuned by setting,.., (random walk depth)k dividual nodes and transitions. B4 is similar in func-
(number of random walks), and a wide variety of knoln to other work in distributed debuggers such as the
turning features on and off. Feature knobs include wheth§pDs Checker [22] and Friday [10]. b allows the pro-
to test nOde fai|ureS, SOCket failureS, UDP dl’OpS, UDP r®'ammert0: (|) perform Sing'e Step System execution both
ordering, and the number of simulated nodes, and are ggjiward and backward, (i) jump to a particular step, (iii)
erally easy to set based on the target test environmentyranch execution from a step to explore a different path,
Settingk is a bit more complexk represents the trade<iv) run to liveness, (v) select a specific node and step
off between the time to complete the critical transition ajhrough events only for that node, (vi) list all the steps
gorithm and the possibility that the reported critical traiwhere a particular event occurred, (vii) filter the log us-
sition is before the actual critical transition. This o®uling regular expressions, and (vid)ff the states between
whenk random executions aof,,,., steps did not satisfy two steps or the same step across different executions by
liveness, but some other path could have. We informallgmparing against a second, similar log file.
refer to this occurrence as “near dead”. In our tests, weypMpg also generates event graphs that depict inter-node
general usé between 20 and 60. At 60, we have not olgopmmunication. It orders the graph by nodes on the x-
served any prematurely reported critical transitions)evhigxis and simulator steps on the y-axis. Each entry in the
at 20 we occasionally observe the reported critical trangkaph describes a simulated event, including the tramsitio
tion off by up to 2 steps. To tunke, the programmer con-call stack and all message fields. Directional arrows rep-
siders the output critical transition. If it is not obvioulw resent message transmissions, and other visual cues high-
it is the critical transition, the programmer can incre&selight dropped messages, node failures, etc.
and re-run to refine the results. MDB recreates the system state by analyzing detailed
Finally, we discuss how to s@;,.... We ran MACEMC |og files produced by MCEMC. While searching for vi-
over four systems using random walks to sample tbgtions, MACEMC runs with all system logging disabled
state space beyond an exhaustive search to 15 steps. folgmaximum efficiency. Upon discovering a violation,
ure 2 plots the fraction of executions that reached the filglacEMC automatically replays the path with full log-
live state at a given depth. What we observe is that ging. The resulting log consists of annotations: (i) writ-
these four systems, since all sample executions react@fl by the programmer, (ii) generated automatically by
a live state by 10,000 steps, a random execution that takgs Mace compiler marking the beginning and end of
80,000 steps to reach a live state would be a significazich transition, (i) produced by the simulator runtime
outlier, and likely somewhere along the execution it béhraries, such as timer scheduling and message queuing
came trapped in a region of dead states. Setfipg. too and delivery, and (iv) generated by the simulator to track
low generally leads to the critical transition algorithm rehe progress of the run, including random number requests
porting condition C2, which is what we treat as the signahd results, the node simulated at each step, and the state
to increasel, q. - of the entire system after each step. For our runs, logs
Figure 2 also illustrates that the depths required ¢an span millions of entries (hundreds to thousands of

Simulator steps to liveness

$./ndb error.log
(mdb 0) j 5
(mdb 5) filediff live.log

localaddress=2.0.0.1:10201

out=[

— OutgoingConnection(1.0.0.1:10201, connection=Corninattfo(cwnd=2, packetsSent2; acksReceivedk packetsRetransmitted=0),
— inflight=[6002 — Messagelnfo(sed002, syn=0, retries=0, timeout=true)],

- rtbuf=[], sendbuf=[], curseq=6002, dupacks=0, las6801)

+ OutgoingConnection(1.0.0.1:10201, connection=Conpnatifo(cwnd=1, packetsSentt acksReceiveds3; packetsRetransmitted=0),
+ inflight=[6001 — Messagelnfo(sed001, syn=L1, retries=0, timeout=true)],

+ rtbuf=[], sendbuf=[Messagel nfo(segq=6002, syn=0, timer=0, retries=0, timeout=true)], curseq=6002, dupacks=0, las6}

]

in=[]

—timer<retransmissionTimes ([dest=1.0.0.1:10201, msg=Messagelnfo(s€062, syn=0, retries=0, timeout=true)])
+timer<retransmissionTimer ([dest=1.0.0.1:10201, msg=Messagelnfo(ség61, syn=1, retries=0, timeout=true)])

Figure 3:MpB session. Lines with differences are shown in italiesiidicates the error log+ the live log), with differing text
shown in bold. The receiver is IP address 1.0.0.1 and theesén@.0.0.1.

1. APProute

eventually every message should be acknowledged (un-
2. comectionreser 1€SS the connection closes).

by TIMEOUT;

APP route after MACEMC found a violating execution of the
“AllAcked” property in Table 1, where a sender at-
tempts to send two messages to a receiver. Figure 4 shows

Onmen a pictorial version of the event graphs automatically

TRANSITION generated by MB; the actual event graph is text-based

6. (ARY: nkron for convenience and contains more detail. In Step 1, the

1 sender sends a data packet with the SYN flag set and

expected 2002] W} sequence number 2001. In Step 2, the retransmission
B (AR unkcown timer causes the connection to close andd4TRANS-

SYN +D
3.

Connection 4.
RESET on new SYN

o revamemeon | PORT signals an error to the application. The application
W timer responds by attempting to resend the packet, causing
A 3o R MACETRANSPORT to open a new connection with
) sequence number 6001. At this point, both the old

11. [WARN: unknown

ackignored1 “SYN 2001” and the new “SYN 6001” packets are in
flight. In Step 3, the network delivers the packet for the
Figure 4: Automatically generated event graph foraE- new 6001 connection, and the receiver replies by sending
TRANSPORTIiveness bug. an “ACK 6001” message. In Step 4, the network delivers
the out-of-order “SYN 2001” message, and the receiver
responds by closing the connection on 6001, thinking it is
megabytes). stale, and opening a new incoming connection for 2001.

To demonstrate the utility of our debugging tools for Unfortunately, in Step 5 (the critical transition) the
diagnosing and fixing errors, we consider a case stuggnder receives the "ACK 6001.” Believing the 6000-
with a bug in MACETRANSPORT a reliable, in-order, sequence connection to be established, the sender trans-
message de”very transport with dup"cate-suppressms “DATA 6002,” at odds with the receiver’s view. From
and TCP-friendly congestion-control built over UDP. Unhere on, the execution states are dead as the receiver keeps
like TCP, MACETRANSPORTIs fundamentally messageignoring the “DATA 6002” packet, sending ACKs for the
rather than stream-oriented, making it a better match #01 connectioninstead, while the sender continues to re-
certain higher-level application semantics. As such gatfiransmit the “DATA 6002" packet, believing it to be the
than using sequence numbers to denote byte offsetss@guence number for the established connection.
with TCP, MACETRANSPORT assigns an incrementing We illustrate a portion of an MB session analyzing
sequence number to each packet. To obtain lower-latettmg bug in Figure 3. We load the error log in 0\,
communication, MCETRANSPORT avoids a three-way jump to the critical transition step (5), amiff the state
handshake to establish initial sequence numbers. A keyh the live path with the longest shared prefix (out-
high-level liveness property for MCETRANSPORTIS that put by MACEMC while searching for the critical tran-

sition (see§3.2)). The excerpt shows the state for the System| Bugs | Liveness | Safety Loc
sender node. The key insight from this output is that {(nMaceTranspor{ 11 5 6 585/3200
the live execution (lines indicated with), the retransmis- RandTree| 17 12 5 309/2000
sion timer is scheduled with “SYN 6001,” meaning that Pastry| 5 5 0 621/3300
the packet could be retransmitted and the receiver could Chord | 19 9 10 | 254/2200
become resynchronized with the sender. Comparing the Totals | 52 31 21

differences with the violating execution (lines indicated
with —), where 6001 has been removed from ihtight Table 2:Summary of bugs found for each system. LOC=Lines
map and timer because of the ACK, allows us to ideﬂf_code and_ reflects both theAdE code size and the generated
tify and fix the bug by attaching a monotonically increa&** ¢0de size.
ing identifier in the SYN packets, implemented using a
Monot oneTi me object. Now, when the receiver gets thipw; we leave a detailed discussion of each bug we found
“SYN 2001” message out of order, it correctly concludag a technical report [17].
from the identifier that the message is stale and should beypical MACEMC run times in our tests have been
ignored, allowing acknowledgment of the “DATA 6002from less than a second to a few days. The median time
message. for the search algorithm has been about 5 minutes. Typical
critical-transition algorithm runtimes are from 1 minuoe t
3 hours, with the median time being about 9 minutes.

6 Experiences RANDTREE implements a random overlay tree with a
maximum degree designed to be resilient to node failures
We have used McEMC to find safety and liveness bugsind network partitions. This tree forms the backbone for
in a variety of systems implemented inAdE, includ- a number of higher-level aggregation and gossip services
ing a reliable transport protocol, an overlay tregsP including our implementations of Bullet [21] and Ran-
TRY, and GHORD. With the exception of BORD, we Sub [20]. We have run RND TREE across emulated and
ran MACEMC over mature implementations manually deeal wide-area networks for three years, working out most
bugged both in local- and wide-area settingsaddMC of the initial protocol errors.
found several subtle bugs in each system that caused VIRAND TREENodes send a “Join” message to a bootstrap
olations of high-level liveness properties. All violat®nnode, who in turn forwards the request up the tree to the
(save some found in KORD, see below) were beyond thaoot. Each node then forwards the request randomly down
scope of existing software model checkers because thetke-tree to find a node with available capacity to take on
rors manifested themselves at depths far beyond what gaflew child. The new parent adds the requesting node to
be exhaustively searched. We used the debugging proggsshild set and opens a TCP connection to the child. A
with CHORD as control—we first performed manual detJoinReply” message from parent to child confirms the
bugging of a new implementation ofHORD and then new relationship.
employed MACEMC to compare the set of bugs foundProperty. A critical high-level liveness property for
through manual and automated debugging. RANDTREE (and other overlay tree implementations) is
Table 2 summarizes the bugs found witm®EMC to that all nodes should eventually become part of a single
date. This includes 52 bugs found in four systems. Spapanning tree.
ning the three mature systems, the 33 bugs across 1500/e use four separate ACE liveness properties to cap-
lines of MACE code correspond to one bug for every 5fure this intuition: (i) there are no loops when following
lines of code. M\CEMC actually checks the generategarent pointers, (ii) a node is either the root or has a par-
C++ code, corresponding to one bug for every 250 linest, (iii) there is only one root (shown in Table 1), and
of code. In the only comparable check of a complex diiv) each nodeV’s parent maintains it as a child, ands
tributed system, CMC found approximately one bug fahildren believeV to be their parent.
every 300 lines of code in three versions of the AODViolation. MACEMC found a liveness violation where
routing protocol [25]. Interestingly, more than 50% of thewo nodesA, D have a nod&” in their child set, even
bugs found by CMC were memory handling errors (22/4BoughC’s parent pointer refers tB. Along the violating
according to Table 4 [25]) and all were safety violationexecution(' initially tries to join the tree undeB, which
The fact that M\CEMC finds nearly the same rate of erforwards the request tel. A acceptsC as a child and
rors while focusing on an entirely different class of livesends it a “JoinReply” message. Before establishing the
ness errors demonstrates the complementary nature ofdtienection,C' experiences a node reset, losing all state.
bugs found by checking for liveness rather than safety vid; however, now establishes the prior connection with
lations. To demonstrate the nature and complexity of livdre newC', which receives the “JoinReply’ and ignores it
ness violations we detail two representative violations bgaving been reinitialized). Nod€ then attempts to join

the tree but this time is routed 0, who accepts’ as a at this procedure in the event graph, we saw that there was
child. Node A assumes that if the TCP socketdbdoes indeed a probe from client2 to client0. However, client2
not break, the child has received the “JoinReply” messageaored the response to this probe. We next jumped to the
and therefore does not perform any recovery. TAURr- transition in MbB corresponding to the probe response
ever remains in the child sets dfand D. from the event graph. In fact, clientO reported that client2
Bug. The critical transition for this execution is the stepias its predecessor, so client2 did not correct the error.

whereC’ receives the “JoinReply” froml. MDB reveals giarting at the initial state in b8 we stepped through

that upon receiving the messageignores the messagegjiento's transitions, checking its state after each step t
completely, without sending a “Remove” messageiio gee \when the error symptom occurs. After 5 steps, client0

Along the longest livaalternatepath found from the state e ceives a message that causes it to update its predecessor
prior to the critical transition, we find that instead of 'Syt notits successor. thus causing the bug.

ceiving A’s join reply message, gets a request from the

higher-level application asking it to join the overlay neBU9- This problem arose because we based our original
work, which causes’ to transition into a “joining” mode implementation of @ORD on the original protocol [30],

from its previous “init’ mode. In this alternate paté, where a joining node explicitly notified its predecessor

subsequently receives's “JoinReply” message, and corihat it had joined. We then updated our implementation

rectly handles it by sending a “Remove” message. Thusto the revised protocol [31], which eliminated this noti-
we deduced that the bug was(fs ignoring of “JoinRe- fication and specified that all routing state should be up-
ply” messages when in the “init’ mode. We fix the probqated upon learning of a new node. However, while we

lem by ensuring that a “Remove” reply is sentin this modgmoved the join notification in our revisions, we failed
as well. to implement the new requirements for updating routing

tate, which we overlooked because it concerned a seem-

CHORD structures an overlay in a ring such that ”90“? ctly implementing the new protocol description.
have pointers to their successor and predecessor in the .)
key-space. To join the overlay a new node gets its Iore_OveraII, both our manual testing and model checking

decessor and successor from another node. A node ins@piroaches found slightly different sets of bugs. On the
itself in the ring by telling its successor to update its pr@ne hand, manual testing found many of the correctness
decessor pointer, and a stabilize procedure ensures gléigs and also fixed several performance issues (which
successor and predecessor pointers are correct throt@iot be found using McEMC). Manual testing re-
each node probing its successor. quired _that we spend at least half of our time trying to
Property. We use a liveness property to specify that amete_rmme Wh_ether or not an error even occurred. A_smgle
nodes should eventually become part of a single ring (segg)hcatlon failure may have been caused by an artifact of

Table 1). This minimal correctness condition guarante@$ €xperiment, or simply the fact that the liveness prop-
that routing reach the correct node. erties had not yet been satisfied. Because of these com-

Violation. MACEMC found a liveness violation in theP!€xities, identifying errors by hand took anywhere from
very first path it considered. This was not unexpectett Minutes to several hours per bug.
given that GiORD had not been tested yet. However, the On the other hand, WMceEMC did find some addi-
critical transition algorithm returned transition 0 andheo tional correctness bugs and moreover required less hu-
dition C2, implying that the algorithm could not determan time to locate the errors. MEMC examines the
mine if the path had run long enough to reach liveness.state-snapshot across all nodes after each atomic event and
Looking at the event graph, we saw the nodes finishesports only known bugs, thereby eliminating the guess-
their initial join quickly (step 11), and spent the remairwork of determining whether an error actually occurred.
ing steps performing periodic recovery. This process sugirthermore, the model checker outputs which property
gested that the system as a whole was dead, since reacfsiigd and exactly how to reproduce the circumstances of
a live state would probably not require tens of thousantie failure. MACEMC also produces a verbose log and
of transitions when the initial join took only 11. event graph, and in the case of liveness violations, an al-
MDB showed us that mid-way through the executiotgernate path which would have been successful. These fea-
client0’s successor pointer was clientO (implying that ftires make it much easier to verify and identify bugs using
believed it was in a ring of size 1), which caused the livéd ACEMC, without the hassle of conducting experiments
ness predicate to fail. The other nodes’ successor pointi require running many hosts on a network. We spent
correctly followed from clientl to client2 to client0. Weonly 10 minutes to an hour using AMEMC to find the
believed thestabilize procedure should correct this situasame bugs that we painstakingly identified earlier with
tion, expecting client2 to discover that clientO (its stescemanual testing; and we found the new bugs (those not
sor) was in a self-loop and correct the situation. Lookirgaught with manual testing) in only tens of minutes.

7 Related Work plementations of network protocols [24] and file systems
[34]. JavAa PATHFINDER [14] takes an approach similar to

Our work is related to several techniques for finding errogaviC for Java programs. Unlike \£RISOFT, CMC, and

in software systems that fall under the broad umbrella gfva PATHFINDER, MACEMC addresses the challenges

Model Checking. of finding liveness violations in systems code and simpli-

Classical Model Checking. “Model Checking,” i.e., fying the task of isolating the cause of a violation.

checking a system described as a graph (or a Kripke stryfgdel Checking by Abstraction. A different approach
ture) was a model of a temporal logic formula indepegs model checking software implementations is to st
dently invented in [6, 27]. Advances likBymmetry Re- siractthem to obtain a finite-state model of the program,
duction, Partial-Order Reductignand Symbolic Model \yhich is then explored exhaustively [3,4, 7,8, 12, 16] or
Checkinghave enabled the practical analysis of hardwalg% to a bounded depth using a SAT-solver [5,33]. Of
circuits [2, 23], cache-coherence and cryptographic pigz ahove, only EAVER and BANDERA can be used for
tocols [9], and distributed systems and CommUnicatioﬁ\ﬁaness-checking of concurrent programs, and they re-

protocols [15], which introduced the idea of state-hashiggiire a user to manually specify how to abstract the pro-
used by MACEMC. However, the tools described abovgram into a finite-state model.

require the analyzed software to be specified in a to?slblating Causes from Violations.Naik et al. [26] and
specific language, using the state graph of the system can- ' '

structed either before or during the analysis. Thus, whi goce [13] propose ways to isolate the cause of a safety

they are excellent for quickly findingpecificatiorerrors violation by computing the difference between a violating

. . R ..run and the closest non-violating one AMEMC instead

early in the design cycle, itis difficult to use them to verif o .

. ; ses a combination of random walks and binary search to

the systeménplementationsMACEMC by contrast tests . . o . . A

. . . o . isolate the critical transition causing a liveness viaafi

the C++ implementation directly, finding bugs both in the . . .

. . . and then uses a live path with a common prefix to help the

design and the implementation.

) programmer understand the root cause of the bug.
Model Checking by Random Walks. West [32] pro-
posed the idea of using random walks to analyze net-
working protocols whose state spaces were too large & Conclusions
exhaustive search. Sivaraj and Gopalakrishnan [29] pro-
pose a method for iterating exhaustive search and randph@ most insidious bugs in complex distributed systems
walks to find bugs in cache-coherence protocols. Both#&e those that occur after some unpredictable sequence
the above were applied to check safety properties in sg$-asynchronous interactions and failures. Such bugs are
tems described using specialized languages yielding firdifficult to reproduce—let alone fix—and typically mani-
state systems. In contrast,AdEMC uses random walksfest themselves as executions where the system is unable
to find liveness bugs by classifying states as dead or trggeverenter some desired state after an error occurs. In
sient, and further, to pinpoint the critical transition. other words, these bugs correspond to violationkvef
Model Checking by Systematic ExecutionTwo model nessproperties that capture the designer’s intention of
checkers that directly analyze implementations writtdrow the system should behave in steady-state operation.
in C and C++ are ¥RISOFT [11] and CMC [25]. Though prior software model checkers have dramatically
VERISOFTviews the entire system as sevepabcesses improved our ability to find and eliminate errors, elusive
communicating through message queues, semaphoresays like the subtle error we found iR®TRY have been
shared variablesgisible to VERISOFT. It schedules thesebeyond their reach, as they only find violationssafety
processes and traps calls that access shared resourcepr@yerties.
choosing the process to execute at each such trap pointie have described techniques that enable software
the scheduler can exhaustively explore all possible intemodel checkers to heuristically isolate the complex bugs
leavings of the processes’ executions. In addition, it penat cause liveness violations in systems implementations
forms stateless search and partial order reduction alpwid key insight behind our work is that many interest-
it to find critical errors in a variety of complex programsng liveness violations correspond to the system enter-
Unfortunately, when we usedBrISOFTto model-check ing a dead state, from which recovery to the desired
MACE services, it was unable to exploit the atomicity dftate is impossible. Though a safety property describing
MACE's transitions, and this combined with the statelesiead states exists mathematically, it is often too com-
search meant that it was unable to exhaustively searclpkex and implementation-specific for the programmer to
the depths required to find the bugsaBEMC found. A specify without knowing the exact bug in the first place.
more recent approach, CMC [25], also directly execut&ébus, we have found that the process of finding the er-
the code and explores different executions by interpasts that cause liveness violations often reveals previ-
ing at the scheduler level. CMC has found errors in inously unknown safety properties, which can be used to

find and fix more errors. We have useca®EMC to find

31 liveness (and 21 safety) errors inallE implementa-
tions of four complex distributed systems. We believe th [5]
our technigues—a combination of state-exploration, ran-
dom walks, critical transition identification, andi— [16]
radically expand the scope of implementation model

checkers to include liveness violations, thereby enainPg
programmers to isolate subtle errors in systems imple-
mentations.

[14]

[18]
Acknowledgements

We would like to thank our shepherd, Petros Maniatis, f{19]
his many insights and contributions to this paper, and our

. . 20

anonymous reviewers, for their valuable comments. [20]

References [21]

[1] Freepastry: an open-source implementation of pastgnifed for 22

deployment in the internet. http: //freepastry.rice. (22]
edu, 2006.

[2] ALUR, R., HENZINGER, T., MANG, F., QADEER, S., RaJA- 23]

MANI, S., AND TASIRAN, S. MoCHA: modularity in model
checking. InComputer-aided Verification (CAVA. Hu and
M. Vardi, Eds., Lecture Notes in Computer Science 142
Springer-Verlag, 1998, pp. 521-525.

BALL, T., AND RAJAMANI, S. The SLAM project: debugging
system software via static analysis. Rninciples of Programming
Languages (POPL(2002).

CHEN, H., AND WAGNER, D. MOPS: an infrastructure for exam-
ining security properties of software. @omputer and Communi-
cations Security (CCSp002).

CLARKE, E., KROENING, D.,AND LERDA, F. A tool for check-
ing ANSI-C programs. InTools and Algorithms for the Con-
struction and Analysis of Systems (TACAZ)04), K. Jensen and
A. Podelski, Eds., vol. 2988 dfecture Notes in Computer Science
pp. 168-176.

CLARKE, E. M., AND EMERSON, E. A. Synthesis of synchro-
nization skeletons for branching time temporal logic.Lbgic of
Programs(1981), Lecture Notes in Computer Science 131.
CoOK, B., PODELSKI, A., AND RYBALCHENKO, A. Termination
proofs for systems code. Rrogramming Language Design and
Implementation (PLDI}2006).

CORBETT, J., DWYER, M., HATCLIFF, J., RASAREANU, C.,
RoBBY, LAUBACH, S.,AND ZHENG, H. Bandera : Extracting
finite-state models from Java source code.Intiernational Con-
ference on Software Engineering (ICSED00).

DiLL, D., DREXLER, A., Hu, A., AND YANG, C. H. Protocol
verification as a hardware design aid.liternational Conference
on Computer Design (ICCDO)L992).

GEELS, D., ALTEKAR, G., MANIATIS, P., ROSCOE T., AND
STOICA, |. Friday: Global comprehension for distributed replay.

In Networked Systems Design and Implementation (N&DO7).
GODEFROID, P. Model checking for programming languages us@z]
ing Verisoft. InPrinciples of Programming Languages (POPL)
(1997).
GRAF, S.,AND SAIDI, H. Construction of abstract state graph£33]
with PVS. InComputer-aided Verification (CAVl.ecture Notes
in Computer Science 1254. 1997, pp. 72-83.

GROCE, A., AND VISSER W. What went wrong: Explaining (34]
counterexamples. 18pin Model Checking and Software Verifi-
cation (SPIN)2003).

foq
3
[25]
[

5] (2]

[27]

(6]
(28]
(7]
[29]
(8]
[30]

El
[31]
[20]
[11]

[12]

(23]

HAVELUND, K., AND PRESSBURGERT. Model checking Java
programs using Java PathfindeSoftware Tools for Technology
Transfer (STTT) 2(4)2000), 72—-84.

HoLzMANN, G. The Spin model checkellransactions on Soft-
ware Engineering 236 (1997), 279-295.

HOLzZMANN, G. Logic verification of ANSI-C code with SPIN.
In Spin Model Checking and Software Verification (SR2000),
Lecture Notes in Computer Science 1885.

KILLIAN, C., ANDERSON J., HALA, R., AND VAHDAT, A.
Life, death, and the critical transition: Finding livendssgs in
systems code. Tech. rep., University of California, Sangbie
http:// mace. ucsd. edu/ paper s/ MaceMCTR. pdf .
KILLIAN , C., ANDERSON J. W., BRAUD, R., HALA, R.,AND
VAHDAT, A. Mace: Language support for building distributed
systems. IrProgramming Languages Design and Implementation
(PLDI) (2007).

KINDLER, E. Safety and liveness properties: A surv&ATCS-
Bulletin, 53 (1994).

KosTIC, D., RODRIGUEZ A., ALBRECHT, J., BHIRUD, A., AND
VAHDAT, A. Using Random Subsets to Build Scalable Network
Services. INUSENIX Symposium on Internet Technologies and
Systems (USIT$2003).

KOsSTIC, D., RODRIGUEZ, A., ALBRECHT, J.,AND VAHDAT, A.
Bullet: High bandwidth data dissemination using an ovenfesh.

In Symposium on Operating Systems Principles (SQER)3).

Lur, X., LIN, W., PaN, A., AND ZHANG, Z. Wids checker: Com-
bating bugs in distributed systems. Networked Systems Design
and Implementation (NSD(R007).

McCMILLAN, K. L. A methodology for hardware verification us-
ing compositional model checkin&cience of Computer Program-
ming 37 (1-3) (2000), 279-309.

MUSUVATHI, M., AND ENGLER, D. R. Model checking large
network protocol implementations. Metworked Systems Design
and Implementation (NSD(R004).

MUSUVATHI, M., PARK, D., CHOu, A., ENGLER, D., AND
DiLL, D. CMC: A pragmatic approach to model checking real
code. InOperating Systems Design and Implementation (OSDI)
(2002).

NAIK, M., BALL, T., AND RAJAMANI, S. From symptom to
cause: Localizing errors in counterexample tracesPrinciples

of Programming Languages (POP{3003).

QUEILLE, J., AND SIFAKIS, J. Specification and verification
of concurrent systems in CESAR. International Symposium
on ProgrammingM. Dezani-Ciancaglini and U. Montanari, Eds.,
Lecture Notes in Computer Science 137. Springer-Verlag119
ROWSTRON A., AND DRUSCHEL, P. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-pgstesns. In
Middleware(2001).

SIVARAJ, H., AND GOPALAKRISHNAN, G. Random walk
based heuristic algorithms for distributed memory modelckh
ing. Electr. Notes Theor. Comput. Sci.,89(2003).

STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, F., AND
BALAKRISHNAN, H. Chord: A scalable peer to peer lookup ser-
vice for internet applications. IACM Special Interest Group on
Data Communication (SIGCOMMR001).

SToICA, |., MORRIS, R., LIBEN-NOWELL, D., KARGER, D. R.,
KAASHOEK, M. F., DABEK, F., AND BALAKRISHNAN, H.
Chord: a scalable peer-to-peer lookup protocol for inteamppli-
cations.Transactions on Networking 11 (2003), 17-32.

WEST, C. H. Protocol validation by random state exploration. In
6th IFIP WG 6.1 International Workshop on Protocol Specifica
tion, Testing, and Verificatio(i.986).

XIE, Y., AND AIKEN, A. Scalable error detection using boolean
satisfiability. InPrinciples of Programming Languages (POPL)
(2005).

YANG, J., TWOHEY, P., ENGLER, D. R.,AND MUSUVATHI, M.
Using model checking to find serious file system errorsOper-
ating Systems Design and Implementation (O$20p4).

