
CS 372: Operating Systems Mike Dahlin

 1 10/02/02

Lecture #11: Deadlock

Review -- 1 min

Good news: we have a systematic way to write synchronized programs
Application: readers/writers bounded_buffer … invariants
Abstractions: semaphores monitors mutex + scheduling
Hardware: test&set interrupts off atomic read-modify-write

advice: follow a consistent methodology

Outline - 1 min

This gives us safety.
What about liveness?
Bad news: what still causes problems with threads:
Deadlock
♦ definition
♦ conditions for its occurrence
♦ solutions: breaking deadlocks, avoiding deadlocks
♦ efficiency v. complexity
Other hard (liveness) problems

n priority inversion
n starvation
n denial of service

These problems are hard because whereas we were able to structure
programs so that safety became a local property (e.g., we have modularity),
these liveness issues have to do with global structure of program (e.g., no
modularity)

The good news is that these problems are usually not as dangerous as safety
bugs. As opposed to “intermittent bug”, “The program stops with the

CS 372: Operating Systems Mike Dahlin

 2 10/02/02

evidence in tact” [Lampson] (Usually not so bad; but occasionally
catastrophic. Example: Mars Pathfinder.)

Preview - 1 min

file systems

Lecture - 20 min

1. Problems with threads
We've solved a really hard problem: how to safely coordinate access
to a shared resource
Monitors give us a systematic, modular approach

This works great for problems that fit on a blackboard

Unfortunately there are other problems to threads programming that
primarily arise in larger-scale programs.
We've shown how to coordinate actions within an object or module.
The challenge is to coordinate actions across modules.

Two problems where threads "break modularity" (literally, when one
module calls into another, it has to know about the internal
implementation details and make sure that both modules'
synchronization mesh.)

th 1 th 2

acquire() deadlock!

wait() signal()

threads can break
modularity

th 1

th 2

lock

lock

deadlock!

*Warning: by the strictest definition,
this case is not quite a deadlock.
See appendix to today’s notes.

CS 372: Operating Systems Mike Dahlin

 3 10/02/02

1.1.1 The case against threads
Several prominent operating systems researchers have argued that one
should almost never use threads because (a) it is just too hard to write
multi-threaded programs that are correct and (b) most things that
threads are commonly used for can be accomplished in other, safer
ways.

I think they may go too far, but there is more than a grain of truth in
their arguments.

The class web page has pointers to two documents that may interest
you:

John Ousterhout "Why Threads Are A Bad Idea (for most purposes)."

Robert van Renesse "Goal-Oriented Programming, or Composition
using Events, or Threads Considered Harmful"

These are important arguments to understand -- even if you disagree
with them, they may point out pitfalls that you can avoid.

2. Definitions

2.1 Resources
threads – active

resources – passive; things needed by thread to do its job (e.g. CPU,
disk space, memory)

2 kinds of resources

threads break
callbacks

CS 372: Operating Systems Mike Dahlin

 4 10/02/02

Preemptable – can take it away (CPU)
Non-preemptable – must leave with thread

e.g. disk space – what would you think if I took space away
from your files?

Lock/Mutual exclusion – a kind of resource
represents a set of data that a thread needs exclusive access to
to do a job

 QUESTION: is a lock pre-emptable or non-preemptable?

2.2 Starvation v. deadlock
starvation – thread waits indefinitely
(e.g. because some other threads are using resources)

deadlock – circular waiting for resources

Deadlock implies starvation, but not vice versa

Deadlock example

 Thread A Thread B
 x.Acquire(); y.Acquire();
 y.Acquire(); x.Acquire();

3. Conditions for Deadlock

3.1 Motivation
• Deadlock can happen with any kind of resource
• Deadlocks can occur with multiple resources. Means you can’t

decompose the problem – can’t solve deadlock for each resource
independently

For example

• one thread grabs the memory it needs
• another grabs disk space
• another grabs the tape drive

CS 372: Operating Systems Mike Dahlin

 5 10/02/02

 each waits for the other to release

Deadlock can occur whenever there is waiting
Example: dining lawyers

Each lawyer needs two chopsticks to eat. Each grabs chopstick on the
right first

What if all grab at same time? Deadlock.

3.2 Conditions

Conditions for deadlock – without all of these, can’t have deadlock:
1) limited access (for example, mutex or bounded buffer)
2) no preemption (if someone has resource, can’t take it away)
3) multiple independent requests (“wait while holding”)
4) circular waiting

3.3 Resource allocation graph
Square = resource
 Multiple resources represented w/ multiple dots in square
Circle = thread
Arrows show dependency – “owned by”, “waiting for”
No cycles à no deadlock exists
Cycle à deadlock may exist

n If one instance of each resource both necessary and
sufficient condition

n If multiple instances, necessary condition, but not sufficient

CS 372: Operating Systems Mike Dahlin

 6 10/02/02

Admin - 3 min

Project 1: Due Oct 14
Midterm: Due Oct 9

 Y

 X

Thread A

Thread B

Waiting for

Waiting for Owned by

Owned by

CS 372: Operating Systems Mike Dahlin

 7 10/02/02

Lecture - 33 min

4. Solutions to deadlock

4.1 Detect deadlock and fix

scan graph
detect cycles
fix them // this is the hard part

Ways to fix deadlock
1) shoot thread; force it to give up resources
This isn’t always possible – for instance, with a mutex, can’t shoot a
thread and leave the world in a consistent state

2) Roll back actions of deadlocked threads “transactions”

 common database technique

DA: roll back work you’ve already done à inefficient?
DA: keeping state to allow roll back may involve overhead

4.2 Preventing deadlock

Key idea: Need to get rid of one of the four conditions

Warning: DA’s – none of these are general; the more general ones
tend not to be so simple or may significantly under-utilize resources
(e.g., be too careful)

Example – avoiding deadlock in general is hard. Consider case with 3
resources A, B, C and 2 threads that access them: 1: ACB, 2: BCA

 Thread 1 Thread 2
 Grab A Grab B

CS 372: Operating Systems Mike Dahlin

 8 10/02/02

 Grab C wait for C
 Wait for B (A)
You could detect that when thread 1 grabs C it causes a deadlock, so
don’t let it grab C, but by then it’s too late. In fact, you had to be
smart enough to see deadlock coming 1 step earlier (once thread 1
grabs A, then we can’t let thread 2 grab B!)

1) infinite resources
solves “limited access”

2) No sharing – totally independent threads
solves ???

3) Don’t allow waiting – how phone company avoids deadlock
solves ???

4) Preempt resources
example – can preempt main memory by copying to disk
solves??

5) make all threads request everything they’ll need at the beginning
e.g. if you need 2 chopsticks grab both at same time (or don’t grab
any)
solves???

problem – predicting future is hard; tend to over-estimate resource
needs (inefficient) (of course under-estimation leads to deadlock)

6) banker’s algorithm – more efficient than reserving all resources

on startup (due to Dijkstra)

Banker’s algorithm allows the sum of maximum resource needs of all
current threads to be greater than the total resources, as long as there
is some way for all the threads to finish without getting into deadlock

a) state maximum resource needs in advance
b) allocate resources dynamically when resource is needed;

wait if granting request would lead to deadlock (request can

CS 372: Operating Systems Mike Dahlin

 9 10/02/02

be granted if some sequential ordering of threads is
deadlock free)

4.2.1 Key concept: safe state
safe state -- there exists some ordering of resource grants that
guarantees all processes can complete w/o deadlock (e.g., OS can
guarantee no deadlock will occur by granting resources in proper
order)

If the system is in a safe state, then there exists a safe sequence

E.g., there is some ordering of processes 0..i s.t. job[0] can complete
using the resources it has + available system resources; job[i] can
complete with resources it has + available system resources +
resources held by jobs[0..i-1] a "safe sequence"

Note: not all unsafe states must lead to deadlock -- (e.g., the
applications could end up asking for fewer resources than they had
originally planned to ask for)

All deadlock states are unsafe, but not all unsafe states are deadlocks.

OS can guarantee what happens in safe states. Process behavior
determines what happens to unsafe states. --> so if OS wants to
guarantee no deadlock, it can not let system into an unsafe state!

Idea – applications specify maximum possible resource demands
OS sees series of “aquire/release” resource
All OS can do to avoid deadlock is delay some of the requests
à OS can control order that different applications progress
à OS makes sure that at least one process can complete, then that a
second one can complete, …

deadlock

safe

unsafe

CS 372: Operating Systems Mike Dahlin

 10 10/02/02

Note that OS must treat application as black box (or adversary) – must be
conservative
(just b/c applications enter “unsafe state” doesn’t mean a deadlock will
occur, but OS can’t take that chance…)

4.2.2 Algorithm:
//
// Invariant: the system is in a safe state
//
ResourceMgr::Request(ResourceID resource,
 RequestorID thread){
 mutex.acquire();
 assert(system is in a safe state);

 while(the state that would result from
 giving resource to thread is not safe){
 cv.wait(&mutex);
 }
 update state by giving resource to thread
 assert(system is in a safe state);
 mutex.release();
}

Now the trick is: how can you tell if a state is safe?
è Determine if there is a safe sequence from the state

Each process states its max needs
Max[i,j] – max resource j needed by process i
Alloc[i,j] – current allocation of resource j
 to process i
Need[i,j] = Max[i,j] – Alloc[i,j]
Avail[j] – number of resource j available

TestSafe(Max[], Alloc[], Need[], Avail[]){
 Work[] = avail[]
 Finish[] = 0,0,0,… // Boolean; is process i finished?

 repeat{
 find i s.t. finish[i] = false and need[i] < work
 if no such i exists
 if finish[i] = true forall i return true
 else return false

CS 372: Operating Systems Mike Dahlin

 11 10/02/02

 else
 work = work + alloc[i]
 finish[i] = true
 }

Example of Banker’s algorithm with dining lawyers: chopsticks in
middle of table
Deadlock free if when try to grab fork, take it unless it’s the last one,
and no one would have 2

What if k-handed lawyers?
Deadlock free if when try to grab fork: take it unless
 its the last one and no one would have k
 its the next to last one, and no one would have k-1
 …

7) Make everyone use the same ordering in accessing resources

 For example, all threads must grab locks in same order
 x.Acquire() x.Acquire()
 y.Acquire() y.Acquire()

Note: this works for locks. Does it work if a call to module Y can
wait()?

Typically, a combination of techniques

4.3 Prudent engineering
If you are writing a large multi-threaded program

Consider overall program structure carefully. If possible:

• Use coarse grained locking (“one big lock” is often the right
answer).

• Disciplined hierarchical structure (so you can order the
locks); avoid up-calls

CS 372: Operating Systems Mike Dahlin

 12 10/02/02

If your structure is poor, you have little hope.

Pairwise deadlock case 1: mutual waiting within monitor

• Lampson and Redell “Experience with Processors and
Monitors in Mesa”: “Localized bug in the monitor
code…usually easy to locate and correct”

Pairwise deadlock case 2: Lock cycle across monitors
• Simplest solution: partial ordering across resources
• --> structure program to avoid mutually recursive monitors;

avoid callbacks; avoid upcalls
Pairwise deadlock case 3: Nested monitors + wait

• LR: “Break [monitor] M into two parts: a monitor M’ and an
ordinary module O which implements the abstraction defined
by M and calls M’ for access to shared data. The call on [nested
monitor] N must now be done from O rather than from within
M”

Note: solutions to cases 2 and 3 break modularity and are not general

• They require knowledge of internals of other modules. Can this
module call me? Can this module call a module that calls me?
Can this module wait?

o Target of call: no lock-->OK. Caller can continue to hold
lock

o Target of call: locks but never waits --> caller can
continue to hold lock if partial ordering exists (e.g., if
calee never calls back or higher)

o Target of call locks and may wait --> dangerous to call
while holding a lock

• Proposed rule: Manually release lock when calling another
module

o Still follow rule: release lock only at beginning/end of
procedure
§ -->Wrapper procedures?
§ --> continuation style of programming?
§ Be careful not to assume anything stronger than

invariant upon re-entry (danger: “implicit”
reasoning based on “program counter”)

o This approach still requires careful thought and code
structure (Andrew Birrell “Guide to programming with

CS 372: Operating Systems Mike Dahlin

 13 10/02/02

threads”: “You should generally avoid holding a mutex
while making an up-call (but this is easier said than
done.)”

• Exceptions to rule:
o Callee uses no locks OR callee uses no condition

variables and partial order exists
o Manually verify and hope invariant continues to hold?
o Syntactic sugar (e.g., similar to const?)
o Use a debugging version of lock, condition variables that

detects “dangerous” patterns at run time?
o Other exceptions? When is it safe to call a method that

might wait?

5. Priority inversion
A related problem. Suppose thread A has high priority, thread B has
medium priority, and thread C has low priority.
Then thread C acquires a lock
Thread A attempts to acquire the lock
Thread B is busy using the CPU

A waits for C
C waits for B

A is being delayed by a lower priority process?

Seems innocuous. This is why the Mars Pathfinder rover (Sojourner)
took several days to get started.

Well known, common problem.

Solution
If C holds a lock and A is waiting on the lock, temporarily boost C’s
priority to A’s (e.g., when I hold the lock, my priority is the
max(priority of all threads waiting on the lock)

Note: this increases complexity of building locks

CS 372: Operating Systems Mike Dahlin

 14 10/02/02

Summary - 1 min

6. What’s hard about threads programming?
We started off with what seemed like a really hard problem, but came
up with a reasonable solution (synchronization via monitors, etc.)
What’s the big deal?

In class we look at problems that fit on a blackboard. In life you have
to deal with 100K-10M line programs. It makes a difference.
Deadlock is one example – problems come from interactions among
different critical sections.

6.1 Performance v. complexity (correctness)
One big lock you hold for entire operation (simple, but slows you
down)
v.
finer-grained locking (potentially faster, but more complex. More
dangerous)

Example: hash table with conecurrent access
Option: one lock per table
 One lock per table + one lock per bucket in table
 One lock per table + one per bucket + one per element
Consider lock/unlock pattern for an operation like insert…

6.2 Synchronization bugs
Don’t hold/release locks when you should
Hidden sharing across modules:
e.g. – when a thread calls a library (e.g., printf, malloc) how do you
know if you need to grab a lock?
 (general solution is callee should use locks if it needs it, but that may
add overhead for single-threaded programs)

Not protect all shared variables properly

CS 372: Operating Systems Mike Dahlin

 15 10/02/02

e.g., performance v. complexity debate – as more clever fine-grained
locking, increase chance to screw up
e.g., when port kernel to be multi-threaded, usually start with “one big
lock” on entire kernel, then in next release per-module locks (with
care to avoid pitfalls), then within module, etc.

Etc
Example
1)
P(s) P(s)
…
V(s) V(s)
…
V(s)

2)
lock(m) a++
a++
unlock(m)

3)
lock(m)
…
unlock(n)

4)
lock(m)
…
if(…)
 return
…
unlock(m)
return;

Heisenbugs
Synchronization bugs are hard to detect and correct b/c hard to
reproduce (“Heisenbugs” v. “Bohr bugs”)

CS 372: Operating Systems Mike Dahlin

 16 10/02/02

6.3 Deadlock
See above
Really a big problem in large systems – subsystem 1 calls subsystem
2 calls… How to enforce order of locking or whatever

Many systems built with callbacks – almost invites cycles

6.4 Priority inversion (see above)

6.5 Starvation
If synchronization solution not well implemented a thread may starve
(e.g., semaphore implemented in LIFO order)

6.6 Denial of service problems
Examples
• CS doesn’t ensure progress
• Thread crashes in middle of CS
• Thread gets caught in infinite loop in CS
• Thread does not clean up after itself

7. Appendix: Deadlock v. circular wait
Some definitions of deadlock hold that the “lock” is literal. That
deadlock is what you have when you have circular waiting for
locks/exclusive access to resources and that circular waiting that
includes monitors can cause starvation but that they are not strictly
speaking deadlocks.

I (and others such as Lampson and Redell, quoted above) find it more
convenient to talk about both cases of circular waiting as deadlocks.

To see why the other point of view has some merit, consider the
pairwise “deadlock” case of two threads calling though module A into
module B. Thread 1 waits in module B (while holding A’s lock) and
waits for thread 2 to signal in module B; but thread 2 is stuck waiting
for A’s lock.

CS 372: Operating Systems Mike Dahlin

 17 10/02/02

This certainly seems like deadlock. But try to draw the “waits for”
graph. The final state

• Where is the cycle?
• This tool doesn’t quite work for this case; this boxes, circles,

and arrows tool (and related graph algorithms) work for lock-
only deadlock, but not for mixed lock/cv deadlock.

• There still is a circular dependency. To stretch the point, B
“holds” the signal that A “waits for” (so we could sort of add
an arrow from CVB to B?). But, because condition variables
capture higher level, more general scheduling constraints than
locks, it is not so easy to automate detection of cycles through
condition variables (depends on program meaning.)

Lock A

Lock B

CV B?

A
B

A waits for condition
variable?

