Lecture #1: Introduction, History, Course Organization

Review -- 1 min

Outline - 1 min

Introduction OS=coordination + abstraction
 • Why study operating systems?
 • What is an operating system?
 • Principles of operating system design

Class Organization
History and Future
Dual mode operation
—— 3 ways to invoke OS (if time)

Preview - 1 min

Today: Overview – basic principles

Then – how does OS manage basic system resources
 -- next month CPU: concurrency (threads, synchronization, deadlock, scheduling)
 – then management of memory
 Then – IO: disk, networks, distributed systems, …

Next time: anatomy of an OS and a process

1. Why Study Operating Systems?
 Some claim windows 7 is last OS humankind will ever produce…
OS is everywhere: coordination and abstraction are key in any complex system. Plus many “applications” are really OS’s or network OS’s (e.g., netscape browser, JVM/Jini, Network Appliance, Akamai, Google, Amazon, Facebook, Tivoli, Yahoo, …)

Abstraction: OS is a wizard, providing illusion of infinite CPUs, infinite memory, single worldwide computer, etc.

System Design: tradeoffs between performance and simplicity, putting functionality in HW v. SW, etc.

How computers work: “look under the hood” of computer systems

Capstone: combines things from many other areas of CS – languages, hardware, data structures, algorithms, …

Project: This class should be particularly fun because it has an excellent project.
- Build a working operating system – threads, multiprogramming, virtual memory, networks
- SW Engineering skills – threads programming, large system, team programming

John Ousterhout – “When I read a paper, I can immediately tell whether the authors ever actually built the system and got it to work”

Proverb – “I hear and I forget, I see and I remember, I do and I understand”

2. **Teach at 3 levels**
 1) How to approach problems
 - fundamental issues -- coordination, abstraction
 - design space
 - case studies: historical and state of art techniques
 Goal: When faced with similar (or very different) problem, you will be able to devise a good solution
 Timescale: big long-term payoff

 2) Specific techniques you should be able to apply
 - Time-tested solutions to hard problems
"Hacking" will not succeed
- e.g., concurrent programming, two-phase commit, transactions, ...

Goal: be a good engineer
Timescale: immediately useful; still useful in 20 years

3) Details of modern OS
- e.g., FS, network stack, internal data structures, VM, ... of XP, Solaris, Linux, ...
- lots of material, changes relatively quickly
- not a priority of this class
 - but use "real" examples to help understand/motivate principles

3. What is an Operating System?

Definition: An operating system implements a virtual machine that is (hopefully) easier to program than the raw hardware:

In some sense: OS is just a software engineering problem: how do you convert what the hardware gives you into something application programmers want?

For any OS area (file systems, virtual memory, CPU scheduling) begin by asking two questions:

- What's the hardware interface? (The physical reality)
- What's the application interface? (The nicer abstraction)

Of course, should also ask why the interfaces look the way they do, and whether it might be better to push more responsibilities into applications, the OS, or hardware.
3.1 Operating systems have two general functions:

1. **Coordinator:** Allow multiple applications/users to work together in efficient and fair ways

3 aspects of coordination (*Draw Picture*)
- Security – prevent jobs from interfering with one another
- Communication – let jobs talk to one another
- Resource Management – give jobs fair share of resources (memory, CPU, disk, …)

Dual Mode Operation
When in OS, program can do anything (kernel mode)
When in a user program, restricted to only touching that program’s memory

Kernel mode:
- can issue physical addresses that are not translated by translation box (kernel can read/write process memory)
- can modify address translation tables

Structure of a Dual-mode operating system

![Diagram of Typical Operating System Structure](image)
Also, want OS to be portable, so put a layer that abstracts out differences between different hardware architectures (e.g. Solaris runs on Sun and x86, NT/win2k runs on x86 and (until recently) Alpha)

How do the security, communication, resource management facilities get reflected in dual-mode operation? (*draw in picture above*)

- Security: application can access its memory but not OS or other apps
- But OS can access any application’s memory
- Communication: application can call OS (how does that work?)
 – then OS can read one application’s memory and write another’s → communication
- Resource management: OS can access hardware registers to, for instance, grow an application’s memory allocation…

2. **Abstraction/Standard Services**: provide standard facilities that everyone needs (e.g. standard libraries, window system, file cache, …)

Most basic: a way to start, stop, and clean up after a program

Modern OS -- much more **standard services**

-- threads, file system, transactions, network stack, windowing system, profiling, etc etc.
 -- many/most of these you could do in an ad-hoc way as needed
 -- having standard OS simplifies life
 -- some of these require interoperability (e.g., FS, window system, …)
 -- need a standard version of service to use

“standard library” or “standard utilities” don’t run in kernel, but can be regarded as part of OS

What if you didn’t have an OS?

Source code → compiler → object code → hardware

How do you get object code onto the hardware?
How do you print an answer?
Before OS’s: toggle in program in binary; read out answers from LED’s!

3.2 Simple OS: What if only one application at a time?

Examples: very early computers, early PC’s, embedded controllers (elevators, cars, Nintendos, …)

Worry less about coordination, more about standard services

→ then OS is just a library of standard services.
Examples: device drivers, interrupt handlers, math libraries, etc.

History of OS – for each new platform, OS starts as standard services (b/c only run one job at a time), evolves into “real” os that does coordination too
Mainframe, PC, palmtop?, cell phone?, …

3.3 More complex OS: what if we share machine among multiple applications?

Then OS must manage interactions between different applications and different users for all hardware resources: CPU, physical memory, I/O devices (disks, printers, screen, keyboard), interrupts, etc

Of course, OS can still provide library of standard services

Discussion: What are key OS services? Do they do (1) coordination (resource mgmt, security, communication) or (2) standard services

• Example: file system – what aspects of file system are resource management? Security? Communication? Standard services?
3.4 Virtual machine monitor/hypervisor

“OS” (e.g., linux, windows, …) runs over hypervisor (e.g., vmware, Xen)

hypervisor provides protection among guest VMs
hypervisor provides few higher level services

guest OS provides higher level services to guest apps (and protection among guest apps)

3.5 Distributed systems

“OS” != everything that runs with “supervisor” bit set

NFS (network file service) is part of OS
Amazon S3 (simple storage service) and EC2 (elastic compute cloud) are OS services

Who knows/who cares if they run with supervisor bit set…

Admin - 3 min

(much more than 3 min today!)

Lectures

1 minute review
1 minute outline
35 minute lecture
3 minute admin
33 minute lecture
1 minute summary (Don’t get up!)
1 minute preview

Break up class (admin, break) b/c attention span
outline/summary important to all presentations
“say what you’re going to say, say it, say what you said”
preview – feedback from last class I taught

Philosophy
• Write on board instead of slides (or I’ll go too fast)
 • feedback from class I taught – copies of my notes available on line (warning – not “polished”)
• encourage discussion
• feedback – I’ll hand out 3x5 cards in a month or so; feedback welcome any time

Syllabus
see notes on syllabus

Book experiment "EOSP"
Excited to teach class
Using new (in progress) book
-- alpha testing; feedback please

-- most likely outcome -- substantially better class
 - working through details; talking to 3 other faculty as interested in this stuff as I am; best ideas from all of us...
-- moderately likely outcome -- no significant effect for better or worse
-- non-negligible outcome -- substantially worse ("book is bad", "rough form of book is problem", "dahlin diving into too much detail", "dahlin too busy with book"
[[very likely outcome -- schedule will slip]]

EOSP will be "main" text for first 1/2 of class with Silbershatz as backup
Silbershatz will be "main" text for second 1/2 of class (maybe with EOSP as backup?)
Project

- Overview and schedule
- Language C (proj 1-2); TBD for the rest
- Project 1 begins now; due in 2 weeks;

Homework

Weekly problem sets
1-2 problems to be turned in each week
 -- Monday deadline; will shift as needed
 -- No late homeworks accepted
remaining problems "required but not turned in"
 -- You need to do them to do well on exam!
 -- Solutions provided

DEMO:

MDD: To set this up, get the bochs.img and fs.img files. Put on USB key
Boot machine dual-hard-drive using ubuntu live CD
Insert USB key

- cd /media/usbdrive/bochdemo
- sudo dd if=bochs.img of=/dev/hda
- sudo dd if=fs.img of=/dev/hdb

NOTE: current demo code corrupts the file system, so if you get a kernel page fault, reload fs.img to /dev/hdb as above

Enrollment

Probably can't take more
Implications and adjustments
 Bad news: load v. response time
 Adjustment: Project design
 Mal-adjustment: Homework
 Adjustment: newsgroup
 Adjustment: START EARLY, keep up with reading, HW, etc.
 Adjustment: Exam design/grading
4. Evaluation criteria

4.1 Reliability

reliability -- system does what it is supposed to do

OS breaks --> user stuck, may lose work
application breaks --> more limited effect (bc OS isolates failures)

Challenge -- hostile environment
v. debugging application.
Adversary v. random/incidental/accidental failures
--> test cases less effective

availability -- % time system is usable

disk crash --> data lost --> reliability failure
machine turned off/freezes --> can't read from disk --> availability failure

How would you create an operating system that is ultra-reliable and ultra-available?

4.2 Portability

portable -- does not change as the hardware changes

many dimensions
-- different IO devices (graphics cards, network interfaces, etc.)
 don't want different code for each
 --> OS defines common abstractions
-- different machine
 different architecture -- (x86 v. amd v. SPARC v. Atom v. ...)
 different generations of same architecture
(VAX v. Core 2 -- many abstractions from early 70's unix still there today)

porting applications expensive
--> OS presents common abstractions independent of HW
porting million-line OS expensive/difficult
--> OS built over HAL (hardware abstraction layer)

What are the right, long lasting abstractions to present to applications?

4.3 Performance
several dimensions

overhead -- added resource cost of implementing abstraction
efficiency (inverse of overhead)

fairness among applications

response time (delay) -- time from start to end of task
throughput -- rate of task completion (efficiency of group of tasks, not just one)

NOTE: response time and throughput may not be directly related (pipelining)

predictability -- variation of response time (or throughput)

which is better system that always has .5 second response time or a system that has .4 second average response time where most requests take .35 seconds but a few take 10 seconds? (A: almost always the former)

How do we build a system with minimal overhead, minimum response time, maximum throughput, high predictability? (v. "right long lasting abstractions" which may hide details (hurting predictability) or add overheads or interfere with pipelining or ...)
4.4 Trade-offs

portability v. performance (see above)

performance v. reliability
example: shave 1 instruction from assembly language path by assuming max size of OS kernel; years later, random crashes.

5. Operating Systems Principles

Throughout this course you will see four common themes recurring over and over:

• **OS as illusionist** – *abstraction* -- make hardware limitations go away. OS provides illusion of dedicated machine with infinite memory and infinite processors

• **OS as government** – *protection* -- protect users from each other and allocate resources fairly and efficiently

• **OS as complex system** – keeping things simple is key to getting it to work!!!

• **OS as history teacher** – learn from past to predict the future

Meta-principle: OS design tradeoffs change as technology changes

What is exciting about computer science v. other engineering disciplines – underlying technology changes rapidly → lets us do things that were unthinkable a few years ago (v. bridge building)

Typical academic computer in 1981, 1996, 2005

<table>
<thead>
<tr>
<th></th>
<th>1981</th>
<th>1996</th>
<th>2005</th>
<th>factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECint/</td>
<td>1</td>
<td>300</td>
<td>3000</td>
<td>300, 3000</td>
</tr>
<tr>
<td>MIPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$/SPECint</td>
<td>$100K</td>
<td>$33</td>
<td>$.33</td>
<td>3000, 300K</td>
</tr>
<tr>
<td>DRAM</td>
<td>128 KB</td>
<td>128MB</td>
<td>1024MB</td>
<td>1000, 10K</td>
</tr>
<tr>
<td>capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disk Capacity</td>
<td>10MB</td>
<td>4 GB</td>
<td>400GB</td>
<td>400, 40K</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Net BW</td>
<td>9600 b/s</td>
<td>100</td>
<td>100Mbit/s</td>
<td>10K, 10K</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>64</td>
<td>4, 4</td>
<td></td>
</tr>
<tr>
<td>#users/machine</td>
<td>100</td>
<td><1</td>
<td><1</td>
<td>100, 100</td>
</tr>
</tbody>
</table>

Impact: Techniques have to vary over time, adapt to changing tradeoffs

6.1 History Phase 1: Hardware expensive, humans cheap

Computers cost millions of $ → optimize to make most efficient use of hardware

1) **User at console** – one user at a time; OS is a subroutine library (Literally a stack of cards you pulled off a shelf to, say, do a matrix multiply)

 Problem – have to wait between jobs while user enters next job (innovations make job entry faster: binary switches → keyboard → card reader → tape reader)

2) **Batch monitor** – load program, run print
 Advantage – can load next job immediately as previous one finishes

2 problems
 ♦ no protection – what if program has a bug and crashes the batch monitor → waste time rebooting
 ♦ computer idle during I/O

3) **Data channels, interrupts**: overlap I/O and computation
 DMA – direct memory access for I/O devices.
 OS requests I/O, goes back to computing, gets interrupt when I/O device finishes (PICTURE)

4) **Memory protection + relocation**
Multiprogramming – several programs run at same time; users share the system

Multiprogramming benefits
- Small jobs not delayed by large jobs
- More overlap between I/O and CPU

Multiprogramming requires memory protection to keep bugs in one program from crashing the system or corrupting other programs

Bad news: OS must manage all these interactions between programs. Each step seems logical, but at some point, fall off cliff – just gets too complicated
- Multics – announced in 1963; ran in 1969
- OS360 released with 1000 bugs

UNIX based on multics, but simplified so they could get it to work!

6.2 History Phase 2: Hardware cheap, humans expensive
5) interactive time sharing

Use cheap terminals to let multiple users interact with the system at the same time.
Sacrifice CPU time to get better response time for users

OS does timesharing to give illusion of each user has own computer

6.3 History Phase 3: Hardware very cheap, humans very expensive
6) Personal computing
Computers are cheap, so give everyone a computer.

Initially, OS became a subroutine library again (MSDos, MacOS)

Since then, adding back in memory protection, multiprogramming, etc. (when humans are expensive, don’t waste their time by letting programs crash each other)
6.4 History phase 4: Distributed systems

Computers soo cheap – give people a bunch of them
 I have a PC at home, 2 in my office, a portable, a palmtop and
 share some machines in a lab
→ how do I coordinate a bunch of machines?

Networks fast – allow machines to share resources and data easily

Networks cheap – allow geographically distributed machines to interact

Question: What does all this mean to OS?

**
Summary - 1 min
**

1) Key ideas: coordination (resource management, isolation), abstraction
2) Application of ideas changes
 a. Over time
 b. Across applications, services (not just kernels)
 c. Point of describing change isn’t “Look how stupid batch processing
 is” – it was right for tradeoffs of the time, but not anymore

Point is: have to change with changing technology

Situation today is much like it was in the late 60’s – OS’s today are
enormous, complex things
 small OS – 100K lines
 big OS – 50M lines
100 - 1000 people-year
Key aspect of this course, understand OS’s so we can simplify them!