
CS 372: Operating Systems Mike Dahlin

 1 02/18/10

Lecture #10: Synchronization wrap up

Review -- 1 min

Monitor = lock + condition variables
Mesa v. Hoare semantics
Advice/Summary

Fall 2001 midterm:
• Every program with incorrect semantic behavior violated at least one

rule
• >90% of programs that violated at least one rule were “obviously”

semantically incorrect (that is, I could see the bug within seconds of
looking at the program; there may have been additional bugs…)

o All that violate one rule are wrong – they are harder to read,
understand, maintain

Outline - 1 min

Readers/Writers
Monitors v. Semaphores
Concurrency Summary

Preview - 1 min

Other issues – scheduling, deadlock

Lecture - 20 min

CS 372: Operating Systems Mike Dahlin

 2 02/18/10

1. Readers/Writers

1.1 Motivation
Shared database (for example, bank balances, or airline seats)

Two classes of users:
Readers – never modify database
Writers – read and modify data

Using a single mutex lock would be overly restrictive.
Instead, want:
 many readers at same time
 only one writer at same time

1.2 Constraints
Notice: for every constraint, there is a synchronization variable.
This time different types for different purposes.
1) Reader can access database when no writers (Condition okToRead)
2) Writers can access database when no readers or writers (condition

okToWrite)
3) Only one thread manipulates shared variables at a time (mutex)

1.3 Solution
Basic structure

Database::read()
check in -- wait until no writers
access database
check out – wake up waiting writer

Database::write()
check in -- wait until no readers or writers
access database
check out – wake up waiting readers or writers

State variables:

AR = 0; // # active readers
AW = 0; // # active writers
WR = 0; // # waiting readers

CS 372: Operating Systems Mike Dahlin

 3 02/18/10

WW = 0; // # waiting writers

Condition okToRead = NIL;
Condition okToWrite = NIL;
Lock lock = FREE;

Code:
Database::read(){
 startRead(); // first, check self into the system
 Access Data
 doneRead(); // Check self out of system
}

Database::startRead(){

lock.Acquire();
while((AW + WW) > 0){

WR++;
okToRead.Wait(&lock);
WR--;

}
AR++;
lock.Release();

 }

 Database::doneRead(){

lock.Acquire();
AR--;
if(AR == 0 && WW > 0){ // if no other readers still
 okToWrite.Signal(); // active, wake up writer
}
lock.Release();

}

Database::write(){ // symmetrical
 startWrite(); // check in
 accessData
 doneWrite(); // check out
}

Database::startWrite(){

CS 372: Operating Systems Mike Dahlin

 4 02/18/10

lock.Acquire();
while((AW + AR) > 0){ // check if safe to write
 // if any readers or writers, wait

WW++;
okToWrite->Wait(&lock);
WW--;

}
AW++;
lock.Release();

 }

 Database::doneWrite(){

lock.Acquire();
AW--;
if(WW > 0){

okToWrite->Signal(); // give priority to writers
}
else if (WR > 0){
 okToRead->Broadcast();
}
lock.Release();

}

Question
1) Can readers starve?
2) Why does checkRead need a while?
3) Suppose we had a large DB with many records, and we want

many users to access it at once. Probably want to allow two
different people to update their bank balances at the same
time, right? What are issues?

2. Example: Sleeping Barber (Midterm 2002)
The shop has a barber, a barber chair, and a waiting room with NCHAIRS chairs. If there are no customers
present, the barber sits in the barber chair and falls asleep. When a customer arrives, he wakes the sleeping
barber. If an additional customer arrives while the barber is cutting hair, he sits in a waiting room chair if
one is available. If no chairs are available, he leaves the shop. When the barber finishes cutting a
customer’s hair, he tells the customer to leave; then, if there are any customers in the waiting room he

CS 372: Operating Systems Mike Dahlin

 5 02/18/10

announces that the next customer can sit down. Customers in the waiting room get their hair cut in FIFO
order.

The barber shop can be modeled as 2 shared objects, a BarberChair with the methods napInChair(),
wakeBarber(), sitInChair(), cutHair(), and tellCustomerDone(). The BarberChair must have a state variable
with the following states: EMPTY, BARBER_IN_CHAIR, LONG_HAIR_CUSTOMER_IN_CHAIR,
SHORT_HAIR_CUSTOMER_IN_CHAIR. Note that neither a customer or barber should sit down until the
previous customer is out of the chair (state == EMPTY). Note that cutHair() must not return until the
customer is sitting in the chair (LONG_HAIR_CUSTOMER_IN_CHAIR). And note that a customer
should not get out of the chair (e.g., return from sit in chair) until his hair is cut
(SHORT_HAIR_CUSTOMER_IN_CHAIR). The barber should only get in the chair
(BARBER_IN_CHAIR) if no customers are waiting. You may need additional state variables.

The WaitingRoom has the methods enter() which immediately returns WR_FULL if the waiting room is
full or (immediately or eventually) returns MY_TURN when it is the caller’s turn to get his hair cut, and it
has the method callNextCustomer() which returns WR_BUSY or WR_EMPTY depending on if there is a
customer in the waiting room or not. Customers are served in FIFO order.

Thus, each customer thread executes the code:

Customer(WaitingRoom *wr, BarberChair *bc)
{
 status = wr->enter();
 if(status == WR_FULL){
 return;
 }
 bc->wakeBarber();
 bc->sitInChair(); // Wait for chair to be EMPTY
 // Make state LONG_HAIR_CUSTOMER_IN_CHAIR
 // Wait until SHORT_HAIR_CUSTOMER_IN_CHAIR
 // then make chair EMPTY and return
 return;
}

The barber thread executes the code:
Barber(WaitingRoom *wr, BarberChair *bc)
{
 while(1){ // A barber’s work is never done
 status = wr->callNextCustomer();
 if(status == WR_EMPTY){
 bc->napInChair(); // Set state to BARBER_IN_CHAIR; return with state EMPTY
 }
 bc->cutHair(); // Block until LONG_HAIR_CUSTOMER_IN_CHAIR;
 // Return with SHORT_HAIR_CUSTOMER_IN_CHAIR
 bc->tellCustomerDone(); // Return when EMPTY
 }
}

Write the code for the WaitingRoom class and the BarberChair class. Use locks and condition
variables for synchronization and follow the coding standards specified in the handout.

Hint and requirement reminder: remember to start by asking for each method “when can a
thread wait?” and writing down a synchronization variable for each such situation.

List the member variables of class WaitingRoom including their type, their name, and their initial
value
 Type Name Initial Value (if applicable)

CS 372: Operating Systems Mike Dahlin

 6 02/18/10

 mutex lock
 cond canGo
 int nfull 0
 int ticketAvail 0
 int ticketTurn -1

int WaitingRoom::custEnter()

lock.acquire();
int ret;
if(nfull == NCHAIRS){
 ret = WR_FULL;
}
else{
 ret = MY_TURN;
 myTicket = ticketAvail++;
 nfull++;
 while(myTicket > ticketTurn){
 canGo.wait(&lock);
 }
 nfull--;
}
lock.release();
return ret;

int WaitingRoom::callNextCustomer()

lock.acquire();
if(nfull == 0){
 ret = EMPTY;
}
else{
 ret = BUSY;

 ticketTurn++;
 canGo.broadcast();
}
lock.release();
return ret;

CS 372: Operating Systems Mike Dahlin

 7 02/18/10

List the member variables of class BarberChair including their type, their name, and their initial
value
 Type Name Initial Value (if applicable)
 mutex lock
 cond custUp
 cond barberGetUp
 cond sitDown
 cond seatFree
 cond cutDone
 int state EMPTY
 int custWalkedIn 0

void BarberChair::napInChair()
 lock.acquire();
 if(state == EMPTY){ // Cust could arrive before I sit down
 state = BARBER_IN_CHAIR;

 while(custWalkedIn == 0){
 barberGetUp.wait(&lock);
 }
 state = EMPTY

 seatFree.signal(&lock);
 }
 lock.release();

void BarberChair::wakeBarber()

lock.acquire();
custWalkedIn = 1;
barberGetUp.signal(&lock);
lock.release()

void BarberChair::sitInChair()
lock.acquire()
while(state != EMPTY){
 seatFree.wait(&lock);
}
custWalkedIn = 0;
state = LONG_HAIR_CUSTOMER_IN_CHAIR;
sitDown.signal(&lock);
while(state != SHORT_HAIR_CUSTOMER_IN_CHAIR){
 cutDone.wait(&lock);
}
state = EMPTY;
custUp.signal(&lock);
lock.release();

}

void BarberChair::cutHair()

lock.acquire();
while(state != LONG_HAIR_CUSTOMER_IN_CHAIR){
 sitDown.wait(&lock);
}
state = SHORT_HAIR_CUSTOMER_IN_CHAIR;
cutDone.signal(&lock);
lock.release();

CS 372: Operating Systems Mike Dahlin

 8 02/18/10

void BarberChair::tellCustomerDone()

lock.acquire();
while(state != EMPTY){ // NOTE: No other cust can arrive until I call call_next_cust()
 custUp.wait(&lock);
}

lock.release();

CS 372: Operating Systems Mike Dahlin

 9 02/18/10

3. Semaphores v. Condition variables

Illustrate the difference by considering: can we build monitors out of
semaphores? After all, semaphores provide atomic operations and
queuing.

Does this work:

Wait(){ semaphore->P() }
Signal{ semaphore->V()}

No: Condition variables only work inside a lock. If try to use
semaphores inside a lock, have to watch for deadlock.

Does this work:

Wait(Lock *lock){
lock->Release();
semaphore->P();
lock->Acquire();

}

Signal(){
 semaphore->V();
}

Condition variables have no history, but semaphores do have history.

What if thread signals and no one is waiting?
  No Op
What if thread later waits?
  Thread waits.

What if thread V’s and no one is waiting?
 Increment
What if thread later does P
 Decrement and continue

CS 372: Operating Systems Mike Dahlin

 10 02/18/10

In other words, P+V are commutative – result is the same no mater
what order they occur. Condition variables are not commutative.
That’s why they must be in a critical section – need to access state
variables to do their job.

Does this fix the problem?
 Signal(){
 if semaphore queue is not empty
 semaphore->V();
 }

For one, not legal to look at contents of seemaphore queue.
Also, race condition – signaller can slip in after lock is released and
before wait. Then waiter never wakes up

Need to release lock and go to sleep atomically.

Is it possible to implement condition variables using semaphores?
Yes, but exercise left to the reader!

3.1

Admin - 3 min

Project 1 out…

 Notes:

 don’t assume FIFO behavior of Locks and CV’s
 Implementation must provide minimal fairness to threads calling

scheduler – freedom from starvation – eventually all waiting
threads are guaranteed to make progress

CS 372: Operating Systems Mike Dahlin

 11 02/18/10

 GDB with threads on Linux sees “unknown signal” – anyone know
workaround? (“handle” call?)

 Use gettimeofday to get current time (but document how this limits
precision of scheduling)

 A comment “multiple flows not supported” in my sender test
program is not correct; multiple flows are supported. Sorry for the
confusion

 Slight ambiguity – given permission to send v. when do you really
send. OK to assume you send as soon as you get permission to
send (I thought about more complex interface to deal with this, but
not worth the trouble…)



Lecture - 23 min

4. Concurrency conclusion

4.1 Summary
Basic idea in all CS: abstract complexity behind clean interfaces

We’ve done that!!

Physical Hardware Programming Abstraction
single CPU, interrupts, test&set sequential execution
 infinite # CPUs
 semaphores and monitors

Every major OS built since 1985 has provided threads – Linux, Mach,
OS/2, NT (Microsoft), Solaris, OSF (Dec alphas)
Why? B/c makes it a lot easier to write concurrent programs, from
Web servers to databases to embedded systems

So does this mean you should all go out and use threads?

CS 372: Operating Systems Mike Dahlin

 12 02/18/10

4.2 Cautionary tales

Illustrate why abstraction doesn’t always work the way you want it to

4.2.1 OS/2
Microsoft OS/2 (around 1988): initially, a spectacular failure. Since
then IBM has completely re-written from scratch

Use threads for everything: window systems, communication between
programs, etc. Threads are good idea, right?

Thus, system created a lot of threads, but few actually running at any
one time – most waiting around for user to type in a window, or for a
network packet to arrive, etc.

Might have 90 threads, but just a few at any time on the ready queue,
but each thread needs its own execution stack, say 9K, whether
runnable or waiting

Result: system needs an extra 1 MB of memory, mostly consumed by
waiting threads. 1 MB of memory cost $200 in 1988

Put yourself in customer’s shoes; Did OS/2 run Excel or Word better?
OK, it gave you the ability to keep working while you use the printer,
but is that worth $200?

Moral: threads are cheap, but they’re not free

Who are OS features for?
 Operating system developer?
 End user?

Lots of OS research has been focused on making it easier for OS
developers, because it is so complicated to build operating systems.

But the trick to selling it is to make it better for the end user.

CS 372: Operating Systems Mike Dahlin

 13 02/18/10

4.2.2 Threads and Multiprocessors
Might think you have everything you need to know to go write a
parallel program: just split program into threads, so that things can run
in parallel

Example: matrix multiply

for(I = 0; I < N; I++){
 for(j = 0; j < N; j++){
 for(k = 0; k < N; k++){
 C[I][j] += A[I][k] * B[j][k];
 }
 }
}

How would you parallelize this? Create a thread for every iteration of
the inner loop? Each one can run concurrently, using a lock to protect
access to each element in C[I][j].

Would work, but wouldn’t be efficient. In Nachos, a few hundred
instructions to create a thread. Here, maybe a few ten instructions to
do each iteration.

Repeat: threads are cheap, but they aren’t free

Instead: group iterations so that each thread does a fair amount of
work.

4.2.3 The case against threads
Several prominent operating systems researchers have argued that one
should almost never use threads because (a) it is just too hard to write
multi-threaded programs that are correct and (b) most things that
threads are commonly used for can be accomplished in other, safer
ways.

I think they may go too far, but there is more than a grain of truth in
their arguments.

CS 372: Operating Systems Mike Dahlin

 14 02/18/10

The class web page has pointers to two documents that may interest
you:

John Ousterhout "Why Threads Are A Bad Idea (for most purposes)."

Robert van Renesse "Goal-Oriented Programming, or Composition
using Events, or Threads Considered Harmful"

These are important arguments to understand -- even if you disagree
with them, they may point out pitfalls that you can avoid.

4.2.4 Event-driven v. thread-driven programming
They can express the same thing
I can build a multi-threaded server
I can build an event-driven server

Event queue ~ ready queue
Event ~ thread control block // how same, how different
Waiting for disk/object ~ waiting for lock/signal
Event loop ~ scheduler

QUESTION: what are advantages and disadvantages of different
approaches? When should you use one and not the other?

Summary - 1 min
