
CS 372: Operating Systems Mike Dahlin

 1

Lecture #1: Introduction, History, Course Organization

Review -- 1 min

Outline - 1 min

Introduction OS=coordination + abstraction

• Why study operating systems?
• What is an operating system?
• Principles of operating system design

Class Organization
History and Future
Dual mode operation
 3 ways to invoke OS (if time)

Preview - 1 min

Today: Overview – basic principles

Then – how does OS manage basic system resources

-- next month CPU: concurrency (threads, synchronization, deadlock,
scheduling)
– then management of memory
Then – IO: disk, networks, distributed systems, …

Next time: anatomy of an OS and a process

Lecture - 20 min

1. Why Study Operating Systems?
Some claim windows 7 is last OS humankind will ever produce…

CS 372: Operating Systems Mike Dahlin

 2

OS is everywhere: coordination and abstraction are key in any
complex system. Plus many “applications” are really OS’s or network
OS’s (e.g., netscape browser, JVM/Jini, Network Appliance, Akamai,
Google, Amazon, Facebook, Tivoli, Yahoo, …)

Abstraction: OS is a wizard, providing illusion of infinite CPUs,
infinite memory, single worldwide computer, etc.

System Design: tradeoffs between performance and simplicity,
putting functionality in HW v. SW, etc.

How computers work: “look under the hood” of computer systems

Capstone: combines things from many other areas of CS – languages,
hardware, data structures, algorithms, …

Project: This class should be particularly fun because it has an
excellent project.
• Build a working operating system – threads, multiprogramming,

virtual memory, networks
• SW Engineering skills – threads programming, large system, team

programming

John Ousterhout – “When I read a paper, I can immediately tell
whether the authors ever actually built the system and got it to work”
Proverb – “I hear and I forget, I see and I remember, I do and I
understand”

2. Teach at 3 levels
1) How to approach problems
 fundamental issues -- coordination, abstraction
 design space
 case studies: historical and state of art techniques
Goal: When faced with similar (or very different) problem, you will
be able to devise a good solution
Timescale: big long-term payoff

2) Specific techniques you should be able to apply
 Time-tested solutions to hard problems

CS 372: Operating Systems Mike Dahlin

 3

 "Hacking" will not succeed
 e.g., concurrent programming, two-phase commit, transactions, …
Goal: be a good engineer
Timescale: immediately useful; still useful in 20 years

3) Details of modern OS
 e.g., FS, network stack, internal data structures, VM, … of XP,

Solaris, Linux, …
 lots of material, changes relatively quickly
 not a priority of this class

 but use "real" examples to help understand/motivate principles

3. What is an Operating System?
Definition: An operating system implements a virtual machine that is
(hopefully) easier to program than the raw hardware:

In some sense: OS is just a software engineering problem: how do you
convert what the hardware gives you into something application
programmers want?

For any OS area (file systems, virtual memory, CPU scheduling)
begin by asking two questions:

What’s the hardware interface? (The physical reality)
What’s the application interface? (The nicer abstraction)

Of course, should also ask why the interfaces look the way they do,
and whether it might be better to push more responsibilities into
applications, the OS, or hardware.

 <----- coordination --------->

Application

Operating System

Hardware

Virtual Machine Interface

Physical Machine Interface

Application Application

/|\
 |
 |
abstra
ction
 |
 |
 |
\|/

CS 372: Operating Systems Mike Dahlin

 4

3.1 Operating systems have two general functions:
1. Coordinator: Allow multiple applications/users to work together

in efficient and fair ways

3 aspects of coordination (Draw Picture)

• Security – prevent jobs from interfering with one another
• Communication – let jobs talk to one another
• Resource Management – give jobs fair share of resources

(memory, CPU, disk, …)

Dual Mode Operation
When in OS, program can do anything (kernel mode)
When in a user program, restricted to only touching that program’s
memory
Kernel mode:

• can issue physical addresses that are not translated by
translation box (kernel can read/write process memory)

• can modify address translation tables

Structure of a Dual-mode operating system

Application

Standard library

Portable OS layer

Machine-dependent OS layer

User mode

Kernel mode

Typical Operating System Structure

CS 372: Operating Systems Mike Dahlin

 5

Also, want OS to be portable, so put a layer that abstracts out
differences between different hardware architectures (e.g. Solaris runs
on Sun and x86, NT/win2k runs on x86 and (until recently) Alpha)

How do the security, communication, resource management facilities
get reflected in dual-mode operation? (draw in picture above)

• Security: application can access its memory but not OS or other
apps

• But OS can access any application’s memory
• Communication: application can call OS (how does that work?)

– then OS can read one application’s memory and write
another’s communication

• Resource management: OS can access hardware registers to, for
instance, grow an application’s memory allocation…

2. Abstraction/Standard Services: provide standard facilities that
everyone needs (e.g. standard libraries, window system, file cache,
…)

Most basic: a way to start, stop, and clean up after a program
Modern OS -- much more standard services
-- threads, file system, transactions, network stack, windowing
system, profiling, etc etc.
 -- many/most of these you could do in an ad-hoc way as needed
 -- having standard OS simplifies life
 -- some of these require interoperability (e.g., FS, window
system, ...)
 -- need a standard version of service to use

“standard library” or “standard utilities” don’t run in kernel, but can
be regarded as part of OS

What if you didn’t have an OS?

Source code compiler object code hardware

How do you get object code onto the hardware?

CS 372: Operating Systems Mike Dahlin

 6

How do you print an answer?
Before OS’s: toggle in program in binary; read out answers from
LED’s!

3.2 Simple OS: What if only one application at a time?

Examples: very early computers, early PC’s, embedded controllers
(elevators, cars, Nintendos, …)

Worry less about coordination, more about standard services

 then OS is just a library of standard services.
Examples: device drivers, interrupt handlers, math libraries, etc.

History of OS – for each new platform, OS starts as standard services
(b/c only run one job at a time), evolves into “real” os that does
coordination too
Mainframe, PC, palmtop?, cell phone?, …

3.3 More complex OS: what if we share machine among multiple
applications?

Then OS must manage interactions between different applications and
different users for all hardware resources: CPU, physical memory, I/O
devices (disks, printers, screen, keyboard), interrupts, etc

Of course, OS can still provide library of standard services

Discussion: What are key OS services? Do they do (1) coordination
(resource mgmt, security, communication) or (2) standard services

• Example: file system – what aspects of file system are resource
management? Security? Communication? Standard services?

CS 372: Operating Systems Mike Dahlin

 7

3.4 Virtual machine monitor/hypervisor
“OS” (e.g., linux, windows, …) runs over hypervisor (e.g., vmware,
Xen)

hypervisor provides protection among guest VMs
hypervisor provides few higher level services

guest OS provides higher level services to guest apps (and protection
among guest apps)

3.5 Distributed systems
“OS” != everything that runs with “supervisor” bit set

NFS (network file service) is part of OS
Amazon S3 (simple storage service) and EC2 (elastic compute cloud)
are OS services

Who knows/who cares if they run with supervisor bit set…

Admin - 3 min

(much more than 3 min today!)

Lectures

1 minute review
1 minute outline
35 minute lecture
3 minute admin
33 minute lecture
1 minute summary (Don’t get up!)
1 minute preview

Break up class (admin, break) b/c attention span
outline/summmary important to all presentations
 “say what you’re going to say, say it, say what you said”

CS 372: Operating Systems Mike Dahlin

 8

preview – feedback from last class I taught

Philosophy
• Write on board instead of slides (or I’ll go too fast)

• feedback from class I taught – copies of my notes
available on line (warning – not “polished”)

• encourage discussion
• feedback – I’ll hand out 3x5 cards in a month or so;

feedback welcome any time

Syllabus

see notes on syllabus

Book experiment "EOSP"
Excited to teach class
Using new (in progress) book
-- alpha testing; feedback please

-- most likely outcome -- substantially better class
 - working through details; talking to 3 other faculty
as interested in this stuff as I am; best ideas from all of us...
-- moderately likely outcome -- no significant effect for better
or worse
-- non-negligible outcome -- substantially worse ("book is bad",
"rough form of book is problem", "dahlin diving into too much
detail", "dahlin too busy with book"
[[very likely outcome -- schedule will slip]]

EOSP will be "main" text for first 1/2 of class with Silbershatz
as backup
Silbershatz will be "main" text for second 1/2 of class (maybe
with EOSP as backup?)

CS 372: Operating Systems Mike Dahlin

 9

 Project
 Overview and schedule
 Language C (proj 1-2) ; TBD for the rest
 Project 1 begins now; due in 2 weeks;

Homework
Weekly problem sets
1-2 problems to be turned in each week
 -- Monday deadline; will shift as needed
 -- No late homeworks accepted
remaining problems "required but not turned in"
 -- You need to do them to do well on exam!
 -- Solutions provided

DEMO:
MDD: To set this up, get the bochs.img and fs.img files. Put on
USB key
Boot machine dual-hard-drive using ubuntu live CD
Insert USB key

 cd /media/usbdrive/bochdemo
 sudo dd if=bochs.img of=/dev/hda
 sudo dd if=fs.img of=/dev/hdb

NOTE: current demo code corrupts the file system, so if you get a
kernel page fault, reload fs.img to /dev/hdb as above

Enrollment
Probably can't take more
Implications and adjustments
 Bad news: load v. response time
 Adjustment: Project design
 Mal-adjustment: Homework
 Adjustment: newsgroup
 Adjustment: START EARLY, keep up with reading,
HW, etc.
 Adjustment: Exam design/grading

CS 372: Operating Systems Mike Dahlin

 10

Lecture - 23 min

4. Evaluation criteria

4.1 Reliability
reliability -- system does what it is supposed to do

OS breaks --> user stuck, may lose work
application breaks --> more limited effect (bc OS isolates failures)

Challenge -- hostile environment
v. debugging application.
Adversary v. random/incidental/accidental failures
--> test cases less effective

availability -- % time system is usable

disk crash --> data lost --> reliability failure
machine turned off/freezes --> can't read from disk --> availability
failure

How would you create an operating system that is ultra-reliable and
ultra-available?

4.2 Portability
portable -- does not change as the hardware changes

many dimensions
-- different IO devices (graphics cards, network interfaces, etc.)
 don't want different code for each
 --> OS defines common abstractions
-- different machine
 different architecture -- (x86 v. amd v. SPARC v. Atom v. ...)
 different generations of same architecture

CS 372: Operating Systems Mike Dahlin

 11

 (VAX v. Core 2 -- many abstractions from early 70's
unix still there today)

 porting applications expensive
 --> OS presents common abstractions independent of HW
 porting million-line OS expensive/difficult
 --> OS built over HAL (hardware abstraction layer)

What are the right, long lasting abstractions to present to
applications?

4.3 Performance
several dimensions

overhead -- added resource cost of implementing abstraction
efficiency (inverse of overhead)

fairness among applications

response time (delay) -- time from start to end of task
throughput -- rate of task completion (efficiency of group of tasks, not
just one)

NOTE: response time and throughput may not be directly related
(pipelining)

predictability -- variation of response time (or throughput)

which is better system that always has .5 second response time or a
system that has .4 second average response time where most requests
take .35 seconds but a few take 10 seconds? (A: almost always the
former)

How do we build a system with minimal overhead, minimum response
time, maximum throughput, high predictability? (v. "right long lasting
abstractions" which may hide details (hurting predictability) or add
overheads or interfere with pipelining or ...)

CS 372: Operating Systems Mike Dahlin

 12

4.4 Trade-offs

portability v. performance (see above)

performance v. reliability
example: shave 1 instruction from assembly language path by
assuming max size of OS kernel; years later, random crashes.

5. Operating Systems Principles
Throughout this course you will see four common themes recurring
over and over:
• OS as illusionist – abstraction -- make hardware limitations go

away. OS provides illusion of dedicated machine with infinite
memory and infinite processors

• OS as government – protection -- protect users from each other
and allocate resources fairly and efficiently

• OS as complex system – keeping things simple is key to getting it
to work!!!

• OS as history teacher – learn from past to predict the future

Meta-principle: OS design tradeoffs change as technology changes

What is exciting about computer science v. other engineering
disciplines – underlying technology changes rapidly lets us do
things that were unthinkable a few years ago (v. bridge building)

6. History of Operating Systems: Change!
Typical academic computer in 1981, 1996, 2005

 1981 1996 2005 factor
SPECint/
MIPS

1 300 3000 300, 3000

$/SPECint $100K $33 $.33 3000,
300K

DRAM
capacity

128 KB 128MB 1024MB 1000, 10K

CS 372: Operating Systems Mike Dahlin

 13

Disk
Capacity

10MB 4 GB 400GB 400, 40K

Net BW 9600 b/s 100
Mbit/s

100Mbit/s 10K, 10K

#addr bits 16 64 64 4, 4
#users/ma
chine

100 <1 <1 100, 100

Impact: Techniques have to vary over time, adapt to changing
tradeoffs

6.1 History Phase 1: Hardware expensive, humans cheap
Computers cost millions of $ optimize to make most efficient use
of hardware

1) User at console – one user at a time; OS is a subroutine library
 (Literally a stack of cards you pulled off a shelf to, say, do a matrix
multiply)

Problem – have to wait between jobs while user enters next job
(innovations make job entry faster: binary switches keyboard
card reader tape reader)

2) Batch monitor – load program, run print
Advantage – can load next job immediately as previous one finishes

2 problems
♦ no protection – what if program has a bug and crashes the batch

monitor waste time rebooting
♦ computer idle during I/O

3) Data channels, interrupts: overlap I/O and computation
DMA – direct memory access for I/O devices.

OS requests I/O, goes back to computing, gets interrupt when
I/O device finishes (PICTURE)

4) Memory protection + relocation

CS 372: Operating Systems Mike Dahlin

 14

Multiprogramming – several programs run at same time; users share
the system

Multiprogramming benefits

• Small jobs not delayed by large jobs
• more overlap between I.O and CPU

Multiprogramming requires memory protection to keep bugs in one
program from crashing the system or corrupting other programs

Bad news: OS must manage all these interactions between programs.
Each step seems logical, but at some point, fall off cliff – just gets too
complicated
• Multics – announced in 1963; ran in 1969
• OS360 released with 1000 bugs

UNIX based on multics, but simplified so they could get it to work!

6.2 History Phase 2: Hardware cheap, humans expensive
5) interactive time sharing

Use cheap terminals to let multiple users interact with the system at
the same time.
Sacrifice CPU time to get better response time for users

OS does timesharing to give illusion of each user has own computer

6.3 History Phase 3: Hardware very cheap, humans very
expensive

6) Personal computing
Computers are cheap, so give everyone a computer.

Initially, OS became a subroutine library again (MSDos, MacOS)

Since then, adding back in memory protection, multiprogramming,
etc. (when humans are expensive, don’t waste their time by letting
programs crash each other)

CS 372: Operating Systems Mike Dahlin

 15

6.4 History phase 4: Distributed systems
Computers soo cheap – give people a bunch of them

I have a PC at home, 2 in my office, a portable, a palmtop and
share some machines in a lab
 how do I coordinate a bunch of machines?

Networks fast – allow machines to share resources and data easily

Networks cheap – allow geographically distributed machines to
interact

Question: What does all this mean to OS?

Summary - 1 min

1) Key ideas: coordination (resource management, isolation),
abstraction

2) Application of ideas changes
a. Over time
b. Across applications, services (not just kernels)
c.

Point of describing change isn’t “Look how stupid batch processing
is” – it was right for tradeoffs of the time, but not anymore

Point is: have to change with changing technology

Situation today is much like it was in the late 60’s – OS’s today are
enormous, complex things
 small OS – 100K lines
 big OS – 50M lines
100 - 1000 people-year
Key aspect of this course, understand OS’s so we can simplify them!

