
cs372 Mike Dahlin

Lecture#17: Replacement, Cache state

Review -- 1 min

Virtual memory – paging to disk
Provide illusion of infinite
Use essentially same mechanisms as already had
Page table
Core map
Pageout daemon

Danger: thrashing

Outline - 1 min

Thrashing -- solutions
Replacement
State bits

Preview - 1 min

Finish virtual memory
I/O – file systems

Lecture - 35 min

1. Thrashing
Thrashing – memory overcomitted – pages tossed out while still
needed

cs372 Mike Dahlin

Example – one program touches 50 pages (each equally likely); only
have 40 physical page frames
If have enough pages – 200ns/ref
If have too few pages – assume every 5th reference Å page fault
4refs x 200ns
1 page fault x 10ms for disk I/O
Å 5 refs per 10ms + 800ns = 2ms/ref = 20000x slowdown!!!

QUESTION: what hit rate do you need to get less than a 1%
slowdown from paging to disk?

1.1 Problem: system doesn’t know what it is getting in to
Log more and more users into system – eventually:

 total number of pages needed > number of pges available

Picture: jobs/sec v. total system throughput

So, what do you do about this?
1) One process alone too big?
Change program so it needs less memory or has better locality
For example, split matrix multiply into smaller sub-matrices that each
fit in memory

2) Several jobs?
n figure out needs/process (working set)
n run only groups that fit (balance sets) – kick other processes out of

memory
e.g., suppose you are paging and running at a 10,000x slowdown,
if kicking half of the jobs out would get you to stop paging and run
at full speed, you trade a 1.5x slowdown for a 10,000x slowdown

Remember -- issue here is not total size of process, but rather total
number of pages being used at the moment.

How do we figure needs/process out?

cs372 Mike Dahlin

1.1.1 Working set (denning, MIT mid 60’s)

Informally – collection of pages a process is using right now

Formally – set of pages job has referenced in last T seconds

How do we pick T?
1 page fault = 10ms
10ms = 2M instructions
Å T needs to be a lot biger than 1 million instructions

How do you figure out what working set is?
n replacement policy keeps track of time to last access – use

information from it (later in lcture/next lecture)
a) modify clock algorithm so that it seeps at fixed intervals (keep idle

time/page; how many seconds since last reference)
b) with second chance list – how many seconds since got put on 2nd

chance list

Now you know how many pages each program needs. What do you
do?

Balance set
1) if all fits? Done
2) if not? Throw out fat cats; bring them back eventually

What if T too big?
Å waste memory – too few programs fit in memory
What if T too small?
Å thrashing

2. Swapping v. paging
If system low on memory, may be better off moving an entire process
to disk and stopping it from running for a whil

cs372 Mike Dahlin

System stop thrashing -> system runs more efficiently Å average (and
perhaps all) jobs run faster

2.1.1 Need two levels of scheduling
Upper level decides on swapping
n when
n who
n for how long
Lower levels decide who on ready queue actually runs on CPU

Upper level invoked when there are processes swapped out and
whenever we need to load more programs than can fit in main
memory

start –
proces
creation,
resources
allocated

ready
running

zombie –
clean up

done – resources
deallocated

IO Wait –
process
waiting
for io

swapped
out –
process
on disk

IO done
IO
requested

cs372 Mike Dahlin

Admin - 3 min

Project 3

Lecture - 35 min

3. Cache replacement policies
TLB – fully associative – can replace any entry on a miss

hardware Å random
Virtual memory cache – replace any page

software Å more flexibility

Replacement policy is an issue for any caching system

3.1 Random
Typical solution for TLBs. Easy to implement in HW

3.2 FIFO
Throw out oldest page. Be fair – let every page live in memory for the
same amount of time, then toss it.

Bad because throws out heavily used pages instead of those that are
not frequently used

3.3 MIN
Replace page that won’t be used for the longest time into the future

3.4 LRU
Replace page that hasn’t been used for the longest time

If induction works, LRU is a good approximation to MIN. Actually,
people don’t use even LRU, they approximate it.

cs372 Mike Dahlin

3.5 Example

Suppose we have 3 page frames and 4 virtual pages with the reference
string ABCABDADBCB (virtual page references)

3.5.1 FIFO

reference
phys slot

A B C A B D A D B C B

1 A D C
2 B A
3 C B

3.5.2 MIN
reference
phys slot

A B C A B D A D B C B

1 A C
2 B
3 C D

3.5.3 LRU
Same as MIN for this pattern
Won’t always be this way

QUESTION: When will LRU perform badly?
When next reference is to the least recently used page

Reference string ABCDABCDABCD
LRU

reference
phys slot

A B C D A B C D A B C D

1 A D C B
2 B A D C
3 C B A D

cs372 Mike Dahlin

Same behavior with FIFO! What about MIN?
MIN

reference
phys slot

A B C D A B C D A B C D

1 A B
2 B C
3 C D

3.5.4 Does adding memory always reduce the number of page
faults?

Yes for LRU, MIN
No for FIFO (Belady’s anomoly)

reference
phys slot

A B C D A B E A B C D E

1 A D E
2 B A C
3 C B D
reference
phys slot

A B C D A B E A B C D E

1 A E D
2 B A E
3 C B
4 D C

With FIFO, contents of memory can be completely different with
different number of page frames

By contrast, with LRU or MIN, contents of memory with X pages is
subset of contents with X+1 pages. So with LRU or MIN, having
more pages never hurts.

4. Implementing LRU

4.1 Perfect
Timestamp page on each reference

cs372 Mike Dahlin

Keep list of pages ordered by time of reference

On every memory reference – move page to front of LRU list
Too much work per mem reference

4.2 Clock
Approximate LRU (approx to approx of MIN)

Replace an old page, not the oldest page

Clock algorithm: arrange physical pages in a circle, with a clock
hand

1. Hardware keeps a use bit per physical page
2. Hardware sets use bit on each reference (TLB)
 If bit isn’t set, means not referenced for a long time
3. On page fault

Advance clock hand (not real time)
check use bit
1 Å clear, go on
2 Å replace page

Will it always find a page or loop indefinitely?
Even if all use bits are set, it will eentually loop around, clearing all
use bits Å FIFO

What if hand is moving slowly?
Not many page faults and/or find page quickly

What if hand is moving quickly?
Lots of page faults and/or lots of reference bits set

One way to view clock: crude partitioning of pages into two groups –
young and old. Why not partition into more than 2 groups?

4.3 Nth chance
Nth chance algorithm – don’t throw page out until hand has swept
by N times

cs372 Mike Dahlin

OS keeps counter per page -- # sweeps

On page fault, OS checks use bit
1Å clear use and also clear counter, go on
0 Å increment counter; if < N go on else replace page

How do we pick N?

Large N Å better approximate LRU
Small N Å more efficient; otherwise might have to look a long way to
find a free page

Dirty pages have to be written back to disk when replaced. Takes
extra overhead to replace a dirty page, so give dirty pages an extra
chance before replacing.

Common approach
clean pages – use N = 1
dirty pages – use N = 2 (and write back when N = 1)

5. State per page table entry
To summarize, many machines maintain 4 bits per page table entry

use – set when page referenced; cleared by clock algorithm
modified – set when page is modified; cleared when page written to
disk
valid – OK for pogram to reference this page
read-only OK for program to read page, but not to modify it (e.g.
don’t allow modifcation of code page)

5.1 Do we really need a “modified” bit?
No. Can emulate it (e.g. BSD UNIX). Keep two sets of books:
(i) pages user program can access w/o taking fault
(ii) pages in memory

cs372 Mike Dahlin

Set I is a subset of set ii. Initially, masrk all pages as read-only. On
write, trap to OS. OS sets (SW) modified bit and marks page as read-
write

When page comes back in from disk, mark as read-only

5.2 Do we really need a “use” bit?
No. Can emulate it, exactly the same as above

(i) Mark all pages as invalid, even if in memory
(ii) On read to invalid page, trap to OS
(iii) OS sets use bit, and marks page read-only
(iv) on write, set use and modified bit, and mark page read-write
(v) when clock hand passes by, reset use bit and mark page as invalid

But remember, clock is just approximation of LRU
Can we do better approximation, given that we have to take page fault
on some reads and writes to collect use information. Need to identify
an old page, not the oldest page!

VAX/VMS didnt have a use or modify bit, so had to come up with
some solution.
Idea was to split memory into two parts – mapped and unmapped
i) directly accessible to program (marked as read-write) (managed

FIFO)
ii) second-chance list (marked as invalid, but in memory) (managed

pure LRU)

On page reference
if mapped, access at full speed
otherwise page fault:
if on second chance list, mark read-write

move first page on FIFO list onto end of second chance
list (and mark invalid)

if not on second chance list, bring into memory
move first page on FIFO list onto end of second chance
replace first page on second chance list

cs372 Mike Dahlin

How many pages for second chance list?
If 0, FIFO
if all, LRU, but page fault on every page reference

Pick intermediate value
Result:
+ few disk accesses (page only goes to disk if it is unused for along
time)
n increase overhead trapping to OS (sw/hw tradeoff)

5.3 Does sw-loaded TLB need a use bit?

Two options:
1) hardware sets use bit in TLB; when TLB entry is replaced, sofware

copies use bit back to page table
2) Sofware manages TLB entries as FIFO list; everything not in TLB

is second chance list, managed as strict LRU

5.4 Core map
page tables map virtual page # Å physical page #

Do we need the reverse? Physical page # Å virtual page #?

Yes. Clock algorithm runs through page frames. What if it ran through
page tables
(i) many more entries
(ii) what if there is sharing? (e.g., what do you do if a shared page

becomes “dirty”?

6. Fairness
On a page fault, do you consider all pages in one pool or only those of
the process that caused the page fault

Global replacement (UNIX) – all pages in one pool

cs372 Mike Dahlin

More flexible – if my process needs a lot, and you need a little, I can
grab pages from you. Problem – one turkey can ruin whole system
(want to favor jobs that need only a few pages!)

Per-process (VMS) – give each a separate pool; for example, a
separate clock for each process. Less flexible

Example:
intermittent interactive job (emacs)
batch job (compilation)

When compilation is over, emacs page have to be brought back in,
and no history information.

