

# **THE LAST WORD** IN FILE SYSTEMS

**Bill Moore** 

Sr Staff Engineer Sun Microsystems



### **ZFS Overview**

- Provable data integrity
  - Detects and corrects silent data corruption
- Immense capacity
  - The world's first 128-bit filesystem
- Simple administration
  - "You're going to put a lot of people out of work."
     Jarod Jenson, ZFS beta customer
- Smokin' performance



### **Trouble With Existing Filesystems**

- No defense against silent data corruption
  - Any defect in disk, controller, cable, driver, or firmware can corrupt data silently; like running a server without ECC memory
- Brutal to manage
  - Labels, partitions, volumes, provisioning, grow/shrink, /etc/vfstab...
  - Lots of limits: filesystem/volume size, file size, number of files, files per directory, number of snapshots, ...
  - Not portable between platforms (e.g. x86 to/from SPARC)
- Dog slow
  - Linear-time create, fat locks, fixed block size, naïve prefetch, slow random writes, dirty region logging



### **ZFS Objective**

### **End the Suffering**

#### Data management should be a pleasure

- Simple
- Powerful
- Safe
- Fast



### Design



### You Can't Get There From Here

### **Free Your Mind**

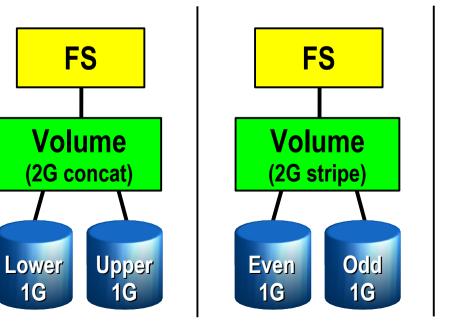
- Figure out why it's gotten so complicated
- Blow away 20 years of obsolete assumptions
- Design an integrated system from scratch

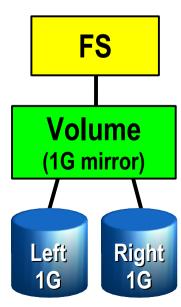


## **ZFS Design Principles**

#### Pooled storage

- Completely eliminates the antique notion of volumes
- Does for storage what VM did for memory
- End-to-end data integrity
  - Historically considered "too expensive"
  - Turns out, no it isn't
  - And the alternative is unacceptable
- Transactional operation
  - Keeps things always consistent on disk
  - Removes almost all constraints on I/O order
  - Allows us to get <u>huge</u> performance wins



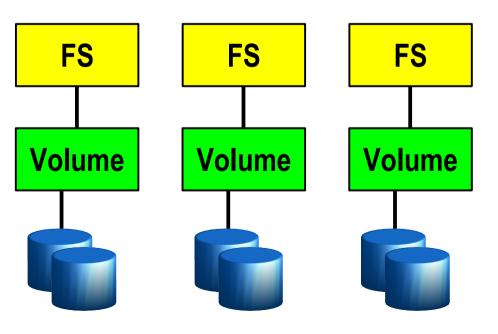


### Why Volumes Exist

In the beginning, each filesystem managed a single disk.



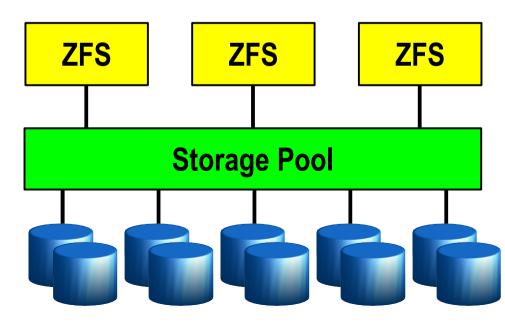
- Customers wanted more space, bandwidth, reliability
  - Rewrite filesystems to handle many disks: hard
  - Insert a little shim ("volume") to cobble disks together: easy
- An industry grew up around the FS/volume model
  - Filesystems, volume managers sold as separate products
  - Inherent problems in FS/volume interface can't be fixed








### FS/Volume Model vs. ZFS


#### **Traditional Volumes**

- Abstraction: virtual disk
- Partition/volume for each FS
- Grow/shrink by hand
- Each FS has limited bandwidth
- Storage is fragmented, stranded



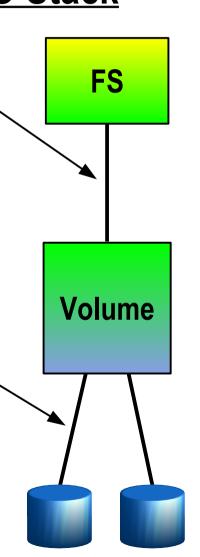
### **ZFS Pooled Storage**

- Abstraction: malloc/free
- No partitions to manage
- Grow/shrink automatically
- All bandwidth always available
- All storage in the pool is shared

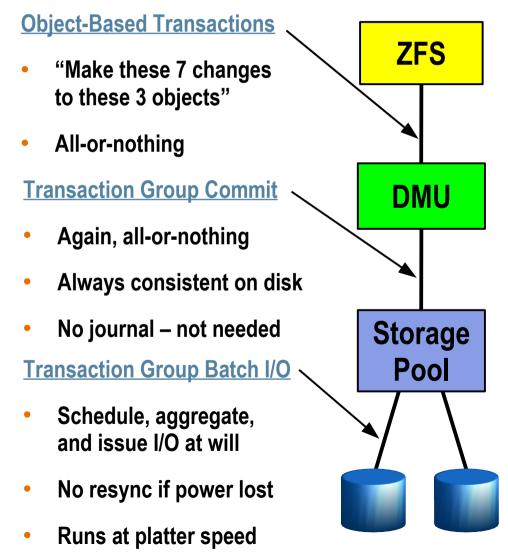




### FS/Volume Model vs. ZFS


### FS/Volume I/O Stack

#### Block Device Interface


- "Write this block, then that block, ..."
- Loss of power = loss of on-disk consistency
- Workaround: journaling, which is slow & complex

#### Block Device Interface

- Write each block to each disk immediately to keep mirrors in sync
- Loss of power = resync
- Synchronous and slow



### ZFS I/O Stack



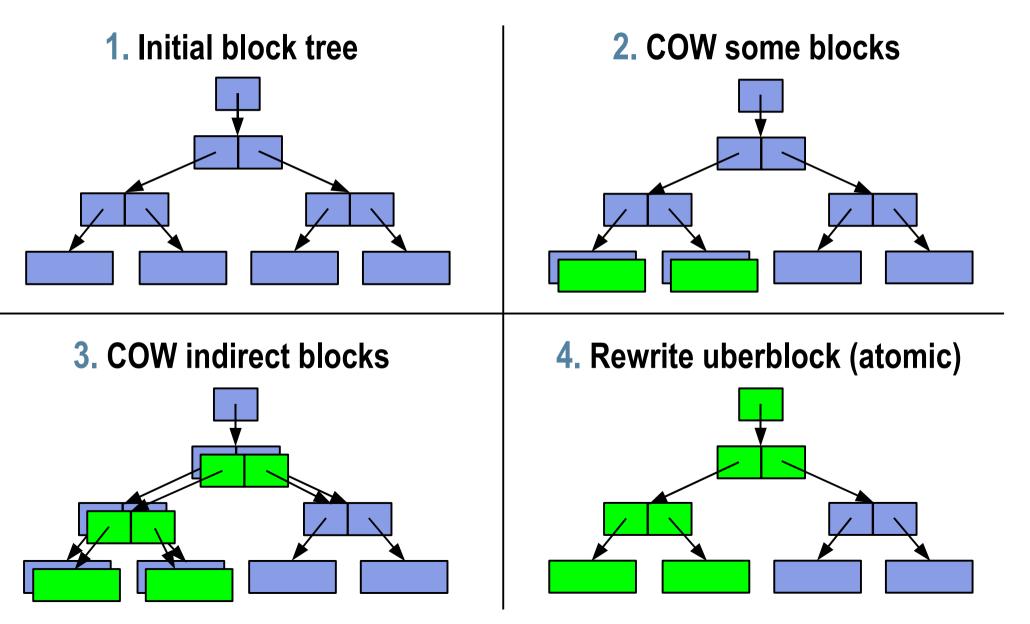


### **Data Integrity**



## **ZFS Data Integrity Model**

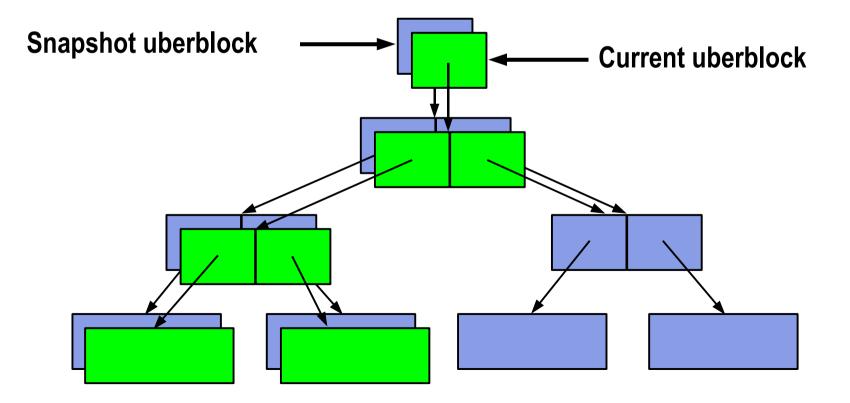
#### Everything is copy-on-write


- Never overwrite live data
- On-disk state always valid no "windows of vulnerability"
- No need for fsck(1M)

#### Everything is transactional

- Related changes succeed or fail as a whole
- No need for journaling
- Everything is checksummed
  - No silent data corruption
  - No panics due to silently corrupted metadata



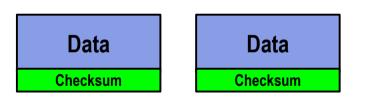

### **Copy-On-Write Transactions**



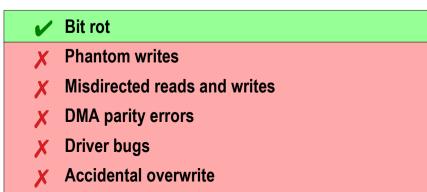


### **Bonus: Constant-Time Snapshots**

- At end of TX group, don't free COWed blocks
  - Actually cheaper to take a snapshot than not!

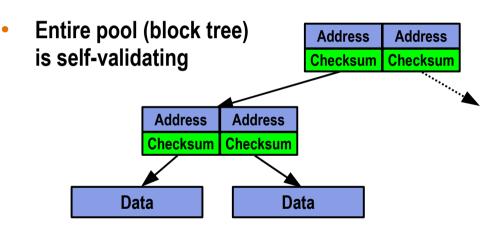






### **End-to-End Checksums**

#### **Disk Block Checksums**

- Checksum stored with data block
- Any self-consistent block will pass
- Can't even detect stray writes
- Inherent FS/volume interface limitation



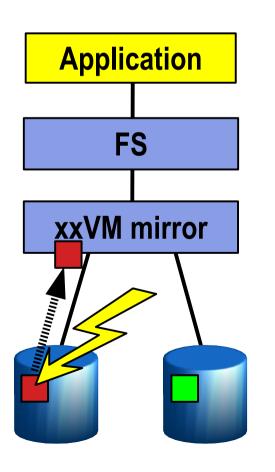

#### Disk checksum only validates media



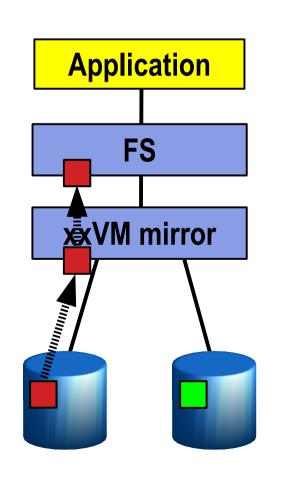
#### ZFS Checksum Trees

- Checksum stored in parent block pointer
- Fault isolation between data and checksum

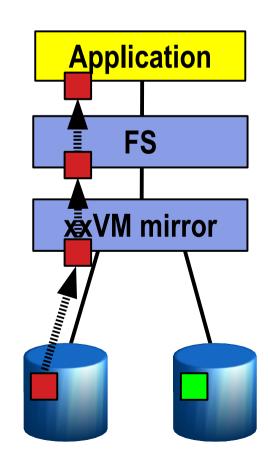



#### ZFS validates the entire I/O path

- Bit rot
- Phantom writes
- Misdirected reads and writes
- ✔ DMA parity errors
- Driver bugs
- Accidental overwrite



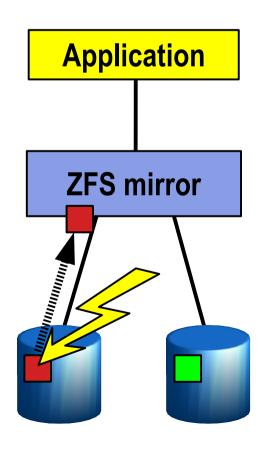

### **Traditional Mirroring**


**1.** Application issues a read. Mirror reads the first disk, which has a corrupt block. It can't tell.

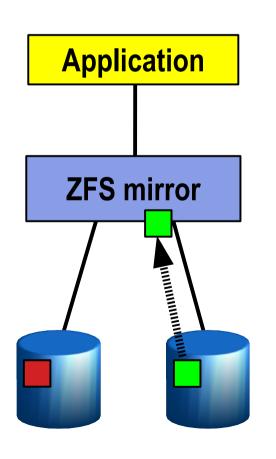


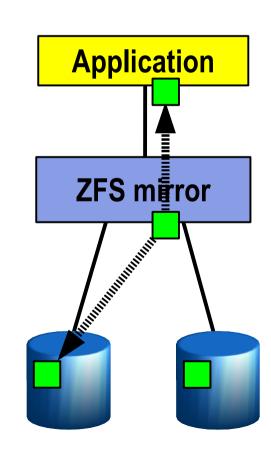
**2.** Volume manager passes bad block up to filesystem. If it's a metadata block, the filesystem panics. If not...




**<u>3.</u>** Filesystem returns bad data to the application.







### **Self-Healing Data in ZFS**

**1.** Application issues a read. ZFS mirror tries the first disk. Checksum reveals that the block is corrupt on disk.



**<u>2.</u>** ZFS tries the second disk. Checksum indicates that the block is good. **<u>3.</u>** ZFS returns good data to the application and repairs the damaged block.







### **Traditional RAID-4 and RAID-5**

#### Several data disks plus one parity disk



#### • Fatal flaw: partial stripe writes

- Parity update requires read-modify-write (slow)
  - Read old data and old parity (two synchronous disk reads)
  - Compute new parity = new data ^ old data ^ old parity
  - Write new data and new parity
- Suffers from write hole:



Λ

- **=** garbage
- Loss of power between data and parity writes will corrupt data
- Workaround: \$\$\$ NVRAM in hardware (i.e., don't lose power!)
- Can't detect or correct silent data corruption



### RAID-Z

### • Dynamic stripe width

- Each logical block is its own stripe
  - 3 sectors (logical) = 3 data blocks + 1 parity block, etc.
  - Integrated stack is key: metadata drives reconstruction
  - Currently single-parity; double-parity version in the works

### • All writes are full-stripe writes

- Eliminates read-modify-write (it's fast)
- Eliminates the RAID-5 write hole (you don't need NVRAM)
- Detects and corrects silent data corruption
  - Checksum-driven combinatorial reconstruction
- <u>No special hardware ZFS loves cheap disks</u>



## **Disk Scrubbing**

#### • Finds latent errors while they're still correctable

- ECC memory scrubbing for disks
- Verifies the integrity of all data
  - Traverses pool metadata to read every copy of every block
  - Verifies each copy against its 256-bit checksum
  - Self-healing as it goes

#### Provides fast and reliable resilvering

- Traditional resilver: whole-disk copy, no validity check
- ZFS resilver: live-data copy, everything checksummed
- All data-repair code uses the same reliable mechanism
  - Mirror resilver, RAID-Z resilver, attach, replace, scrub



### **Scalability & Performance**

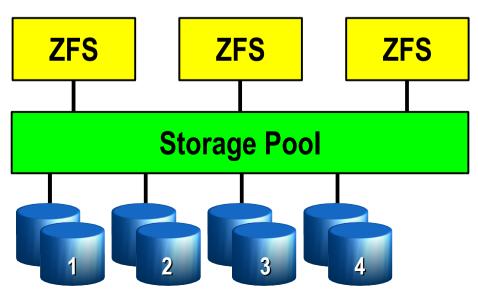


### **ZFS Scalability**

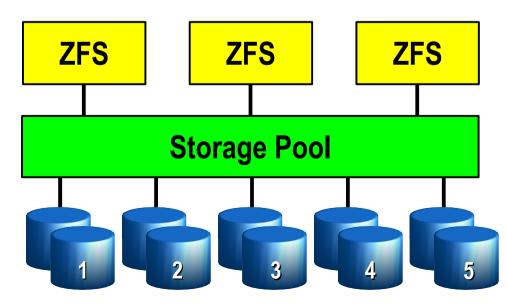
- Immense capacity (128-bit)
  - Moore's Law: need 65th bit in 10-15 years
  - Zettabyte = 70-bit (a billion TB)
  - ZFS capacity: 256 quadrillion ZB
  - Exceeds quantum limit of Earth-based storage
    - Seth Lloyd, "Ultimate physical limits to computation." Nature 406, 1047-1054 (2000)
- 100% dynamic metadata
  - No limits on files, directory entries, etc.
  - No wacky knobs (e.g. inodes/cg)
- Concurrent everything
  - Parallel read/write, parallel constant-time directory operations, etc.



### **ZFS Performance**


- Copy-on-write design
  - Turns random writes into sequential writes
- Dynamic striping across all devices
  - Maximizes throughput
- Multiple block sizes
  - Automatically chosen to match workload
- Pipelined I/O
  - Scoreboarding, priority, deadline scheduling, sorting, aggregation
- Intelligent prefetch




## **Dynamic Striping**

#### Automatically distributes load across all devices

- Writes: striped across all four mirrors
- Reads: wherever the data was written
- Block allocation policy considers:
  - Capacity
  - Performance (latency, BW)
  - Health (degraded mirrors)



- Writes: striped across all five mirrors
- Reads: wherever the data was written
- No need to migrate existing data
  - Old data striped across 1-4
  - New data striped across 1-5
  - COW gently reallocates old data





### **Intelligent Prefetch**

#### Multiple independent prefetch streams

Crucial for any streaming service provider

The Matrix (2 hours, 16 minutes)

Jeff 0:07 Bill 0:33

Matt 1:42

#### Automatic length and stride detection

- Great for HPC applications
- ZFS understands the matrix multiply problem
  - Detects any linear access pattern
  - Forward or backward

The Matrix (10K rows, 10K columns)



### **ZFS Administration**



### **ZFS Administration**

- Pooled storage no more volumes!
  - All storage is shared no wasted space, no wasted bandwidth
- Hierarchical filesystems with inherited properties
  - Filesystems become administrative control points
    - Per-dataset policy: snapshots, compression, backups, privileges, etc.
    - Who's using all the space? df(1M) is cheap, du(1) takes forever!
  - Manage logically related filesystems as a group
  - Control compression, checksums, quotas, reservations, and more
  - Mount and share filesystems without /etc/vfstab or /etc/dfs/dfstab
  - Inheritance makes large-scale administration a snap
- Online everything



### **Creating Pools and Filesystems**

Create a mirrored pool named "tank"

# zpool create tank mirror c0t0d0 c1t0d0

- Create home directory filesystem, mounted at /export/home
  - # zfs create tank/home
    # zfs set mountpoint=/export/home tank/home
- Create home directories for several users Note: automatically mounted at /export/home/{ahrens,bonwick,billm} thanks to inheritance
  - # zfs create tank/home/ahrens
    # zfs create tank/home/bonwick
    # zfs create tank/home/billm
- Add more space to the pool

# zpool add tank mirror c2t0d0 c3t0d0



### **Setting Properties**

• Automatically NFS-export all home directories

# zfs set sharenfs=rw tank/home

• Turn on compression for everything in the pool

# zfs set compression=on tank

• Limit Eric to a quota of 10g

# zfs set quota=10g tank/home/eschrock

• Guarantee Tabriz a reservation of 20g

# zfs set reservation=20g tank/home/tabriz



### **ZFS Snapshots**

#### Read-only point-in-time copy of a filesystem

- Instantaneous creation, unlimited number
- No additional space used blocks copied only when they change
- Accessible through .zfs/snapshot in root of each filesystem
  - Allows users to recover files without sysadmin intervention
- Take a snapshot of Mark's home directory

# zfs snapshot tank/home/marks@tuesday

Roll back to a previous snapshot

# zfs rollback tank/home/perrin@monday

• Take a look at Wednesday's version of foo.c

\$ cat ~maybee/.zfs/snapshot/wednesday/foo.c



### **ZFS Clones**

#### Writable copy of a snapshot

- Instantaneous creation, unlimited number
- Ideal for storing many private copies of mostly-shared data
  - Software installations
  - Workspaces
  - Diskless clients

#### Create a clone of your OpenSolaris source code

# zfs clone tank/solaris@monday tank/ws/lori/fix



### **ZFS Data Migration**

#### Host-neutral on-disk format

- Change server from x86 to SPARC, it just works
- Adaptive endianness: neither platform pays a tax
  - Writes always use native endianness, set bit in block pointer
  - Reads byteswap only if host endianness != block endianness
- ZFS takes care of everything
  - Forget about device paths, config files, /etc/vfstab, etc.
  - ZFS will share/unshare, mount/unmount, etc. as necessary
- Export pool from the old server

old# zpool export tank

Physically move disks and import pool to the new server

new# zpool import tank



## **ZFS Data Security**

#### NFSv4/NT-style ACLs

Allow/deny with inheritance

#### Authentication via cryptographic checksums

- User-selectable 256-bit checksum algorithms, including SHA-256
- Data can't be forged checksums detect it
- Uberblock checksum provides digital signature for entire pool

#### Encryption (coming soon)

- Protects against spying, SAN snooping, physical device theft
- Secure deletion (coming soon)
  - Thoroughly erases freed blocks